English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 356-369 DOI: 10.7536/PC210105 前一篇   后一篇

• 综述 •

碳点在润滑领域中的应用

何闯1, 鄂爽2,*(), 闫鸿浩3, 李晓杰3   

  1. 1 深圳大学 广东省滨海土木工程耐久性重点实验室 深圳 518060
    2 大连民族大学生命科学学院 大连 116600
    3 大连理工大学 工业装备结构分析国家重点实验室 大连 116024
  • 收稿日期:2021-01-08 修回日期:2021-03-28 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 鄂爽
  • 基金资助:
    国家自然科学基金项目(11672068); 国家自然科学基金项目(10872044); 国家自然科学基金项目(11672067)

Carbon Dots in Lubrication Applications

Chuang He1, Shuang E2(), Honghao Yan3, Xiaojie Li3   

  1. 1 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China
    2 College of Life Science, Dalian Minzu University, Dalian 116600, China
    3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
  • Received:2021-01-08 Revised:2021-03-28 Online:2022-02-20 Published:2021-07-29
  • Contact: Shuang E
  • Supported by:
    National Natural Science Foundation of China(11672068); National Natural Science Foundation of China(10872044); National Natural Science Foundation of China(11672067)

各种形式的摩擦和磨损不仅消耗了全球20%以上的能源,而且造成大量设备损坏。因此,开发减摩抗磨润滑材料对节约能源、延长机械设备使用寿命具有重要意义。碳点是一种新型的碳纳米材料,被广泛应用于化学传感、生物成像、催化、光电器件等领域。近年来,大量研究探索了碳点在工业润滑、微/纳米电子机械系统润滑、生物润滑等润滑领域的应用,证明了碳点具有优异的摩擦学性能,具备巨大潜力成为下一代绿色高效的减摩抗磨润滑材料。然而,至今仍缺乏碳点在润滑领域应用的系统性总结论述。因此,本文对碳点在润滑领域应用的研究进展作了全面系统综述。首先,详细介绍了碳点作为纳米添加剂和润滑涂层的润滑效果及提升其润滑性能的3种策略(尺寸形状控制、表面修饰、杂原子掺杂);然后,全面分析了碳点的润滑机理;最后概述了碳点在润滑领域应用所面临的主要挑战。

Various forms of friction and wear not only consume more than 20% of the world’s total energy, but also cause an enormous amount of equipment damage. As a result, it is of great significance to develop friction-reducing and anti-wear lubricating materials for saving energy and prolonging the service life of mechanical equipment. Carbon dots (CDs), as a new kind of carbon nanomaterial, have been extensively used in chemical sensing, bioimaging, catalysis, optoelectronic devices and other fields. In recent years, a large number of studies have explored the application of CDs in the fields of industrial lubrication, micro/nano-electrical-mechanical systems lubrication and biological lubrication, proving that CDs have excellent tribological properties and great potential to become the next generation of green and efficient friction-reducing and anti-wear lubrication materials. However, it still lacks a systematic summary and discussion of the application of CDs in the field of lubrication. Consequently, in this paper, the research progress of CDs in lubrication applications is comprehensively and systematically summarized. Firstly, lubricating effects of CDs as nano-additives and lubricating coatings and three strategies (size and shape control, surface modification and heteroatom doping) to improve their lubrication performance are introduced in detail. Then, the lubrication mechanism of CDs is fully analyzed. Finally, the main challenges of the application of CDs in lubrication are outlined.

