English
新闻公告
More
化学进展 2023, Vol. 35 Issue (3): 375-389 DOI: 10.7536/PC220819 前一篇   后一篇

• 综述 •

第一性原理计算应用于锂硫电池研究的评述

张晓菲, 李燊昊, 汪震, 闫健, 刘家琴*(), 吴玉程*()   

  1. 合肥工业大学 工业与装备技术研究院 材料科学与工程学院 先进功能材料与器件安徽省重点实验室 合肥 230009
  • 收稿日期:2022-08-18 修回日期:2022-12-19 出版日期:2023-03-24 发布日期:2023-02-16
  • 作者简介:

    刘家琴 1981年出生。合肥工业大学工业与装备技术研究院研究员、博士生导师。主要研究方向为新能源材料与器件设计构建与机理研究。

    吴玉程 1962年出生。合肥工业大学材料科学与工程学院教授、博士生导师。主要研究方向为功能纳米材料与器件的设计构建与机理研究。

  • 基金资助:
    国家自然科学基金项目(51972093); 国家自然科学基金项目(U1810204); 国家自然科学基金项目(U1910210); 安徽省自然科学基金项目(2008085ME129); 安徽省重点研究与开发计划(202004b11020024); 中央高校基本科研业务费专项资金(PA2021GDSK0087)

Review on the First-Principles Calculation in Lithium-Sulfur Battery

Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin(), Wu Yucheng()   

  1. Institute of Industry © Equipment Technology, School of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials © Devices of Anhui Province, Hefei University of Technology,Hefei 230009, China
  • Received:2022-08-18 Revised:2022-12-19 Online:2023-03-24 Published:2023-02-16
  • Contact: *jqliu@hfut.edu.cn (Jiaqin Liu); ycwu@hfut.edu.cn (Yucheng Wu)
  • Supported by:
    National Natural Science Foundation of China(51972093); National Natural Science Foundation of China(U1810204); National Natural Science Foundation of China(U1910210); Nature Science Foundation of Anhui Province(2008085ME129); Key Research and Development Plan of Anhui Province(202004b11020024); Fundamental Research Funds for the Central Universities of China(PA2021GDSK0087)

锂硫电池凭借超高理论容量和能量密度以及硫储量丰富和环境友好等优势被认为是极具发展前景的新一代高能电池体系。然而,活性硫及放电终产物导电性差、多硫化物穿梭效应、硫反应动力学缓慢等关键问题严重制约了其实际应用。研究人员采用硫正极设计、功能隔膜/中间层、电解质改性或固体电解质等策略,在解决以上问题方面取得重要进展。然而,针对锂硫电池内部实时动态反应过程、规律和机制以及电极/电解质界面设计调控策略仍缺乏深入认识。第一性原理计算逐渐发展为化学、材料、能源等诸多学科领域的重要研究工具,有助于从原子/分子水平理解反应中间产物性质、分子/电子间相互作用、电化学反应过程和规律、电极/电解质动态演化过程等,相较于“实验试错法”,其在研究锂硫电池内部多电子和多离子氧化还原反应方面具有显著优势。本文全面综述了运用第一性原理计算研究锂硫电池电极与多硫化物相互作用、充放电反应机制以及电解质三个方面的重要进展,展望了第一性原理计算应用于锂硫电池研究的当前挑战和未来发展方向。

Lithium-sulfur (Li-S) batteries are considered as a promising next-generation high-energy battery system due to their ultrahigh theoretical capacity, energy density and the merits of sulfur in terms of abundant resource and environmental friendliness. However, their practical application is confronted with several critical problems including insulation of sulfur and discharge products, shuttle effect of soluble lithium polysulfides, and sluggish reaction kinetics of sulfur, etc. Significant progress has been achieved in addressing these problems by sulfur electrode design, functional separator/interlayer, liquid-electrolyte modification, and solid-electrolyte strategy. Nevertheless, there is still a lack of in-depth understanding of real-time dynamic reaction process and mechanism as well as electrode/electrolyte interface regulation strategy in Li-S batteries. First-principles calculation has gradually developed into an important research tool in various disciplines such as materials, chemistry and energy, facilitating to understand the properties of reaction species, interactions between molecules or/and electrons, electrochemical reaction processes and laws, and dynamic evolution of electrode/electrolyte from the molecular/atomic level. It delivers distinct advantages beyond “experimental trial and error” method in studying the multi-electron and multi-ion redox process in Li-S battery. In this paper, important advances in the application of first principles calculation to study the interactions between electrodes and polysulfides, charge-discharge reaction mechanisms, and electrolytes in Li-S batteries are comprehensively reviewed, and the current challenge and enlightening directions for application of first-principles calculation to study Li-S batteries are also prospected.

