English
新闻公告
More
化学进展 2013, Vol. 25 Issue (07): 1219-1228 DOI: 10.7536/PC121143 前一篇   后一篇

• 综述与评论 •

铁氧化物催化类Fenton反应

冯勇, 吴德礼*, 马鲁铭   

  1. 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
  • 收稿日期:2012-11-01 修回日期:2013-03-01 出版日期:2013-07-25 发布日期:2013-04-16
  • 通讯作者: 吴德礼 E-mail:wudeli@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.41172210)资助

Iron Oxide Catalyzed Fenton-Like Reaction

Feng Yong, Wu Deli*, Ma Luming   

  1. State Key Laboratroy of Pollution Control and Resource Reused, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2012-11-01 Revised:2013-03-01 Online:2013-07-25 Published:2013-04-16

高级氧化技术是当今水处理技术领域研究的热点,Fenton试剂因操作简单、反应条件温和及氧化效率高等优势而备受关注。铁氧化物催化类Fenton反应能有效地解决催化剂回收利用难等问题,并且能够在较为广泛的pH范围内使用,从而成为Fenton氧化领域一个新的研究方向,但反应过程和机制往往更为复杂。本文评述了铁氧化物催化类Fenton反应中可能存在的多种机理,主要是羟基自由基理论、氧空位机理和高价态铁络合物机制。类Fenton反应速率的限速步骤是Fe(Ⅲ)/Fe(Ⅱ)循环过程,从提高反应速率的机理出发,本文探讨了类Fenton反应中铁氧化物催化剂的制备和发展,催化剂中多种价态的铁元素,通过相互间发生电子转移以加速Fe(Ⅱ)的再生,提高反应效率。铁氧化物掺杂过渡金属能显著提高催化H2O2有效分解的活性。阐明了多金属掺杂铁氧化物中多金属组分的催化机制和铁氧化物结构形态对反应性能的影响。研究表明催化剂中铁的结构形态、催化剂比表面积、催化剂与H2O2之间电子转移速率等都是决定催化剂性能的重要因素。最后讨论了继续研究方向,为开展非均相类Fenton反应提供参考。

Advanced oxidation processes (AOPs) have attracted much attention in the field of water or wastewater treatment. As one of the most investigated AOPs, Fenton reagents have notably advantages of convenient operation, mild condition and high performance of degradation. Iron oxide catalyzed Fenton-like reaction, which can be operated effectively in wide range of pH values with convenient catalyst separation and reutilization, has been intensively investigated as one of the most promising developments of Fenton-like reaction during the past two decades. However, when compared with traditional Fenton reagents, these iron oxides initiated Fenton-like processes often encounter much more complicated reaction steps. The main mechanisms are reviewed, including radical mechanism, oxygen vacancies mechanism and high-valent iron species mechanism. The rate of Fe(Ⅱ) generation or Fe(Ⅲ) reduction in pure iron oxides is greatly limited and the circulation of Fe(Ⅲ)/Fe(Ⅱ) has demonstrated to be the rate-controlling steps of Fenton-like reaction. In order to accelerate this limiting step and improve the reactivity of Fenton-like reaction, modified catalysts including multivalent iron mixtures and transition metal doped iron oxides are developed. Before describing the catalytic performance, effects of modification on the morphology, structure and element composition of iron oxides are examined profoundly. Results show that the speciation of iron, the specific surface area of catalysts and the electron transfer between H2O2 and iron oxide are all playing an important role in the reactivity of Fenton-like reaction. The future development and investigations of heterogeneous catalysts are also discussed. Contents
1 Introduction
2 Mechanism and kinetics for the Fenton-like reaction catalyzed by iron oxide
2.1 Radical mechanism
2.2 Active site mechanism
2.3 Oxygen vacancies mechanism
2.4 High-valent iron species mechanism
3 Production or regeneration of Fe(Ⅱ)surf-the rate-determining step
4 Modification of iron oxides
4.1 Multivalent iron mixture
4.2 Transition metal doped iron oxide
5 Conclusion and outlook

中图分类号: 

()