Contents

1 Introduction

2 Lubrication applications

2.1 Nano-additive

2.2 Lubricating coating

2.3 Other lubrication applications

3 Lubricating mechanism

3.1 Lubrication mechanism of size and shape-controlled carbon dots

3.2 Lubrication mechanism of surface-modified carbon dots

3.3 Lubrication mechanism of heteroatom-doped carbon dots

4 Conclusion and prospect

()
图1 (a)碳点结构;(b)碳点分类[38]
Fig. 1 (a) The structure and (b) types of CDs
图2 (a)碳点/CuSx复合纳米粒子的SEM和TEM及(b)其不同载荷下摩擦系数和磨斑直径[28];(c)超声法制备石墨烯量子点[73];(d)热解法制备PMMA/碳点复合纳米粒子[82]
Fig. 2 (a) The SEM and TEM images and (b) Friction coefficient and wear scar diameter under different loads of CDs/CuSx composite nanoparticles; (c) Preparation of graphene quantum dots (GQDs) by ultrasonic method; (d) Fabrication of PMMA/CDs composite nanoparticles by pyrolysis
图3 (a)含不同固体纳米粒子环戊烷的摩擦系数曲线、磨损体积和极压性能[62];(b)热解法制备碳点和氧化石墨烯[86]
Fig. 3 (a) The friction coefficient curves, wear volume and extreme pressure properties of cyclopentane containing different solid nanoparticles; (b) CDs and graphene oxide prepared by pyrolysis
图4 (a)热解离子液体和柠檬酸制备离子液体修饰碳点[67];(b)水热法制备离子液体修饰无金属碳点[71];(c)油胺修饰碳点作为聚α烯烃添加剂的摩擦系数曲线、平均摩擦系数和磨斑直径[79];(d)超声法制备PEG包覆碳点[72];(e)支化聚电解质修饰碳点的制备示意[93]
Fig. 4 (a) Preparation of ionic liquid modified CDs by pyrolyzing ionic liquid and citric acid; (b) Fabrication of metal-free ionic liquid modified CDs by hydrothermal method; (c) Friction coefficient curve, mean friction coefficient and wear scar diameter of oil-amine modified CDs as additives for poly alpha olefin; (d) PEG coated CDs prepared by ultrasonic method; (e) Schematic of preparation of branched polyelectrolyte modified CDs
图5 (a)热解法制备硼氮共掺杂碳点[61];(b)含不同浓度碳点的PEG在日光和紫外光下的照片以及其摩擦系数、磨斑直径[76]
Fig. 5 (a) Boron, nitrogen co-doped CDs prepared by pyrolysis; (b) Friction coefficient and wear scar diameter of PEG with different concentrations of CDs in sunlight and ultraviolet light
图6 (a)研磨制备离子液体修饰碳点[26];(b)电泳沉积法制备石墨烯量子点润滑涂层[100]
Fig. 6 (a) Preparation of ionic liquid modified CDs by grinding; (b) GQDs-based lubricating coatings prepared by electrophoretic deposition
图7 (a)PEG修饰碳点结构示意[102];(b)含碳点基凝胶的摩擦试验[102]
Fig. 7 (a) Schematic of the structure of PEG modified CDs; (b) Friction test of CDs-based gel
图8 (a)摩擦实验后石墨烯量子点磨屑的TEM和Raman[62];(b)石墨烯量子点润滑机理示意[77];(c)磨斑横截面的TEM[86];(d)碳点润滑机理示意[86]
Fig. 8 (a) TEM and Raman of wear debris of GQDs by after friction experiments; (b) Lubrication mechanism of GQDs; (c) TEM images of the cross section of wear scar; (d) Lubrication mechanism of CDs
图9 (a)不同载荷下离子液体修饰碳点的润滑机理[30];(b)表面修饰与未表面修饰碳点的润滑机理[68];(c)PEG修饰碳点的润滑机理[72]
Fig. 9 (a) Lubrication mechanism of ionic liquid modified CDs under different loads; (b) Lubrication mechanism of CDs with and without surface modification; (c) Lubrication mechanism of PEG modified CDs
图10 (a)硫氮共掺杂碳点的润滑机理[96];(b)硫掺杂碳点作水基纳米添加剂的润滑机理[97]
Fig. 10 (a) Lubrication mechanism of sulfur, nitrogen co-doped CDs; (b) Lubrication mechanism of sulfur doped CDs as water-based nano-additives
[1]
Holmberg K, Erdemir A. Friction, 2017, 5(3): 263.

doi: 10.1007/s40544-017-0183-5     URL    
[2]
Holmberg K, Erdemir A. Tribol. Int., 2019, 135: 389.

doi: 10.1016/j.triboint.2019.03.024    
[3]
Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A. Tribol. Int., 2017, 115: 116.

doi: 10.1016/j.triboint.2017.05.010     URL    
[4]
Lin Y C, So H. Tribol. Int., 2004, 37(1): 25.

doi: 10.1016/S0301-679X(03)00111-7     URL    
[5]
Barnes A M, Bartle K D, Thibon V R A. Tribol. Int., 2001, 34(6): 389.