Contents

1 Introduction

2 Overview of first-principles

3 Interaction between electrode materials and polysulfides

3.1 Carbon materials

3.2 Transition metal compounds

3.3 Heterostructure

3.4 MOF and COF

3.5 Other materials

4 Reaction mechanism during charge and discharge

5 Electrolyte

6 Conclusion and outlook

()
图1 (a) 不同非金属原子掺杂锯齿边缘石墨烯带与Li2S、Li2S4、Li2S8和S8之间的吸附能Eb (eV)以及Li2S4吸附能与掺杂元素电负性之间的关系曲线[28];(b) MN4@graphene表面的LiPS吸附和催化示意图[40]
Fig. 1 (a) The binding energy Eb (eV) of Li2S, Li2S4, Li2S8, and S8 interacting with X-doped graphene nanoribbons with zigzag edge and the Eb with Li2S4 versus electronegativity of dopant elements[28]; (b) The schematic diagram of anchoring and catalyzing LiPS on MN4@graphene[40]
图2 CeO2 (111)、Al2O3 (110)、La2O3 (001)、MgO (100)和CaO (100)表面(a) Li2S和S8的稳定构型,(b) Li2S8的实验和模拟吸附量及(c)不同吸附位置Li+迁移的势能曲线[44];(d) La2O3表面催化Li2S2 → Li2S转化过程的能量曲线[45]
Fig. 2 (a) Optimized geometries of the most stable Li2S and S8, (b) experimental and simulated adsorption amount of Li2S8 and (c) potential energy profiles for Li+ diffusion along different adsorption sites on CeO2 (111), Al2O3 (110), La2O3 (001), MgO (100) and CaO (100) surfaces[44]; (d) the energy profile for the catalytic Li2S2 → Li2S conversion process on La2O3 surface[45]
图3 MoS2 (001)和MoS2-x (001)表面多硫化物转化机制的能量曲线(a, b)和电荷密度图(c, d) [53]
Fig. 3 (a, b) Energy profiles of polysulfide conversion mechanism and (c, d) charge density comparison of MoS2 (001) and MoS2-x (001) surfaces[53]
图4 (a) Li2S8和M3C2O2的差分电荷密度以及吸附能和M3C2O2晶格常数之间的相关性[63];Ti3C2T2表面(b) LiPS的吸附能和(c) Li2S和Li2S6的分解能垒以及Li+迁移能垒[62]
Fig. 4 (a) Differential charge density between Li2S8 and M3C2O2, and the binding energies as a function of the lattice constants of M3C2 O 2 [63]; (b) adsorption energies of LiPS, (c) decomposition barriers of Li2S, Li2S6 and diffusion barriers of Li+ on Ti3C2 T 2 [62]
图5 (a) Nb终端和Se终端C2N@NbSe2的优化构型及差分电荷密度图;(b) C2N@NbSe2和NbSe2表面Li2S4吸附构型;(c) LiPS与C2N@NbSe2、NbSe2和C2N表面的吸附能[70];(d) WX2@NCF‖MoX2@NCF表面LiPS的吸附模型和吸附能[71];(e) Co5.47N/Fe3N表面LiPS的转化过程,(f) 吸附可视化实验以及(g) Li2S6吸附能[72]
Fig. 5 (a) Optimized structure of Nb-terminated and Se-terminated C2N@NbSe2 configurations and charge density difference plot; (b) Li2S4-adsorbed structures on the surfaces of C2N@NbSe2 and NbSe2 and (c) the binding energies between LiPS and C2N@NbSe2, NbSe2 and C2N surfaces[70]; (d) the adsorption models and energies of LiPS on the WX2@NCF‖MoX2@NCF[71]; (e) the conversion process of LiPS on Co5.47N/Fe3N, (f) the adsorption visualization test and (g) the Li2S6 binding energy[72]
图6 (a) Li2S8@ZIF-8,Li2S8@ZIF-67和Li2S8@MOF-5的吸附分析[77];(b) Cu3(HITP)2催化剂提升锂硫电池性能的机理;(c) 2D MOFs表面吸附能vs描述符φ[78]
Fig. 6 (a) Adsorption analyses of Li2S8@ZIF-8, Li2S8@ZIF-67 and Li2S8@MOF-5[77]; (b) Cu3(HITP)2 as promising electrocatalysts for lithium sulfur battery and (c) binding energy vs the descriptor φ in 2D MOFs[78]
图7 (a) 基于B3LYP/6-311G (3df)优化的Li2Sx (1≤x≤8)构型和结构参数以及键长信息(?)[107];(b) 锂硫电池的放电机理[108]
Fig.7 (a) Optimized geometries, structural parameters and the selected bond lengths (?) of Li2Sx (1≤x≤8) at B3LYP/6-311G (3df) level[107]; (b) discharge mechanism of lithium sulfur batteries[108]
图8 DOL分解的(a)反应网络和(b)反应路径[119];(c) 可回收NiDME添加剂的LiPS转化循环示意图[131]
Fig.8 (a) Reaction net and (b) reaction pathway of DOL decomposition[119]; (c) schematic of LiPS conversion cycle with recyclable NiDME additive[131]
[1]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741     URL    
[2]
Larcher D, Tarascon J M. Nat. Chem., 2015, 7(1): 19.