[1] Bautista P, Mohedano A F, Casas J A, Zazo J A, Rodriguez J J. Journal of Chemical Technology and Biotechnology, 2008, 83(10): 1323-1338
[2] Titus M P, Molina V G, Banos M A, Gimenez J, Esplugas S. Applied Catalysis B: Environmental, 2004, 47(4): 219-256
[3] Neyens E, Baeyens J. Journal of Hazardous Materials, 2003, 98(1/3): 33-50
[4] Pignatello J, Oliveros E, MacKay A. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84
[5] 陈景文(Chen J W), 全燮(Quan X). 环境化学(Environmental Chemistry). 大连: 大连理工大学出版社(Dalian: Dalian Univeristy of Technology Press), 2009. 360-361
[6] Hanna K, Kone T, Medjahdi G. Catalysis Communications, 2008, 9(5): 955-959
[7] Strli M, Kolar J, elih V S, Ko ar D, Pihlar B. Acta Chimica Slovenica, 2003, 50(4): 619-632
[8] Ensing B, Buda F, Baerends E J. Journal of Physical Chemistry A, 2003, 107: 5722-5731
[9] Barreiro J C, Capelato M D, Martin L, Bruun Hansen H C. Water Research, 2007, 41(1): 55-62
[10] Xue X, Hanna K, Abdelmoula M, Deng N. Applied Catalysis B: Environmental, 2009, 89(3/4): 432-440
[11] Matta R, Hanna K, Chiron S. Environmental Science and Technology, 2007, 385(1/3): 242-51
[12] Andreozzi R, Caprio V. Water Research, 2002, 36(11): 2761-2768
[13] 冯勇(Feng Y), 吴德礼(Wu D L), 马鲁铭(Ma L M). 中国环境科学(China Environmental Science), 2012, 32(6): 1011-1017
[14] Che, H, Bae S, Lee W. Journal of Hazardous Materials, 2011, 185(2/3): 1355-1361
[15] Ramirez J H, Maldonad F, Cadenas A F, Castilla C, Costa C A, Madeira L M. Applied Catalysis B: Environmental, 2007, 75(3/4): 312-323
[16] Robles P A, Silva K A, Sousa E M B, Gusevskaya E V. Journal of Catalysis, 2009, 265(1): 72-79
[17] Feng J, Hu X, Yue P. Water Research, 2006, 40(4): 641-646
[18] Lin S S, Gurol M D. Environmental Science and Technology, 1998, 32(10): 1417-1423
[19] Kwan W P, Voelker B M. Environmental Science and Technology, 2002, 36(7): 1467-1476
[20] Gallard H, Laat J D E. Water Research, 2000, 34(12): 3107-3116
[21] Gordon T R, Marsh A L. Catalysis Letters, 2009, 132(3/4): 349-354
[22] Lee Y N, Lago R M, Fierro J L G, González J. Applied Catalysis A: General, 2001, 215(1/2): 245-256
[23] Costa R C, Lelis M F, Oliveira L C, Fabris J D, Ardisson J D, Rios R R, Silva C N, Lago R M. Journal of Hazardous Materials, 2006, 129(1/3): 171-178
[24] Oliveira L, Ramalho T C, Souza E F, Goncalves M, Oliveira D, Pereira M C, Fabris J. Applied Catalysis B: Environmental, 2008, 83(3/4): 169-176
[25] Goldstein S, Meyerstein D, Czapski G. Free Radical Biology and Medicine, 1993, 15(4): 435-445
[26] July. Accounts of chemical research, 1999, 32(7): 547-550
[27] Bossmann S H, Oliveros E, Goeb, Siegwart S, Dahlen E P, Pavayan L, Straub M, Wörner M, Braun A M. Journal of Physical Chemistry A, 1998, 102(28): 5542-5550
[28] Li F, England J, Que L. Journal of the American Chemical Society, 2010, 132(7): 2134-2135
[29] Buda F, Ensing B, Gribnau M C M, Baerends E J. Chemistry-A European Journal, 2001, 7(13): 2775-2783
[30] Kremer M L. Physical Chemistry Chemical Physics, 1999, 1: 3595-3605
[31] Keenan C R. Doctoral Dissertation of University of California, Berkeley, 2009
[32] Jacobsen F, Holcman J, Sehested K. International Journal of Chemical Kinetics, 1998, 30: 215-221
[33] Luo W, Zhu L, Wang N, Tang H, Cao M, She Y. Environmental Science and Technology, 2010, 44(5): 1786-1791
[34] Wang Z, Ma W, Chen C, Zhao J. Journal of Hazardous Materials, 2009, 168(2/3): 1246-1252
[35] He J, Ma W, He J, Zhao J, Yu J C. Applied Catalysis B: Environmental, 2002, 39(3): 211-220