doi: 10.1016/S0301-679X(01)00028-7     URL    
[6]
Wu H, Zhao J W, Xia W Z, Cheng X, He A, Yun J H, Wang L, Huang H, Jiao S, Huang L, Zhang S, Jiang Z. Tribol. Int., 2017, 109: 398.

doi: 10.1016/j.triboint.2017.01.013     URL    
[7]
Gu K C, Chen B S, Chen Y. J. Rare Earths, 2013, 31(6): 589.

doi: 10.1016/S1002-0721(12)60325-1     URL    
[8]
Jiao D, Zheng S H, Wang Y Z, Guan R F, Cao B Q. Appl. Surf. Sci., 2011, 257(13): 5720.

doi: 10.1016/j.apsusc.2011.01.084     URL    
[9]
Guo Y X, Zhang L G, Zhang G, Wang D A, Wang T M, Wang Q H. J. Mater. Chem. A, 2018, 6(6): 2817.

doi: 10.1039/C7TA09649F     URL    
[10]
Liu G, Li X, Qin B, Xing D, Guo Y, Fan R. Tribol. Lett., 2004, 17(4): 961.

doi: 10.1007/s11249-004-8109-6     URL    
[11]
Gusain R, Khatri O P. J. Mater. Chem. A, 2013, 1(18): 5612.

doi: 10.1039/c3ta10248c     URL    
[12]
Wu X H, Gong K L, Zhao G Q, Lou W J, Wang X B, Liu W M. Adv. Mater. Interfaces, 2018, 5(1): 1700859.

doi: 10.1002/admi.v5.1     URL    
[13]
Ju C, Zheng D D, Zhao Q, Wang X B. Tribol. Lett., 2020, 68(3): 1.

doi: 10.1007/s11249-019-1243-y     URL    
[14]
Ma L, Liu Z, Cheng Z L. Ceram. Int., 2020, 46(3): 3786.

doi: 10.1016/j.ceramint.2019.10.101     URL    
[15]
Gong K L, Lou W J, Zhao G Q, Wu X H, Wang X B. Friction, 2019, 8: 674.

doi: 10.1007/s40544-019-0290-6     URL    
[16]
Pei X W, Hu L T, Liu W M, Hao J C. Eur. Polym. J., 2008, 44: 2458.

doi: 10.1016/j.eurpolymj.2008.06.016     URL    
[17]
Meng Y, Su F H, Chen Y Z. Tribol. Int., 2018, 118: 180.

doi: 10.1016/j.triboint.2017.09.037     URL    
[18]
Raina A, Anand A. Appl. Nanosci., 2017, 7(7): 371.

doi: 10.1007/s13204-017-0590-y     URL    
[19]
Ivanov M, Shenderova O. Curr. Opin. Solid State Mater. Sci., 2017, 21(1): 17.

doi: 10.1016/j.cossms.2016.07.003     URL    
[20]
Lee J, Cho S, Hwang Y, Cho H J, Lee C, Choi Y, Ku B C, Lee H, Lee B, Kim D, Kim S H. Tribol. Int., 2009, 42: 440.

doi: 10.1016/j.triboint.2008.08.003     URL    
[21]
Ku B C, Han Y C, Lee J E, Lee J K, Park S H, Hwang Y J. Int. J. Precis. Eng. Manuf., 2010, 11(4): 607.

doi: 10.1007/s12541-010-0070-8     URL    
[22]
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. ACS Appl. Mater. Interfaces, 2011, 3(11): 4221.

doi: 10.1021/am200851z     URL    
[23]
Hu Y W, Wang Y X, Zeng Z X, Zhao H C, Ge X, Wang K, Wang L, Xue Q. Carbon, 2018, 137: 41.

doi: 10.1016/j.carbon.2018.05.009     URL    
[24]
Luo N, Xiang J X, Shen T, Liang H L, Xin S. Diam. Relat. Mater., 2019, 97: 107448.

doi: 10.1016/j.diamond.2019.107448     URL    
[25]
He C, Yan H H, Li X J, Wang X H. J. Mater. Sci., 2021, 56(2): 1286.

doi: 10.1007/s10853-020-05311-0     URL    
[26]
Ma W, Gong Z B, Gao K X, Qiang L, Zhang J Y, Yu S R. Mater. Lett., 2017, 195: 220.