doi: 10.1038/nchem.2085     pmid: 25515886
[3]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1): 19.

doi: 10.1038/nmat3191    
[4]
Chen Y, Wang T Y, Tian H J, Su D W, Zhang Q, Wang G X. Adv. Mater., 2021, 33(29): 2003666.
[5]
Chung S H, Manthiram A. Adv. Mater., 2019, 31(27): 1901125.
[6]
Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42(7): 3018.

doi: 10.1039/c2cs35256g     URL    
[7]
He J R, Manthiram A. Energy Storage Mater., 2019, 20: 55.
[8]
Huang L, Li J J, Liu B, Li Y H, Shen S H, Deng S J, Lu C W, Zhang W K, Xia Y, Pan G X, Wang X L, Xiong Q Q, Xia X H, Tu J P. Adv. Funct. Mater., 2020, 30(22): 1910375.
[9]
Zhang M, Chen W, Xue L X, Jiao Y, Lei T Y, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X F, Xiong J. Adv. Energy Mater., 2020, 10(2): 1903008.
[10]
Yang X F, Luo J, Sun X L. Chem. Soc. Rev., 2020, 49(7): 2140.

doi: 10.1039/C9CS00635D     URL    
[11]
Feng S, Fu Z H, Chen X, Zhang Q. InfoMat, 2022, 4(3): e12304.
[12]
Fan Y C, Chen X, Legut D, Zhang Q F. Energy Storage Mater., 2019, 16: 169.
[13]
Meng Y S, Elena Arroyo-de Dompablo M. Energy Environ. Sci., 2009, 2(6): 589.

doi: 10.1039/b901825e     URL    
[14]
Sendek A D, Yang Q, Cubuk E D, Duerloo K A N, Cui Y, Reed E J. Energy Environ. Sci., 2017, 10(1): 306.

doi: 10.1039/C6EE02697D     URL    
[15]
Yao N, Chen X, Fu Z H, Zhang Q. Chem. Rev., 2022, 122(12): 10970.

doi: 10.1021/acs.chemrev.1c00904     URL    
[16]
Hohenberg P, Kohn W. Phys. Rev., 1964, 136(3B): B864.

doi: 10.1103/PhysRev.136.B864     URL    
[17]
Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Rev. Mod. Phys., 2001, 73(1): 33.

doi: 10.1103/RevModPhys.73.33     URL    
[18]
Geerlings P, De Proft F, Langenaeker W. Chem. Rev., 2003, 103(5): 1793.

doi: 10.1021/cr990029p     pmid: 12744694
[19]
Myers W D, Swiatecki W J. Nucl. Phys. A, 1996, 601(2): 141.

doi: 10.1016/0375-9474(95)00509-9     URL    
[20]
Görling A. Phys. Rev. A, 1999, 59(5): 3359.

doi: 10.1103/PhysRevA.59.3359     URL    
[21]
Städele M, Moukara M, Majewski J A, Vogl P, Görling A. Phys. Rev. B, 1999, 59(15): 10031.

doi: 10.1103/PhysRevB.59.10031     URL    
[22]
Islam M S, Fisher C A J. Chem. Soc. Rev., 2014, 43(1): 185.

doi: 10.1039/C3CS60199D     URL    
[23]
Laasonen K. Methods in Molecular Biology. Totowa: Humana Press, 2012. 29.
[24]
Wang M Y, Xia X H, Zhong Y, Wu J B, Xu R C, Yao Z J, Wang D H, Tang W J, Wang X L, Tu J P. Chem. Eur. J., 2019, 25(15): 3710.

doi: 10.1002/chem.v25.15     URL    
[25]
Ye H, Yin Y X, Xin S, Guo Y G. J. Mater. Chem. A, 2013, 1(22): 6602.

doi: 10.1039/c3ta10735c     URL    
[26]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

doi: 10.1038/nmat2460    
[27]
Li T T, He C, Zhang W X. J. Energy Chem., 2021, 52: 121.

doi: 10.1016/j.jechem.2020.04.042     URL    
[28]
Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Small, 2016, 12(24): 3283.

