English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1679-1692 DOI: 10.7536/PC200942   后一篇

• 综述 •

非水系锂空气电池催化剂

徐梦婷1, 王彦青1, 毛亚2, 李景娟1,3, 江志东1,*(), 原鲜霞1,*()   

  1. 1 上海交通大学化学化工学院 上海 200240
    2 上海空间电源研究所 空间电源技术国家重点实验室 上海 200245
    3 上海电力大学环境与化学工程学院 上海 200090
  • 收稿日期:2020-09-21 修回日期:2020-10-25 出版日期:2021-10-20 发布日期:2020-12-22
  • 通讯作者: 江志东, 原鲜霞
  • 作者简介:
    †These authors contribute equally to this work.
  • 基金资助:
    国家自然科学基金项目(21776176); 国家自然科学基金项目(21476138); 上海航天科技创新基金项目(SAST2017-134); 上海市青年科技英才扬帆计划(17YF1412400)

Cathode Catalysts for Non-Aqueous Lithium-Air Batteries

Mengting Xu1, Yanqing Wang1, Ya Mao2, Jingjuan Li1,3, Zhidong Jiang1(), Xianxia Yuan1()   

  1. 1 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2 State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources,Shanghai 200245, China
    3 College of Environmental and Chemical Engineering, Shanghai University of Electric Power,Shanghai 200090, China
  • Received:2020-09-21 Revised:2020-10-25 Online:2021-10-20 Published:2020-12-22
  • Contact: Zhidong Jiang, Xianxia Yuan
  • Supported by:
    National Natural Science Foundation of China(21776176); National Natural Science Foundation of China(21476138); Aerospace Science and Technology Innovation Fund(SAST2017-134); Shanghai Sailing Program(17YF1412400)

近年来,随着对高性能电池需求的加大,锂空气电池因其超高的理论能量密度成为了研究热点。虽然锂空气电池的发展已取得了一些突破性的进展,但离实际应用差距甚远,仍有很多问题和挑战需要解决。其中,氧电极反应动力学速度缓慢就是一个非常严重的问题。为了促进锂空气电池的发展和应用,国际学术界对改善氧电极动力学速度的催化剂开展了大量的研究工作。本文总结了近年来国内外关于锂空气电池氧电极催化材料的主要研究进展,并对其未来发展作了前景展望。

With expanding demand for high-performance batteries, Li-air batteries have been in spotlight due to the ultra-high theoretical energy density. Although some breakthroughs have been accomplished recently, their commercial level applications are still constrained by intense problems and challenges. Among them, sluggish reaction kinetics is assented as one of the serious issues responsible for unsatisfactory battery performance. Thus, an immense measure of exploration on cathode catalysts has been performed lately to improve the battery performance and facilitate the development. In this work, primary advancement and accomplishments on cathode catalysts for non-aqueous Li-air batteries have been summarized and comparatively discussed, and the future directions and developments have likewise been proposed.