doi: 10.1016/j.matlet.2017.02.135     URL    
[27]
Shang W J, Cai T, Zhang Y X, Liu D, Liu S G. Tribol. Int., 2018, 118: 373.

doi: 10.1016/j.triboint.2017.09.029     URL    
[28]
Huang H, Hu H L, Qiao S, Bai L, Han M M, Liu Y, Kang Z H. Nanoscale, 2015, 7(26): 11321.

doi: 10.1039/c5nr01923k     pmid: 26062680
[29]
Zhang W L, Cao Y L, Tian P Y, Guo F, Tian Y, Zheng W, Ji X, Liu J. ACS Appl. Mater. Inter., 2016, 8: 32440.

doi: 10.1021/acsami.6b09752     URL    
[30]
Wang B G, Tang W W, Lu H S, Huang Z Y. J. Mater. Chem. A, 2016, 4(19): 7257.

doi: 10.1039/C6TA01098A     URL    
[31]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h     URL    
[32]
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128: 7756.

pmid: 16771487
[33]
Kang Z H, Lee S T. Nanoscale, 2019, 11(41): 19214.

doi: 10.1039/C9NR05647E     URL    
[34]
Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726.

doi: 10.1002/anie.200906623     URL    
[35]
Yao B W, Huang H, Liu Y, Kang Z H. Trends Chem., 2019, 1(2): 235.

doi: 10.1016/j.trechm.2019.02.003     URL    
[36]
Liu M L, Yang L, Li R S, Chen B B, Liu H, Huang C Z. Green Chem., 2017, 19: 3611.

doi: 10.1039/C7GC01236E     URL    
[37]
Shuang E, Mao Q X, Yuan X L, Kong X L, Chen X W, Wang J H. Nanoscale, 2018, 10(26): 12788.

doi: 10.1039/c8nr03453b     pmid: 29947397
[38]
Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8(2): 355.

doi: 10.1007/s12274-014-0644-3     URL    
[39]
Hu C, Yu C, Li M Y, Wang X, Yang J, Zhao Z, Eychmuller A, Sun Y P, Qiu J. Small, 2014, 10: 4926.

doi: 10.1002/smll.v10.23     URL    
[40]
Dong Y Q, Li G L, Zhou N N, Wang R, Chi Y, Chen G. Anal. Chem., 2012, 84: 8378.

doi: 10.1021/ac301945z     URL    
[41]
Zhou L, Lin Y H, Huang Z Z, Ren J S, Qu X G. Chem. Commun., 2012, 48: 1147.

doi: 10.1039/C2CC16791C     URL    
[42]
Hai X, Mao Q X, Wang W J, Wang X F, Chen X W, Wang J H. J. Mater. Chem. B, 2015, 3(47): 9109.

doi: 10.1039/C5TB01954K     URL    
[43]
E S, Mao Q X, Wang J H, Chen X W. Nanoscale, 2020, 12: 6852.

doi: 10.1039/C9NR10982J     URL    
[44]
Yu S, Zhong Y Q, Yu B Q, Cai S Y, Wu L Z, Zhou Y. Phys. Chem. Chem. Phys., 2016, 18(30): 20338.

doi: 10.1039/C6CP02561G     URL    
[45]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J, Lian S, Tsang C H, Yang X, Lee S T. Angew. Chem. Int. Ed., 2010, 49: 4430.

doi: 10.1002/anie.200906154     URL    
[46]
Yan Y B, Chen J, Li N, Tian J Q, Li K, Jiang J, Liu J, Tian Q, Chen P. ACS Nano, 2018, 12: 3523.

doi: 10.1021/acsnano.8b00498     URL    
[47]
Zhang F, Feng X T, Zhang Y, Yan L P, Yang Y Z, Liu X G. Nanoscale, 2016, 8(16): 8618.

doi: 10.1039/c5nr08838k     pmid: 27049931
[48]
Guo X, Wang C F, Yu Z Y, Chen L, Chen S. Chem. Commun., 2012, 48(21): 2692.

doi: 10.1039/c2cc17769b     URL    
[49]
Mao L H, Tang W Q, Deng Z Y, Liu S S, Wang C F, Chen S. Ind. Eng. Chem. Res., 2014, 53(15): 6417.