doi: 10.1002/smll.v12.24     URL    
[29]
Wasalathilake K C, Roknuzzaman M, Ostrikov K K, Ayoko G A, Yan C. RSC Adv., 2018, 8(5): 2271.

doi: 10.1039/C7RA11628D     URL    
[30]
Yi Z L, Su F Y, Huo L, Cui G Y, Zhang C L, Han P D, Dong N, Chen C M. Appl. Surf. Sci., 2020, 503: 144446.
[31]
Jand S P, Chen Y X, Kaghazchi P. J. Power Sources, 2016, 308: 166.

doi: 10.1016/j.jpowsour.2016.01.062     URL    
[32]
Yin L C, Liang J, Zhou G M, Li F, Saito R, Cheng H M. Nano Energy, 2016, 25: 203.

doi: 10.1016/j.nanoen.2016.04.053     URL    
[33]
Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. 2D Mater., 2015, 2(1): 014011.
[34]
Li F, Su Y, Zhao J J. Phys. Chem. Chem. Phys., 2016, 18(36): 25241.

doi: 10.1039/C6CP04071C     URL    
[35]
VÉlez P, Laura Para M, Luque G L, Barraco D, Leiva E P M. Electrochimica Acta, 2019, 309: 402.

doi: 10.1016/j.electacta.2019.04.062     URL    
[36]
Gong B J, Song X D, Shi Y T, Liu J H, Hao C. J. Phys. Chem. C, 2020, 124(6): 3644.

doi: 10.1021/acs.jpcc.9b10314     URL    
[37]
Sinthika S, Pushpa Selvi M, Nimma Elizabeth R, Gavali D S, Thapa R. Int. J. Energy Res., 2022, 46(4): 4405.

doi: 10.1002/er.v46.4     URL    
[38]
Yi Z L, Su F Y, Cui G Y, Han P D, Dong N, Chen C M. ChemistrySelect, 2019, 4(43): 12612.

doi: 10.1002/slct.v4.43     URL    
[39]
Cheviri M, Lakshmipathi S. Chem. Phys. Lett., 2020, 739: 136942.

doi: 10.1016/j.cplett.2019.136942     URL    
[40]
Zhang L, Liang P, Shu H B, Man X L, Du X Q, Chao D L, Liu Z G, Sun Y P, Wan H Z, Wang H. J. Colloid Interface Sci., 2018, 529: 426.

doi: 10.1016/j.jcis.2018.06.036     URL    
[41]
Liu X, Huang J Q, Zhang Q, Mai L Q. Adv. Mater., 2017, 29(20): 1601759.
[42]
Balach J, Linnemann J, Jaumann T, Giebeler L. J. Mater. Chem. A, 2018, 6(46): 23127.

doi: 10.1039/C8TA07220E     URL    
[43]
Xu J, Lawson T, Fan H B, Su D W, Wang G X. Adv. Energy Mater., 2018, 8(10): 1702607.
[44]
Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Nat. Commun., 2016, 7: 11203.

doi: 10.1038/ncomms11203    
[45]
Zhang X F, Chen M S, Zhang Q, Liu J Q, Wu Y C. Appl. Surf. Sci., 2021, 563: 150172.
[46]
Wang L, Hu Z H, Wan X, Hua W X, Li H, Yang Q H, Wang W C. Adv. Energy Mater., 2022, 12(20): 2200340.
[47]
Liu J Q, Li K H, Zhang Q, Zhang X F, Liang X, Yan J, Tan H H, Yu Y, Wu Y C. ACS Appl. Mater. Interfaces, 2021, 13(38): 45547.

doi: 10.1021/acsami.1c13193     URL    
[48]
Chen X, Peng H J, Zhang R, Hou T Z, Huang J Q, Li B, Zhang Q. ACS Energy Lett., 2017, 2(4): 795.

doi: 10.1021/acsenergylett.7b00164     URL    
[49]
Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2017, 56(28): 8178.

doi: 10.1002/anie.v56.28     URL    
[50]
Wu Q, Chen Y C, Hao X Q, Zhu T J, Cao Y A, Wang W J. J. Electrochem. Soc., 2021, 168(12): 120516.

doi: 10.1149/1945-7111/ac3ab2    
[51]
Wang Y S, Ma Z, Song N H, Zhang T J, Zhang Q L, Yang D P, Wang F. Chem. Phys. Lett., 2020, 741: 137121.

doi: 10.1016/j.cplett.2020.137121     URL    
[52]
Jayan R, Islam M M. J. Phys. Chem. C, 2020, 124(50): 27323.

doi: 10.1021/acs.jpcc.0c08170     URL    
[53]
Zhang Q, Zhang X F, Li M, Liu J Q, Wu Y C. Appl. Surf. Sci., 2019, 487: 452.