Contents

1 Introduction

2 Working principle of non-aqueous lithium-air batteries

3 Cathode catalysts for non-aqueous lithium-air batteries

3.1 Noble metal and the alloys

3.2 Transition metal oxides

3.3 Transition metal sulfides

3.4 Soluble redox mediators

4 Conclusion and outlook

()
图1 各种充电电池和汽油的能量密度对比[4]
Fig. 1 Comparison of specific energy density between various rechargeable batteries and gasoline[4]. Copyright 2010, American Chemical Society
图2 不同类型锂空气电池的结构示意图[6]
Fig. 2 Schematic diagram of various types of lithium-air battery[6]. Copyright 2015, Royal Society of Chemistry
图3 非水系锂空气电池的工作原理示意图[4]
Fig. 3 Schematic diagram of working principle of non-aqueous lithium-air battery[4].Copyright 2010, American Chemical Society
图4 炭黑(a)、空心石墨烯纳米笼(b)和Pt-空心石墨烯纳米笼(c)上的催化活性位点示意图;在基底(d)和Pt催化剂(e)的活性位点上形成Li2O2的机理;在纯空心石墨烯纳米笼电极(f)和Pt-空心石墨烯纳米笼电极(g)的表面上形成环形Li2O2的机理及所形成的Li2 O 2 [19]
Fig. 4 The schematic illustrations of the active sites in black carbon(a), prinstine HGNs(b) and Pt-HGNs(c); the mechanism for the nucleation of Li2O2 on active site of substrate(d) and Pt catalyst(e); the formation of toroidal Li2O2 on the surface of pristine HGNs(f) and Pt-HGNs(g) electrodes[19]. Copyright 2016, John Wiley and Sons
图5 混合价MnOx的SEM图(a~c)和TEM图(d~f);电流密度为100 mA·g-1且限制比容量为1000 mAh·g-1时MnOx电极的循环性能曲线(g)及第一圈(h)和第315圈(i)的充放电曲线[30]
Fig. 5 SEM(a~c) and TEM(d~f) images of MnOx; cycling performance of Li-air batteries with MnOx at 100 mA·g-1 with a controlled capacity of 1000 mAh·g-1(g), insets: the initial(h) and 315th(i) discharge/charge curve of the MnOx electrode[30]. Copyright 2016, Royal Society of Chemistry
图6 预锂化NCO/CF复合薄膜的合成方法(a);电流密度为0.1 mA·cm-2时,具有不同锂化深度(0.02、0.25、0.50和0.75 V)的预锂化NCO/CF电极和未锂化NCO/CF电极的首次放/充电曲线(b);电流密度为0.1 mA·cm-2时,5个电极的循环稳定性(c)[40]
Fig. 6 Schematic illustration for synthesis of prelithiated NCO/CF(PL-NCO/CF) composite films(a); first-cycle discharge/charge profiles of PL-NCO/CF electrodes with different lithiation depths(0.02、0.25、0.50 and 0.75 V) and the pristine NCO/CF electrode at a current density of 0.1 mA·cm-2(b); cyclic stability of the electrodes at 0.1 mA·cm-2(c)[40]. Copyright 2016, American Chemical Society
图7 单壁和双壁MnCo2O4纳米管的合成方法(a);使用MnCo2O4为催化剂的锂空气电池的首次充放电曲线(b)和倍率性能(c);电流密度为400 mA·g-1、限制比容量为1000 mAh·g-1时基于单壁(d)和双壁(e)MnCo2O4纳米管的锂空气电池的循环性能[46]
Fig. 7 Schematic illustration of the synthesis of single- and double-wall MnCo2O4 nanotubes(a); initial discharge-charge curves of MnCo2O4 catalysts based Li-O2 batteries(b) and the rate ability(c); cyclic performance of the batteries with single-(d) and double-wall(e) MnCo2O4 based electrodes at 400 mA·g-1 with a controlled capacity of 1000 mAh· g - 1 [46]. Copyright 2018, Royal Society of Chemistry
图8 锂空气电池示意图(a);LaNiO3材料的氮化过程(b)和充放电过程中Li2O2的形成、分解示意图 (c)[57]
Fig. 8 Schematic illustrations of the Li-air battery(a), the nitridation process of LaNiO3(b), and the formation and decomposition of Li2O2 during discharge/charge process(c)[57]. Copyright 2018, American Chemical Society
图9 花状NiS (a, b)、棒状NiS (c, d)[63]、片状SnS2 (e, g)、花状SnS2 (f, h)[72]、海胆状NiCo2S4 (i)和核-壳结构NiCo2S4 (j)[74]的SEM图(a, c, e, f, i, j)和TEM图(b, d, g, h)
Fig. 9 SEM(a, c, e, f, i, j) and TEM(b, d, g, h) images of NiS(a-d)[63], Copyright 2015, Springer Nature, SnS2 (e-h)[72],Copyright 2018, John Wiley and Sons, and NiCo2S4(i-j)[74], Copyright 2019, IOP Publishing
图10 氧化还原中间体类催化剂的反应机理[81,82]
Fig. 10 Reaction mechanism of redox mediators as cathode catalysts[81,82]. Copright 2019, John Wiley and Sons, Copyright 2019, Royal Society of Chemistry
图11 电流密度为2000 mA·g-1、限制比容量为1000 mAh·g-1时使用不同催化剂的电极的充放电曲线(a);使用LiI催化剂的电极的电化学性能曲线(b)和限制比容量1000 mAh·g-1的循环性能曲线(c);使用 LiI催化剂的电极在限制比容量3000 mAh·g-1时的循环性能(d)[87]
Fig. 11 Discharge/charge profiles of the electrodes at a discharge depth of 1000 mAh·g-1 and a current rate of 2000 mA·g-1(a); electrochemical profiles(b) and cyclability(c) of the CNT fibril electrodes with a LiI catalyst; cyclability of the CNT fibril electrodes with the LiI catalyst at a controlled capacity of 3000 mAh·g-1(d)[87]. Copyright 2014, John Wiley and Sons
图12 氧化还原中间体穿梭机理示意图(a);自防御氧化还原中间体InI3的作用示意图(b)[99]
Fig. 12 Schematic illustration of a shuttle mechanism of redox mediator in Li-air batteries(a); mechanism of a self-defense redox mediator of InI3(b)[99]. Copyright 2016, Royal Society of Chemistry
[1]
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741     URL    
[2]
Hoque M M, Hannan M A, Mohamed A, Ayob A. Renew. Sustain. Energy Rev., 2017, 75: 1363.