doi: 10.1021/ie500602n     URL    
[50]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angew. Chem. Int. Ed., 2012, 51: 12215.

doi: 10.1002/anie.v51.49     URL    
[51]
Li Y D, Xu X K, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y. Mater. Chem. Front., 2020, 4: 437.

doi: 10.1039/C9QM00614A     URL    
[52]
Li H, Huang J, Liu Y, Lu F, Zhong J, Wang Y, Li S M, Lifshitz Y, Lee S T, Kang Z H. Nano Res., 2019, 12(7): 1585.

doi: 10.1007/s12274-019-2397-5     URL    
[53]
Zhu C, Fu Y J, Liu C G, Liu Y, Hu L, Liu J, Bello I, Li H, Liu N, Guo S, Huang H, Lifshitz Y, Lee S T, Kang Z. Adv. Mater., 2017, 29: 1701399.

doi: 10.1002/adma.201701399     URL    
[54]
Wu S S, Li W, Zhou W, Zhan Y, Hu C F, Zhuang J L, Zhang H R, Zhang X J, Lei B F, Liu Y L. Adv. Opt. Mater., 2018, 6(7): 1701150.

doi: 10.1002/adom.201701150     URL    
[55]
Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y, Chen P. Adv. Mater., 2019, 31(21): 1808283.

doi: 10.1002/adma.v31.21     URL    
[56]
Sun X C, Lei Y. Trend. Aanl. Chem., 2017, 89: 163.
[57]
Liu M L, Chen B B, Li C M, Huang C Z. Green Chem., 2019, 21(3): 449.

doi: 10.1039/C8GC02736F     URL    
[58]
Hu C, Li M Y, Qiu J S, Sun Y P. Chem Soc Rev, 2019, 48: 2315.

doi: 10.1039/C8CS00750K     URL    
[59]
Fernando K A S, Sahu S, Liu Y M, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E, Sun Y P. ACS Appl. Mater. Interfaces, 2015, 7(16): 8363.

doi: 10.1021/acsami.5b00448     URL    
[60]
Hai X, Feng J, Chen X W, Wang J H. J. Mater. Chem. B, 2018, 6(20): 3219.

doi: 10.1039/C8TB00428E     URL    
[61]
Zhang Y X, Cai T, Shang W J, Liu D, Guo Q, Liu S G. Dalton Trans., 2017, 46(36): 12306.

doi: 10.1039/C7DT02389H     URL    
[62]
Fan X Q, Li W, Fu H M, Zhu M, Wang L, Cai Z, Liu J, Li H. ACS Sustain. Chem. Eng., 2017, 5: 4223.

doi: 10.1021/acssuschemeng.7b00213     URL    
[63]
Zhou Y, Qu J. ACS Appl. Mater. Interfaces, 2017, 9(4): 3209.

doi: 10.1021/acsami.6b12489     URL    
[64]
Li J, Chen H, Stone H A. Proc Natl Acad Sci U.S.A., 2013, 110: 20023.

doi: 10.1073/pnas.1309319110     URL    
[65]
Shang W J, Ye M T, Cai T, Zhao L N, Zhang Y, Liu D, Liu S. J. Mol. Liq, 2018, 266: 65.

doi: 10.1016/j.molliq.2018.06.042     URL    
[66]
Ye M T, Cai T, Zhao L, Liu D, Liu S G. Tribol. Int., 2019, 136: 349.

doi: 10.1016/j.triboint.2019.03.045     URL    
[67]
Liu X, Huang Z Y, Tang W W, Wang B G. Nano, 2017, 12: 1750108.

doi: 10.1142/S1793292017501089     URL    
[68]
Tang W W, Wang B G, Li J T, Li Y Z, Zhang Y, Quan H P, Huang Z Y. J. Mater. Sci., 2019, 54(2): 1171.

doi: 10.1007/s10853-018-2877-0     URL    
[69]
Qiang R B, Hu L F, Hou K M, Wang J Q, Yang S R. Tribol. Lett., 2019, 67: 64.

doi: 10.1007/s11249-019-1177-4     URL    
[70]
Mou Z H, Wang B G, Huang Z Y. Fuller. Nanotub. Car. N., 2019, 27: 899.