doi: 10.1016/j.apsusc.2019.05.138    
[54]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[55]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1): 72.

doi: 10.1039/C8CS00324F     URL    
[56]
Xiao Y, Hwang J Y, Sun Y K. J. Mater. Chem. A, 2016, 4(27): 10379.

doi: 10.1039/C6TA03832H     URL    
[57]
Zhao Q, Zhu Q Z, Liu Y, Xu B. Adv. Funct. Mater., 2021, 31(21): 2100457.
[58]
Zhang C J, Cui L F, Abdolhosseinzadeh S, Heier J. InfoMat, 2020, 2(4): 613.

doi: 10.1002/inf2.v2.4     URL    
[59]
Fan K, Ying Y R, Luo X, Huang H T. J. Mater. Chem. A, 2021, 10(1): 337.

doi: 10.1039/D1TA90264D     URL    
[60]
Liu X B, Shao X F, Li F, Zhao M W. Appl. Surf. Sci., 2018, 455: 522.

doi: 10.1016/j.apsusc.2018.05.200     URL    
[61]
Zhang Q, Zhang X F, Xiao Y H, Li C, Tan H H, Liu J Q, Wu Y C. ACS Omega, 2020, 5(45): 29272.

doi: 10.1021/acsomega.0c04043     pmid: 33225158
[62]
Wang D S, Li F, Lian R Q, Xu J, Kan D X, Liu Y H, Chen G, Gogotsi Y, Wei Y J. ACS Nano, 2019, 13(10): 11078.

doi: 10.1021/acsnano.9b03412     URL    
[63]
Li N, Meng Q Q, Zhu X H, Li Z, Ma J L, Huang C X, Song J, Fan J. Nanoscale, 2019, 11(17): 8485.

doi: 10.1039/c9nr01220f     pmid: 30990497
[64]
Song X H, Qu Y Y, Zhao L L, Zhao M W. ACS Appl. Mater. Interfaces, 2021, 13(10): 11845.

doi: 10.1021/acsami.0c21136     URL    
[65]
Zhang H K, Wang Z L, Cai J F, Wu S C, Li J J. ACS Appl. Mater. Interfaces, 2021, 13(45): 53388.

doi: 10.1021/acsami.1c10749     URL    
[66]
Zhang H K, Wang Z L, Ren J H, Liu J Y, Li J J. Energy Storage Mater., 2021, 35: 88.
[67]
He J R, Hartmann G, Lee M, Hwang G S, Chen Y F, Manthiram A. Energy Environ. Sci., 2019, 12(1): 344.

doi: 10.1039/C8EE03252A     URL    
[68]
Zhang C Y, He Q, Chu W, Zhao Y. Appl. Surf. Sci., 2020, 534: 147575.

doi: 10.1016/j.apsusc.2020.147575     URL    
[69]
Mao X T, Yu Y, Zhu L, Fu A P. Chem. Phys., 2021, 548: 111220.

doi: 10.1016/j.chemphys.2021.111220     URL    
[70]
Yang D W, Liang Z F, Zhang C Q, Biendicho J J, Botifoll M, Spadaro M C, Chen Q L, Li M Y, Ramon A, Moghaddam A O, Llorca J, Wang J A, Morante J R, Arbiol J, Chou S L, Cabot A. Adv. Energy Mater., 2021, 11(36): 2101250.
[71]
Song Y C, Zhou H P, Long X, Xiao J S, Yang J, Wu N N, Chen Z, Li P Y, Chen C, Liao J X, Wu M Q. Chem. Eng. J., 2021, 418: 129388.

doi: 10.1016/j.cej.2021.129388     URL    
[72]
Nguyen T T, Balamurugan J, Go H W, Ngo Q P, Kim N H, Lee J H. Chem. Eng. J., 2022, 427: 131774.

doi: 10.1016/j.cej.2021.131774     URL    
[73]
Gao D Y, Li Y, Guo Z L, Liu Z Y, Guo K, Fang Y, Xue Y M, Huang Y, Tang C C. J. Alloys Compd., 2021, 887: 161273.

doi: 10.1016/j.jallcom.2021.161273     URL    
[74]
Ye Z Q, Jiang Y, Li L, Wu F, Chen R J. Nano Micro Lett., 2021, 13(1): 203.

doi: 10.1007/s40820-021-00726-z    
[75]
Kong L J, Liu M, Huang H, Xu Y H, Bu X H. Adv. Energy Mater., 2022, 12(4): 2100172.
[76]
Zhang H H, Gu C, Yao M S, Kitagawa S. Adv. Energy Mater., 2022, 12(4): 2270014.
[77]
Li C, Zhang X F, Zhang Q, Xiao Y H, Fu Y Y, Tan H H, Liu J Q, Wu Y C. Comput. Theor. Chem., 2021, 1196: 113110.