doi: 10.1016/j.rser.2016.11.126     URL    
[3]
Surya K, Michael M S, Prabaharan S R S. Solid State Ion., 2018, 317: 89.
[4]
Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1(14): 2193.

doi: 10.1021/jz1005384     URL    
[5]
Farooqui U R, Ahmad A L, Hamid N A. Renew. Sustain. Energy Rev., 2017, 77: 1114.

doi: 10.1016/j.rser.2016.11.220     URL    
[6]
Ma Z, Yuan X X, Li L, Ma Z F, Wilkinson D P, Zhang L, Zhang J J. Energy Environ. Sci., 2015, 8(8): 2144.
[7]
Chen Y H, Freunberger S A, Peng Z Q, BardÉ F, Bruce P G. J. Am. Chem. Soc., 2012, 134(18): 7952.

doi: 10.1021/ja302178w     URL    
[8]
He P, Wang Y G, Zhou H S. Chem. Commun., 2011, 47(38): 10701.

doi: 10.1039/c1cc14144a     URL    
[9]
Kitaura H, Zhou H. Adv. Energy Mater., 2012, 2(7): 889.

doi: 10.1002/aenm.201100789     URL    
[10]
Mehta M, Bevara V, Andrei P. J. Power Sources, 2015, 286: 299.

doi: 10.1016/j.jpowsour.2015.03.158     URL    
[11]
Wang Y G, Zhou H S. J. Power Sources, 2010, 195(1): 358.

doi: 10.1016/j.jpowsour.2009.06.109     URL    
[12]
Geng D S, Ding N, Hor T S A, Chien S W, Liu Z L, Wuu D, Sun X L, Zong Y. Adv. Energy Mater., 2016, 6(9): 1502164.

doi: 10.1002/aenm.201502164     URL    
[13]
Wang J J, Li Y L, Sun X L. Nano Energy, 2013, 2(4): 443.

doi: 10.1016/j.nanoen.2012.11.014     URL    
[14]
Laoire C O, Mukerjee S, Abraham K M, Plichta E J, Hendrickson M A. J. Phys. Chem. C, 2010, 114(19): 9178.

doi: 10.1021/jp102019y     URL    
[15]
Song K, Jung J, Park M, Park H, Kim H J, Choi S I, Yang J, Kang K, Han Y K, Kang Y M. ACS Catal., 2018, 8(10): 9006.