doi: 10.1080/1536383X.2019.1659246     URL    
[71]
Chimeno-Trinchet C, Pacheco M E, Fernández-González A, Díaz-García M E, Badía-Laíño R. J. Int. Eng. Chem., 2020, 87: 152.
[72]
He C, Yan H H, Li X J, Wang X H. Green Chem., 2019, 21: 2279.

doi: 10.1039/C8GC04021D     URL    
[73]
Zhang R H, Xiong L P, Pu J B, Lu Z B, Zhang G G, He Z Y. Adv. Mater. Interfaces, 2019, 6(24): 1901386.

doi: 10.1002/admi.v6.24     URL    
[74]
Xu M H, He G L, Li Z H, He F, Gao F, Su Y, Zhang L, Yang Z, Zhang Y. Nanoscale, 2014, 6: 10307.

doi: 10.1039/C4NR02792B     URL    
[75]
Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng K S, Luk C M, Zeng S, Hao J, Lau S P. ACS Nano, 2012, 6: 5102.

doi: 10.1021/nn300760g     URL    
[76]
He C, Yan H H, Li X J, Wang X H. Diam. Relat. Mater., 2019, 91: 255.

doi: 10.1016/j.diamond.2018.12.003     URL    
[77]
He C, Yan H H, Wang X H, Bai M L. Diam. Relat. Mater., 2018, 89: 293.

doi: 10.1016/j.diamond.2018.09.019     URL    
[78]
Yan H H, He C, Li X J, Zhao T J. Diam. Relat. Mater., 2018, 87: 233.

doi: 10.1016/j.diamond.2018.06.008     URL    
[79]
Lu H S, Tang W W, Liu X, Wang B G, Huang Z Y. J. Mater. Sci., 2016, 52: 4483.

doi: 10.1007/s10853-016-0694-x     URL    
[80]
Liu H P, Ye T, Mao C D. Angew. Chem. Int. Ed., 2007, 46: 6473.

doi: 10.1002/(ISSN)1521-3773     URL    
[81]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X J, Chen S W. Chem. Mater., 2009, 21(13): 2803.

doi: 10.1021/cm900709w     URL    
[82]
Sarno M, Abdalglil Mustafa W A, Senatore A, de Scarpa D. Tribol. Int., 2020, 148: 106311.

doi: 10.1016/j.triboint.2020.106311     URL    
[83]
Shang W J, Cai T, Zhang Y X, Liu D, Sun L, Su X, Liu S. Tribol. Int., 2018, 121: 302.

doi: 10.1016/j.triboint.2018.01.054     URL    
[84]
Tu Z Q, Hu E Z, Wang B B, David K D, Seeger P, Moneke M, Stengler R, Hu K H, Hu X G. Friction, 2020, 8(1): 182.

doi: 10.1007/s40544-019-0272-8     URL    
[85]
Tang J Z, Chen S Q, Jia Y L, Ma Y, Xie H M, Quan X, Ding Q. Carbon, 2020, 156: 272.

doi: 10.1016/j.carbon.2019.09.055     URL    
[86]
Hu Y W, Wang Y X, Wang C T, Ye Y W, Zhao H, Li J, Lu X, Mao C, Chen S, Mao J, Wang L, Xue Q. Carbon, 2019, 152: 511.

doi: 10.1016/j.carbon.2019.06.047     URL    
[87]
Ruiz V, Yate L, Langer J, Kosta I, Grande H J, Tena-Zaera R. Tribol. Int., 2019, 137: 228.

doi: 10.1016/j.triboint.2019.05.001     URL    
[88]
Seymour B T, Fu W X, Wright R A E, Luo H, Qu J, Dai S, Zhao B. ACS Appl. Mater. Inter., 2018, 10: 15129.

doi: 10.1021/acsami.8b01579     URL    
[89]
Gusain R, Mungse H P, Kumar N, Ravindran T R, Pandian R, Sugimura H, Khatri O P. J. Mater. Chem. A, 2016, 4(3): 926.

doi: 10.1039/C5TA08640J     URL    
[90]
Mou Z H, Wang B G, Lu H S, Dai S S, Huang Z Y. Carbon, 2019, 154: 301.