doi: 10.1016/j.comptc.2020.113110     URL    
[78]
Wang J R, Li F, Liu Z C, Dai Z H, Gao S X, Zhao M W. ACS Appl. Mater. Interfaces, 2021, 13(51): 61205.

doi: 10.1021/acsami.1c19381     URL    
[79]
Cao Y, Wang M D, Wang H J, Han C Y, Pan F S, Sun J. Adv. Energy Mater., 2022, 12(20): 2200057.
[80]
Zhan X J, Chen Z, Zhang Q C. J. Mater. Chem. A, 2017, 5(28): 14463.

doi: 10.1039/C7TA02105D     URL    
[81]
Song X D, Zhang M R, Yao M, Hao C, Qiu J S. ACS Appl. Mater. Interfaces, 2018, 10(50): 43896.

doi: 10.1021/acsami.8b16172     URL    
[82]
Schütze Y, de Oliveira Silva R, Ning J Y, Rappich J, Lu Y, Ruiz V G, Bande A, Dzubiella J. Phys. Chem. Chem. Phys., 2021, 23(47): 26709.

doi: 10.1039/D1CP04550D     URL    
[83]
Song L H, Zhang M G, Guo J. Chem. Phys. Lett., 2021, 777: 138711.

doi: 10.1016/j.cplett.2021.138711     URL    
[84]
Adekoya D, Qian S S, Gu X X, Wen W, Li D S, Ma J M, Zhang S Q. Nano Micro Lett., 2021, 13(1): 13.

doi: 10.1007/s40820-020-00522-1    
[85]
Hao Q, Jia G H, Wei W, Vinu A, Wang Y, Arandiyan H, Ni B J. Nano Res., 2020, 13(1): 18.

doi: 10.1007/s12274-019-2589-z    
[86]
Yamsang N, Sittiwong J, Srifa P, Boekfa B, Sawangphruk M, Maihom T, Limtrakul J. Appl. Surf. Sci., 2021, 565: 150378.

doi: 10.1016/j.apsusc.2021.150378     URL    
[87]
Lin H, Jin R C, Wang A L, Zhu S G, Li H Z. Ceram. Int., 2019, 45(14): 17996.

doi: 10.1016/j.ceramint.2019.06.018    
[88]
Li T T, He C, Zhang W X. J. Mater. Chem. A, 2019, 7(8): 4134.

doi: 10.1039/C8TA10933H     URL    
[89]
Wang Z H, Zeng Z H, Nong W, Yang Z, Qi C Z, Qiao Z P, Li Y, Wang C X. Phys. Chem. Chem. Phys., 2022, 24(1): 180.

doi: 10.1039/D1CP04192D     URL    
[90]
Wang D D, Li H B, Zhang L L, Sun Z H, Han D X, Niu L, Zhao J L. Adv. Theory Simul., 2019, 2(2): 1800165.
[91]
Dong Y N, Xu B, Hu H Y, Yang J S, Li F Y, Gong J, Chen Z F. Phys. Chem. Chem. Phys., 2021, 23(23): 12958.

doi: 10.1039/D1CP01022K     URL    
[92]
Liang J, Yin L C, Tang X N, Yang H C, Yan W S, Song L, Cheng H M, Li F. ACS Appl. Mater. Interfaces, 2016, 8(38): 25193.

doi: 10.1021/acsami.6b05647     URL    
[93]
Jiang H R, Shyy W, Liu M, Ren Y X, Zhao T S. J. Mater. Chem. A, 2018, 6(5): 2107.

doi: 10.1039/C7TA09244J     URL    
[94]
Singh D, Gupta S K, Hussain T, Sonvane Y, Gajjar P N, Ahuja R. Energy Fuels, 2021, 35(10): 9001.

doi: 10.1021/acs.energyfuels.1c00607     URL    
[95]
Zhang Q, Xiao Y H, Fu Y Y, Li C, Zhang X F, Yan J, Liu J Q, Wu Y C. Appl. Surf. Sci., 2020, 512: 145639.

doi: 10.1016/j.apsusc.2020.145639     URL    
[96]
Zhao E Y, Nie K H, Yu X Q, Hu Y S, Wang F W, Xiao J, Li H, Huang X J. Adv. Funct. Mater., 2018, 28(38): 1707543.
[97]
Tan J, Liu D N, Xu X, Mai L Q. Nanoscale, 2017, 9(48): 19001.

doi: 10.1039/C7NR06819K     URL    
[98]
Pascal T A, Wujcik K H, Velasco-Velez J, Wu C H, Teran A A, Kapilashrami M, Cabana J, Guo J H, Salmeron M, Balsara N, Prendergast D. J. Phys. Chem. Lett., 2014, 5(9): 1547.