doi: 10.1021/acscatal.8b02172     URL    
[16]
Wu F, Xing Y, Bi X X, Yuan Y F, Wang H H, Shahbazian-Yassar R, Li L, Chen R J, Lu J, Amine K. J. Power Sources, 2016, 332: 96.

doi: 10.1016/j.jpowsour.2016.09.090     URL    
[17]
Hayashi M, Sakamoto S, Nohara M, Iwata M, Suzuki K, Hirayama M, Nakamura J, Arai H, Kanno R, Komatsu T. Electrochemistry, 2019, 87(1): 52.

doi: 10.5796/electrochemistry.18-00046     URL    
[18]
Kang Y J, Jung S C, Kim H J, Han Y K, Oh S H. Nano Energy, 2016, 27: 1.

doi: 10.1016/j.nanoen.2016.06.040     URL    
[19]
Wu F, Xing Y, Zeng X Q, Yuan Y F, Zhang X Y, Shahbazian-Yassar R, Wen J G, Miller D J, Li L, Chen R J, Lu J, Amine K. Adv. Funct. Mater., 2016, 26(42): 7626.
[20]
Sevim M, Francia C, Amici J, Vankova S, Şener T, Metin Ö. J. Alloys Compd., 2016, 683: 231.

doi: 10.1016/j.jallcom.2016.05.094     URL    
[21]
Zhao L Y, Xing Y, Chen N, Lai J N, Li L, Wu F, Chen R J. J. Power Sources, 2020, 463: 228161.

doi: 10.1016/j.jpowsour.2020.228161     URL    
[22]
Wang G Q, Tu F F, Xie J, Du G H, Zhang S C, Cao G S, Zhao X B. Adv. Sci., 2016, 3(10): 1500339.

doi: 10.1002/advs.v3.10     URL    
[23]
Ogasawara T, DÉbart A, Holzapfel M, Novák P, Bruce P G. J. Am. Chem. Soc., 2006, 128(4): 1390.

pmid: 16433559
[24]
DÉbart A, Paterson A, Bao J L, Bruce P. Angew. Chem. Int. Ed., 2008, 47(24): 4521.

doi: 10.1002/(ISSN)1521-3773     URL    
[25]
Lu C J, Zhu F Q, Yin J G, Zhang J B, Yu Y W, Hu X L. J. Inorg. Mater., 2018, 33(9): 1029.

doi: 10.15541/jim20180093     URL    
[26]
Park M S, Kim J H, Kim K J, Jeong G, Kim Y J. J. Nanosci. Nanotechnol., 2013, 13(5): 3611.

doi: 10.1166/jnn.2013.7248     URL    
[27]
Wang F, Wen Z Y, Wu X W. ChemistrySelect, 2016, 1(21): 6749.

doi: 10.1002/slct.201601274     URL    
[28]
Tu F F, Wang Q N, Xie J, Cao G S, Zhang S C, Wang J W, Mao S X, Zhao X B, Yang H Y. Energy Storage Mater., 2017, 6: 164.
[29]
Alam K, Seriani N, Sen P. Phys. Chem. Chem. Phys., 2020, 22(17): 9233.

doi: 10.1039/C9CP06081B     URL    
[30]
Zhang S P, Wen Z Y, Lu Y, Wu X W, Yang J H. J. Mater. Chem. A, 2016, 4(43): 17129.
[31]
Wei Z H, Zhao T S, Zhu X B, Tan P. J. Power Sources, 2016, 306: 724.

doi: 10.1016/j.jpowsour.2015.12.095     URL    
[32]
Lang X S, Ge F, Cai K D, Li L, Wang Q S, Zhang Q G. J. Alloys Compd., 2019, 770: 451.

doi: 10.1016/j.jallcom.2018.08.142     URL    
[33]
Kim K S, Park Y J. Nanoscale Res. Lett., 2012, 7(1): 1.