doi: 10.1016/j.carbon.2019.08.014     URL    
[91]
Ye M T, Cai T, Shang W J, Zhao L, Zhang Y, Liu D, Liu S. Tribol. Int., 2018, 127: 557.

doi: 10.1016/j.triboint.2018.06.033     URL    
[92]
Liu X, Chen Y G. Fuller. Nanotub. Car. N., 2019, 27: 400.

doi: 10.1080/1536383X.2019.1587747     URL    
[93]
Mou Z H, Wang B G, Lu H S, Quan H P, Huang Z Y. Carbon, 2019, 149: 594.

doi: 10.1016/j.carbon.2019.04.066     URL    
[94]
Tomala A M, Kumar V B, Porat Z E, Michalczewski R, Gedanken A. Lubricants, 2019, 7(4): 36.

doi: 10.3390/lubricants7040036     URL    
[95]
Cai T, Zhang Y X, Liu D, Tong D Y, Liu S G. Mater. Lett., 2019, 250: 20.

doi: 10.1016/j.matlet.2019.04.107     URL    
[96]
Wang B B, Hu E Z, Tu Z Q, David K D, Hu K, Hu X, Yang W, Guo J, Cai W, Qian W, Zhang H. Appl. Surf. Sci., 2018, 462: 944.

doi: 10.1016/j.apsusc.2018.08.165     URL    
[97]
Xiao H P, Liu S H, Xu Q, Zhang H. Sci. China Technol. Sci., 2019, 62(4): 587.

doi: 10.1007/s11431-018-9330-y     URL    
[98]
Zhao L N, Cai T, Ye M T, Liu D, Liu S G. Carbon, 2019, 150: 319.

doi: 10.1016/j.carbon.2019.05.019     URL    
[99]
Sadeghalvaad M, Dabiri E, Afsharimoghadam P. SN Appl. Sci., 2019, 1(3): 1.

doi: 10.1007/s42452-018-0001-3     URL    
[100]
Qiang R B, Hou K M, Wang J Q, Yang S R. Appl. Surf. Sci., 2020, 509: 145338.

doi: 10.1016/j.apsusc.2020.145338     URL    
[101]
Wolk A, Rosenthal M, Neuhaus S, Huber K, Brassat K, Lindner J K N, Grothe R, Grundmeier G, Bremser W, Wilhelm R. Sci. Rep., 2018, 8(1): 1.
[102]
Lu H L, Ren S S, Zhang P P, Guo J D, Li J, Dong G. RSC Adv., 2017, 7: 21600.

doi: 10.1039/C7RA02387A     URL    
[103]
Lu H L, Lv L, Ma J, Ban W R, Ren S S, Dong G N, Li J H, Dang X Q. J. Mech. Behav. Biomed. Mater., 2018, 88: 261.

doi: 10.1016/j.jmbbm.2018.08.024     URL    
[104]
Guo J D, Mei T J, Li Y, Hafezi M, Lu H L, Li J H, Dong G N. J. Biomater. Sci. Polym. Ed., 2018, 29(13): 1549.

doi: 10.1080/09205063.2018.1470736     URL    
[105]
Hajalilou A, Abouzari-Lotf E, Abbasi-Chianeh V, Shojaei T R, Rezaie E. J. Alloys Compd., 2018, 737: 536.

doi: 10.1016/j.jallcom.2017.12.071     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[4] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[5] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[6] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[7] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[8] 李世嘉, 庞尔楠, 郝彩红, 蔡婷婷, 胡胜亮. 固态荧光碳点的制备[J]. 化学进展, 2020, 32(5): 548-561.
[9] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[10] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[11] 周翠平, 刘启明, 赵绚, 李春生, 李辉, 张书香. 柔性抗结冰表面的制备及其性能[J]. 化学进展, 2019, 31(7): 1056-1066.
[12] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[13] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[14] 邵建文, 杨付超, 郭志光. 仿生超疏油材料在苛刻工况条件下的应用[J]. 化学进展, 2018, 30(12): 2003-2011.
[15] 王露, 霍志鹏, 易锦馨, Ahmed Alsaedi, Tasawar Hayat, 戴松元. 有机-无机杂化钙钛矿太阳电池中的钙钛矿层功能添加剂[J]. 化学进展, 2017, 29(8): 870-878.
阅读次数
全文


摘要

碳点在润滑领域中的应用