doi: 10.1021/jz500260s     pmid: 26270094
[99]
Do-Hoon Kim B S, Lee M S B, Park K Y, Kang K. Chem. Asian J., 2016, 11(8): 1288.

doi: 10.1002/asia.201600007     URL    
[100]
Liu Z X, Deng H Q, Hu W Y, Gao F, Zhang S G, Balbuena P B, Mukherjee P P. Phys. Chem. Chem. Phys., 2018, 20(17): 11713.

doi: 10.1039/C8CP01462K     URL    
[101]
Feng Z M, Kim C, Vijh A, Armand M, Bevan K H, Zaghib K. J. Power Sources, 2014, 272: 518.

doi: 10.1016/j.jpowsour.2014.07.078     URL    
[102]
Park H, Koh H S, Siegel D J. J. Phys. Chem. C, 2015, 119(9): 4675.

doi: 10.1021/jp513023v     URL    
[103]
Yang G C, Shi S Q, Yang J H, Ma Y M. J. Mater. Chem. A, 2015, 3(16): 8865.

doi: 10.1039/C5TA00499C     URL    
[104]
Paolella A, Zhu W, Marceau H, Kim C S, Feng Z M, Liu D Q, Gagnon C, Trottier J, Abdelbast G, Hovington P, Vijh A, Demopoulos G P, Armand M, Zaghib K. J. Power Sources, 2016, 325: 641.

doi: 10.1016/j.jpowsour.2016.06.086     URL    
[105]
Song Y W, Shen L, Yao N, Li X Y, Bi C X, Li Z, Zhou M Y, Zhang X Q, Chen X, Li B Q, Huang J Q, Zhang Q. Chem, 2022, 8(11): 3031.

doi: 10.1016/j.chempr.2022.07.004     URL    
[106]
Liu Q, Mu D B, Wu B R, Wang L, Gai L, Wu F. RSC Adv., 2017, 7(53): 33373.

doi: 10.1039/C7RA04673A     URL    
[107]
Wang L J, Zhang T R, Yang S Q, Cheng F Y, Liang J, Chen J. J. Energy Chem., 2013, 22(1): 72.

doi: 10.1016/S2095-4956(13)60009-1     URL    
[108]
Assary R S, Curtiss L A, Moore J S. J. Phys. Chem. C, 2014, 118(22): 11545.

doi: 10.1021/jp5015466     URL    
[109]
Arneson C, Wawrzyniakowski Z D, Postlewaite J T, Ma Y. J. Phys. Chem. C, 2018, 122(16): 8769.

doi: 10.1021/acs.jpcc.8b00478     URL    
[110]
Li C, Zhang Q, Sheng J Z, Chen B, Gao R H, Piao Z H, Zhong X W, Han Z Y, Zhu Y F, Wang J L, Zhou G M, Cheng H M. Energy Environ. Sci., 2022, 15(10): 4289.

doi: 10.1039/D2EE01820A     URL    
[111]
Liu J Q, Li M, Zhang X F, Zhang Q, Yan J, Wu Y C. Phys. Chem. Chem. Phys., 2019, 21(30): 16435.

doi: 10.1039/C9CP01036J     URL    
[112]
Feng S, Fu Z H, Chen X, Li B Q, Peng H J, Yao N, Shen X, Yu L G, Gao Y C, Zhang R, Zhang Q. Angew. Chem. Int. Ed., 2022, 61(52): e202211448.
[113]
Cheviri M, Lakshmipathi S. Comput. Theor. Chem., 2021, 1202: 113323.

doi: 10.1016/j.comptc.2021.113323     URL    
[114]
Velasco J J, VÉlez P, Zoloff Michoff M E, Visintín A, Versaci D, Bodoardo S, Luque G L, Leiva E P M. J. Phys.: Condens. Matter, 2021, 33(34): 344003.
[115]
Zhang C Y, Zhang C Q, Sun G W, Pan J L, Gong L, Sun G Z, Biendicho J J, Balcells L, Fan X L, Morante J R, Zhou J Y, Cabot A. Angew. Chem. Int. Ed., 2022, 61(49): e202211570.
[116]
Sun G W, Jin M J, Liu Q Y, Zhang C Y, Pan J L, Wang Y C, Gao X P, Sun G Z, Pan X J, Zhou J Y. Chem. Eng J, 2023, 453: 139752.

doi: 10.1016/j.cej.2022.139752     URL    
[117]
Lin Y X, Zheng J, Wang C S, Qi Y. Nano Energy, 2020, 75: 104915.