doi: 10.1186/1556-276X-7-1     URL    
[34]
Ming J, Zhao F Y, Wu Y Q, Park J B, Sun Y K, Lee J K. Nanoscale, 2013, 5: 10390.

doi: 10.1039/c3nr02384b     pmid: 24056975
[35]
Li C X, Liu D B, Xiao Y K, Liu Z X, Song L, Zhang Z P. ACS Appl. Energy Mater., 2019, 2(4): 2939.

doi: 10.1021/acsaem.9b00291     URL    
[36]
Liu T, Huang T, Yu A S. J. Mater. Chem. A, 2019, 7(34): 19745.
[37]
Cui Y M, Wen Z Y, Liu Y. Energy Environ. Sci., 2011, 4(11): 4727.

doi: 10.1039/c1ee02365a     URL    
[38]
Park G E, Le H T T, Kim H S, Didwal P N, Park C J. Ceram. Int., 2020, 46(12): 20335.

doi: 10.1016/j.ceramint.2020.05.122     URL    
[39]
Li Y, Zou L L, Li J, Guo K, Dong X W, Li X W, Xue X Z, Zhang H F, Yang H. Electrochimica Acta, 2014, 129: 14.

doi: 10.1016/j.electacta.2014.02.070     URL    
[40]
Liu B, Yan P F, Xu W, Zheng J M, He Y, Luo L L, Bowden M E, Wang C M, Zhang J G. Nano Lett., 2016, 16(8): 4932.

doi: 10.1021/acs.nanolett.6b01556     URL    
[41]
Xue H R, Mu X W, Tang J, Fan X L, Gong H, Wang T, He J P, Yamauchi Y. J. Mater. Chem. A, 2016, 4(23): 9106.

doi: 10.1039/C6TA01712F     URL    
[42]
Xue H R, Wu S C, Tang J, Gong H, He P, He J P, Zhou H S. ACS Appl. Mater. Interfaces, 2016, 8(13): 8427.

doi: 10.1021/acsami.5b10856     URL    
[43]
Wang P X, Shao L, Zhang N Q, Sun K N. J. Power Sources, 2016, 325: 506.

doi: 10.1016/j.jpowsour.2016.06.065     URL    
[44]
Niu F E, Wang N N, Yue J, Chen L, Yang J, Qian Y T. Electrochimica Acta, 2016, 208: 148.

doi: 10.1016/j.electacta.2016.05.026     URL    
[45]
Li S L, Xu J, Ma Z, Zhang S M, Wen X F, Yu X B, Yang J, Ma Z F, Yuan X X. Chem. Commun., 2017, 53(58): 8164.

doi: 10.1039/C7CC01995E     URL    
[46]
Wu H T, Sun W, Shen J R, Lu C Y, Wang Y, Wang Z H, Sun K N. Nanoscale, 2018, 10(27): 13149.

doi: 10.1039/C8NR02795A     URL    
[47]
Li Z X, Lv Y, Yu Y W, Yin J G, Song K F, Yang B Q, Yuan L F, Hu X L. J. Alloys Compd., 2020, 817: 152736.
[48]
Karkera G, Chandrappa S G, Prakash A S. Chem. Eur. J., 2018, 24(65): 17303.

doi: 10.1002/chem.201803569     URL    
[49]
Kim J C, Lee G H, Lee S, Oh S I, Kang Y K, Kim D W. Adv. Mater. Interfaces, 2018, 5(4): 1701234.

doi: 10.1002/admi.v5.4     URL    
[50]
Song K F, Yang B Q, Li Z X, Lv Y, Yu Y W, Yuan L F, Shen X D, Hu X L. Appl. Surf. Sci., 2020, 529: 147064.

doi: 10.1016/j.apsusc.2020.147064     URL    
[51]
Jadhav H S, Kalubarme R S, Jadhav A H, Seo J G. J. Alloys Compd., 2016, 666: 476.