[36] Tsai T T, Kao C M. Journal of Hazardous Materials, 2009, 170: 466-472
[37] Matta R, Hanna K, Kone T, Chiron S. Chemical Engineering Journal, 2008, 144(3): 453-458
[38] Kwan W P, Voelker B M. Environmental Science and Technology, 2003, 37(6): 1150-1158
[39] Chen F, Ma W, He J, Zhao J. The Journal of Physical Chemistry A, 2002, 106(41): 9485-9490
[40] Chen L, Ma J, Li X, Zhang J, Fang J, Guan Y, Xie P. Environmental Science and Technology, 2011, 45(9): 3925-3930
[41] Moura F, Araujo M, Costa R, Fabris J, Ardisson J, Macedo W, Lago R. Chemosphere, 2005, 60(8): 1118-1123
[42] Moura F, Oliveira G, Araujo M, Ardisson J, Macedo W, Lago R. Applied Catalysis A: General, 2006, 307(2): 195-204
[43] Costa R C C, Moura F C C, Ardisson J D, Fabris J D, Lago R M. Applied Catalysis B: Environmental, 2008, 83(1/2): 131-139
[44] Teel A L, Warberg C R, Atkinson D A, Watts R J. Water Research, 2001, 35(4): 977-984
[45] Xue X, Hanna K, Despas C, Wu F, Deng N. Journal of Molecular Catalysis A: Chemical, 2009, 311(1/2): 29-35
[46] Cornell R M, Shwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. NY: Wiley VCH, 2003
[47] Costa R C C, Lelis M F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R V A, Silva C N, Lago R M. Catalysis Communications, 2003, 4(10): 525-529
[48] Magalhães F, Pereira M C, Botrel S E C, Fabris J D, Macedo W A, Mendona R, Lago R M, Oliveira L A. Applied Catalysis A: General, 2007, 332(1): 115-123
[49] Oliveira L C A, Fabris J D, Mussel W N, Lago R M. Applied Catalysis A: General, 2004, 259(2): 253-259
[50] Silva A C, Oliveira D Q L, Oliveira L C A, Anastácio A S, Ramalho T C, Lopes J H, Carvalho H W, Torres C E R. Applied Catalysis A: General, 2009, 357(1): 79-84
[51] Menini L, Pereira M, Parreira L, Fabris J, Gusevskaya E. Journal of Catalysis, 2008, 254(2): 355-364
[52] Menini L, Silva M J, Lelis M F F, Fabris J D, Lago R M, Gusevskaya E V. Applied Catalysis A: General, 2004, 269(1/2): 117-121
[53] Deng J, Jiang J, Zhang Y, Lin X, Du C, Xiong Y. Applied Catalysis B: Environmental, 2008, 84(3/4): 468-473
[54] Nie Y. Applied Catalysis B: Environmental, 2009, 87(1/2): 30-36
[55] Souza W F, Guimarães I R, Oliveira L C, Giroto A S, Guerreiro M C, Silva C L T. Applied Catalysis A: General, 2010, 381: 36-41
[56] Oliveira L C A, Gonalves M, Guerreiro M C, Ramalho T C, Fabris J D, Pereira M C, Sapag K. Applied Catalysis A: General, 2007, 316(1): 117-124
[57] Lam F L Y, Yip A C K, Hu X. Industrial and Engineering Chemistry Research, 2007, 46(10): 3328-3333
[58] Liochev S, Ivancheva E. Free Radical Research, 1991, 14(5/6): 335-342
[59] Yang S, He H, Wu D, Chen D, Liang X, Qin Z, Fan M, Zhu J, Yuan P. Applied Catalysis B: Environmental, 2009, 89(3/4): 527-535
[60] Miller C M, Valentine R L, Roehl M E, Alvarez P J J. Water Research, 1999, 33(12): 2805-2816

[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[4] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[5] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[6] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[7] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[8] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[11] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[12] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[13] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[14] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
阅读次数
全文


摘要

铁氧化物催化类Fenton反应