doi: 10.1016/j.nanoen.2020.104915     URL    
[118]
Kaiser M R, Chou S L, Liu H K, Dou S X, Wang C S, Wang J Z. Adv. Mater., 2017, 29(48): 1700449.
[119]
Chen X, Hou T Z, Li B, Yan C, Zhu L, Guan C, Cheng X B, Peng H J, Huang J Q, Zhang Q. Energy Storage Mater., 2017, 8: 194.
[120]
Kamphaus E P, Balbuena P B. J. Power Sources, 2021, 485: 229289.
[121]
Camacho-Forero L E, Balbuena P B. J. Power Sources, 2020, 472: 228449.
[122]
Han J, Balbuena P B. Phys. Chem. Chem. Phys., 2018, 20(27): 18811.

doi: 10.1039/C8CP02912A     URL    
[123]
Krauskopf T, Richter F H, Zeier W G, Janek J. Chem. Rev., 2020, 120(15): 7745.

doi: 10.1021/acs.chemrev.0c00431     pmid: 32786669
[124]
Phuc N H H, Hikima K, Muto H, Matsuda A. Crit. Rev. Solid State Mater. Sci., 2022, 47(3): 283.

doi: 10.1080/10408436.2021.1886045     URL    
[125]
Umeshbabu E, Zheng B Z, Yang Y. Electrochem. Energy Rev., 2019, 2(2): 199.

doi: 10.1007/s41918-019-00029-3    
[126]
Xu G Y, Kushima A, Yuan J R, Dou H, Xue W J, Zhang X G, Yan X H, Li J. Energy Environ. Sci., 2017, 10(12): 2544.

doi: 10.1039/C7EE01898C     URL    
[127]
Shi X M, Zeng Z C, Sun M Z, Huang B L, Zhang H T, Luo W, Huang Y H, Du Y P, Yan C H. Nano Lett., 2021, 21(21): 9325.

doi: 10.1021/acs.nanolett.1c03573     URL    
[128]
Sun C G, Wang Z X, Yin L C, Xu S J, Ali Ghazi Z, Shi Y, An B G, Sun Z H, Cheng H M, Li F. Nano Energy, 2020, 75: 104976.

doi: 10.1016/j.nanoen.2020.104976     URL    
[129]
Zhao Q S, Xue H T, Tang F L, Wei C D. Solid State Ion., 2021, 373: 115797.

doi: 10.1016/j.ssi.2021.115797     URL    
[130]
Wei C D, Xue H T, Li Z, Zhao F N, Tang F L. J. Phys. D: Appl. Phys., 2022, 55(10): 105305.

doi: 10.1088/1361-6463/ac3c75    
[131]
Luo C, Liang X, Sun Y F, Lv W, Sun Y W, Lu Z Y, Hua W X, Yang H T, Wang R C, Yan C L, Li J, Wan Y, Yang Q H. Energy Storage Mater., 2020, 33: 290.
[132]
Wu F, Qian J, Chen R J, Lu J, Li L, Wu H M, Chen J Z, Zhao T, Ye Y S, Amine K. ACS Appl. Mater. Interfaces, 2014, 6(17): 15542.

doi: 10.1021/am504345s     URL    
[133]
Ebadi M, Lacey M J, Brandell D, Araujo C M. J. Phys. Chem. C, 2017, 121(42): 23324.

doi: 10.1021/acs.jpcc.7b07847     URL    
[134]
Wang H, Zhang L F, Han J Q, Weinan E. Comput. Phys. Commun., 2018, 228: 178.

doi: 10.1016/j.cpc.2018.03.016     URL    
[135]
Lu D H, Wang H, Chen M H, Lin L, Car R, Weinan E, Jia W L, Zhang L F. Comput. Phys. Commun., 2021, 259: 107624.

doi: 10.1016/j.cpc.2020.107624     URL    
[136]
Liu X Y, Peng H J, Li B Q, Chen X, Li Z, Huang J Q, Zhang Q. Angewandte Chemie Int. Ed., 2022, 61(48): e202214037.
[137]
Chen X, Liu X Y, Shen X, Zhang Q. Angew. Chem. Int. Ed., 2021, 60(46): 24354.

doi: 10.1002/anie.v60.46     URL    
[1] 马冰怡, 黄盛, 王拴紧, 肖敏, 韩东梅, 孟跃中. 多维度非锂无机杂化组分应用于锂电池复合聚合物电解质[J]. 化学进展, 2023, 35(9): 1327-1340.
[2] 杨冬荣, 张达, 任昆, 李付鹏, 东鹏, 张家庆, 杨斌, 梁风. 全固态钠离子电池及界面改性[J]. 化学进展, 2023, 35(8): 1177-1190.
[3] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[4] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[8] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[11] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[12] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[13] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[14] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[15] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.