doi: 10.1016/j.jallcom.2016.01.131     URL    
[52]
Zhang X, Wang C Y, Chen Y N, Wang X G, Xie Z J, Zhou Z. J. Power Sources, 2018, 377: 136.
[53]
Francia C, Amici J, Tasarkuyu E, Çoşkun A, Gül Ö F, Şener T. Int. J. Hydrog. Energy, 2016, 41(45): 20583.

doi: 10.1016/j.ijhydene.2016.09.042     URL    
[54]
Fu Z H, Lin X J, Huang T, Yu A S. J. Solid State Electrochem., 2012, 16(4): 1447.

doi: 10.1007/s10008-011-1467-8     URL    
[55]
Cheng J F, Jiang Y X, Zhang M, Sun Y, Zou L, Chi B, Pu J, Jian L. ChemCatChem, 2018, 10(7): 1635.

doi: 10.1002/cctc.v10.7     URL    
[56]
Xu Q, Han X P, Ding F, Zhang L, Sang L, Liu X J, Xu Q,. J. Alloys Compd., 2016, 664: 750.

doi: 10.1016/j.jallcom.2015.12.180     URL    
[57]
Zhang J B, Zhang C F, Li W, Guo Q, Gao H C, You Y, Li Y T, Cui Z M, Jiang K C, Long H J, Zhang D W, Xin S. ACS Appl. Mater. Interfaces, 2018, 10(6): 5543.

doi: 10.1021/acsami.7b17289     URL    
[58]
Lin H Q, liu P, Wang S F, Zhang Z B, Dai Z Y, Tan S Z, Chen D J. J. Power Sources, 2019, 412: 701.

doi: 10.1016/j.jpowsour.2018.12.005     URL    
[59]
Kim J G, Kim Y, Noh Y, Lee S, Kim Y, Kim W B. ACS Appl. Mater. Interfaces, 2018, 10(6): 5429.

doi: 10.1021/acsami.7b14599     URL    
[60]
Chen X L, Chen S S, Nan B, Jia F L, Lu Z G, Deng H. Ionics, 2017, 23(9): 2241.

doi: 10.1007/s11581-017-2079-9     URL    
[61]
Luo Y, Lu F L, Jin C, Wang Y R, Yang R Z, Yang C H. J. Power Sources, 2016, 319: 19.

doi: 10.1016/j.jpowsour.2016.04.047     URL    
[62]
Gong Y D, Zhang X L, Li Z P, Wang Z W, Sun C W, Chen L Q. ChemNanoMat, 2017, 3(7): 485.

doi: 10.1002/cnma.v3.7     URL    
[63]
Ma Z, Yuan X X, Zhang Z L, Mei D L, Li L, Ma Z F, Zhang L, Yang J, Zhang J J. Sci. Rep., 2015, 5(1): 1.
[64]
Asadi M, Kumar B, Liu C, Phillips P, Yasaei P, Behranginia A, Zapol P, Klie R F, Curtiss L A, Salehi-Khojin A. ACS Nano, 2016, 10(2): 2167.

doi: 10.1021/acsnano.5b06672     URL    
[65]
Sadighi Z, Liu J P, Zhao L, Ciucci F, Kim J K. Nanoscale, 2018, 10(47): 22549.

doi: 10.1039/c8nr07106c     pmid: 30480696
[66]
Hu A J, Long J P, Shu C Z, Liang R X, Li J B. ACS Appl. Mater. Interfaces, 2018, 10(40): 34077.

doi: 10.1021/acsami.8b06912     URL    
[67]
Sun G R, Li F, Wu T, Cong L N, Sun L Q, Yang G C, Xie H M, Mauger A, Julien C M, Liu J. Inorg. Chem., 2019, 58(3): 2169.

doi: 10.1021/acs.inorgchem.8b03300     URL    
[68]
Sennu P, Christy M, Aravindan V, Lee Y G, Nahm K S, Lee Y S. Chem. Mater., 2015, 27(16): 5726.

doi: 10.1021/acs.chemmater.5b02364     URL    
[69]
Lin X D, Yuan R M, Cai S R, Jiang Y H, Lei J, Liu S G, Wu Q H, Liao H G, Zheng M S, Dong Q F. Adv. Energy Mater., 2018, 8(18): 1800089.

doi: 10.1002/aenm.v8.18     URL    
[70]
Lyu Z Y, Zhang J, Wang L J, Yuan K D, Luan Y P, Xiao P, Chen W. RSC Adv., 2016, 6(38): 31739.

doi: 10.1039/C6RA00723F     URL    
[71]
Hou X X, Mao Y Y, Yin J W, Yuan X X. Aerospace Shanghai, 2020, 2: 75.
( 侯晓彦, 毛亚, 殷洁伟, 原鲜霞. 上海航天 2020, 2: 75.)
[72]
Hou X Y, Mao Y, Yang J, Ma Z F, Yuan X X. ChemElectroChem, 2018, 5(22): 3373.

doi: 10.1002/celc.v5.22     URL    
[73]
Li S L, Jiang Z D, Hou X Y, Xu J, Xu M T, Yu X B, Ma Z F, Yang J, Yuan X X. J. Electrochem. Soc., 2020, 167(2): 020520.

doi: 10.1149/1945-7111/ab68c6     URL    
[74]
Xu M T, Hou X Y, Yu X B, Ma Z F, Yang J, Yuan X X. J. Electrochem. Soc., 2019, 166(6): F406.

doi: 10.1149/2.1151906jes     URL    
[75]
Sadighi Z, Liu J P, Ciucci F, Kim J K. Nanoscale, 2018, 10(33): 15588.

doi: 10.1039/c8nr03942a     pmid: 30090885
[76]
Long J P, Hou Z Q, Shu C Z, Han C, Li W J, Huang R, Wang J Z. ACS Appl. Mater. Interfaces, 2019, 11(4): 3834.

doi: 10.1021/acsami.8b15699     URL    
[77]
Hou Z Q, Feng S, Hei P, Yang T S, Ran Z Q, Zheng R X, Liao X, Shu C Z, Long J P. J. Power Sources, 2019, 441: 227168.

doi: 10.1016/j.jpowsour.2019.227168     URL    
[78]
Hu A J, Long J P, Shu C Z, Xu C X, Yang T S, Liang R X, Li J B. Electrochimica Acta, 2019, 301: 69.

doi: 10.1016/j.electacta.2019.01.163     URL    
[79]
Chen Y H, Freunberger S A, Peng Z Q, Fontaine O, Bruce P G. Nat. Chem., 2013, 5(6): 489.
[80]
Feng N N, He P, Zhou H S. ChemSusChem, 2015, 8(4): 600.

doi: 10.1002/cssc.v8.4     URL    
[81]
Landa-Medrano I, Lozano I, Ortiz-Vitoriano N, Ruiz de Larramendi I, Rojo T. J. Mater. Chem. A, 2019, 7(15): 8746.

doi: 10.1039/c8ta12487f    
[82]
Tamirat A G, Guan X Z, Liu J Y, Luo J Y, Xia Y Y. Chem. Soc. Rev., 2020, 49(20): 7454.
[83]
Bergner B J, Schürmann A, Peppler K, Garsuch A, Janek J. J. Am. Chem. Soc., 2014, 136(42): 15054.

doi: 10.1021/ja508400m     URL    
[84]
Feng N N, Mu X W, Zhang X P, He P, Zhou H S. ACS Appl. Mater. Interfaces, 2017, 9(4): 3733.

doi: 10.1021/acsami.6b14889     URL    
[85]
Kundu D P, Black R, Adams B, Nazar L F. ACS Cent. Sci., 2015, 1(9): 510.

doi: 10.1021/acscentsci.5b00267     URL    
[86]
Nasybulin E, Xu W, Engelhard M H, Li X S, Gu M, Hu D H, Zhang J G. Electrochem. Commun., 2013, 29: 63.

doi: 10.1016/j.elecom.2013.01.011     URL    
[87]
Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, LeprÓ X, Ovalle-Robles R, Baughman R H, Kang K. Angew. Chem. Int. Ed., 2014, 53(15): 3926.

doi: 10.1002/anie.201400711     URL    
[88]
Kwak W J, Hirshberg D, Sharon D, Afri M, Frimer A A, Jung H G, Aurbach D, Sun Y K. Energy Environ. Sci., 2016, 9(7): 2334.

doi: 10.1039/C6EE00700G     URL    
[89]
Liang Z J, Lu Y C. J. Am. Chem. Soc., 2016, 138(24): 7574.

doi: 10.1021/jacs.6b01821     URL    
[90]
Lacey M J, Frith J T, Owen J R. Electrochem. Commun., 2013, 26: 74.

doi: 10.1016/j.elecom.2012.10.009     URL    
[91]
Gao X W, Chen Y H, Johnson L, Bruce P G. Nat. Mater., 2016, 15(8): 882.

doi: 10.1038/nmat4629     URL    
[92]
Tesio A Y, Blasi D, Olivares-Marín M, Ratera I, Tonti D, Veciana J. Chem. Commun., 2015, 51(99): 17623.

doi: 10.1039/C5CC07242E     URL    
[93]
Sun D, Shen Y, Zhang W, Yu L, Yi Z Q, Yin W, Wang D, Huang Y H, Wang J, Wang D L, Goodenough J B. J. Am. Chem. Soc., 2014, 136(25): 8941.

doi: 10.1021/ja501877e     URL    
[94]
Ryu W H, Gittleson F S, Thomsen J M, Li J Y, Schwab M J, Brudvig G W, Taylor A D. Nat. Commun., 2016, 7(1): 1.
[95]
Deng H, Qiao Y, Zhang X P, Qiu F L, Chang Z, He P, Zhou H S. J. Mater. Chem. A, 2019, 7(29): 17261.

doi: 10.1039/c9ta04946k    
[96]
Gao X W, Chen Y H, Johnson L R, Jovanov Z P, Bruce P G. Nat. Energy, 2017, 2(9): 1.

doi: 10.1038/ng0992-1     URL    
[97]
Wei C N, Karuppiah C, Yang C C, Shih J Y, Lue S J. J. Phys. Chem. Solids, 2019, 133: 67.
[98]
Chen Z F, Lin X D, Xia H, Hong Y H, Liu X Y, Cai S R, Duan J N, Yang J J, Zhou Z Y, Chang J K, Zheng M S, Dong Q F. J. Mater. Chem. A, 2019, 7(23): 14260.

doi: 10.1039/C9TA03133B     URL    
[99]
Zhang T, Liao K M, He P, Zhou H S. Energy Environ. Sci., 2016, 9(3): 1024.

doi: 10.1039/C5EE02803E     URL    
[100]
Lee C K, Park Y J. ACS Appl. Mater. Interfaces, 2016, 8(13): 8561.

doi: 10.1021/acsami.6b01775     URL    
[101]
Sharon D, Hirsberg D, Afri M, Chesneau F, Lavi R, Frimer A A, Sun Y K, Aurbach D. ACS Appl. Mater. Interfaces, 2015, 7(30): 16590.

doi: 10.1021/acsami.5b04145     URL    
[102]
Ahn S M, Suk J, Kim D Y, Kang Y K, Kim H K, Kim D W. Adv. Sci., 2017, 4(10): 1700235.

doi: 10.1002/advs.201700235     URL    
[103]
Lee D J, Lee H, Kim Y J, Park J K, Kim H T. Adv. Mater., 2016, 28(5): 857.
[104]
Kwak W J, Park S J, Jung H G, Sun Y K. Adv. Energy Mater., 2018, 8(9): 1702258.

doi: 10.1002/aenm.v8.9     URL    
No related articles found!
阅读次数
全文


摘要

非水系锂空气电池催化剂