化学进展 2022, Vol. 34 Issue (4): 857-869 DOI: 10.7536/PC210441 前一篇   后一篇

• 综述 •


李婧婧, 李洪基, 黄强, 陈哲*()   

  1. 华北电力大学 北京 102206
  • 收稿日期:2021-04-22 修回日期:2021-08-06 出版日期:2022-04-24 发布日期:2021-12-02
  • 通讯作者: 陈哲
  • 基金资助:

Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries

Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen()   

  1. North China Electric Power University,Beijing 102206, China
  • Received:2021-04-22 Revised:2021-08-06 Online:2022-04-24 Published:2021-12-02
  • Contact: Zhe Chen


The abundance of sodium salt in the earth’s crust is 1000 times higher than that of lithium. At the same time, low-cost aluminum foil can be used as the anode of sodium ion battery instead of copper foil, and the low-temperature characteristics are more excellent, which has a good application prospect in energy storage and standby energy storage scenarios. Therefore, sodium ion battery is considered one of the ideal choices for the next generation of large-scale energy storage technology. However, compared with lithium ion, the large ion radius and mass of sodium ion greatly limit its reversible deintercalation in electrode materials, resulting in relatively low working voltage and energy density of the battery. In the sodium ion battery materials system, the research of cathode materials needs great progress. In this paper, the existing typical cathode materials for sodium ion batteries are reviewed, including layered metal oxides, polyanions and Prussian blue compounds. The effect of doping on the performance of cathode materials for sodium ion batteries is analyzed. The cycling reversibility, reversible capacity and diffusion kinetics of sodium ions can be improved by element doping, which can change the properties of the crystal lattice to a certain extent, and enhance the stability, electronic conductivity and intercalation kinetics of sodium ions. In this paper, the achievements of doping application in the existing materials are summarized, and the future research direction and development prospect of cathode materials are put forward.


1 Research background

2 Doping modification of cathode materials for sodium ion batteries

2.1 Modification of layered metal oxides by doping

2.2 Modification of Prussian Blue by doping

2.3 Modification of polyanionic compounds by doping

3 Doping modification principle of cathode materials for sodium ion batteries

3.1 Restrain phase transition and stabilize structure

3.2 Increase the layer spacing and improve the dynamics

3.3 Improving the discharge capacity of cathode materials

3.4 Improve the electronic conductivity and ionic conductivity of materials

3.5 Inhibition of Na+ Vacancy ordered structure

4 Conclusion and outlook

表1 掺杂在钠离子电池正极材料中的应用
Table 1 Application of doping in cathode material of sodium ion battery
Type Cathode material Voltage Capacity
Cycle performance Doping method ref
NaxMn0.9Co0.1O2 1.5~3.8 V 165(50 mA/g) 75% (After100 cycle) Combustion synthesis 29
NaxFe1/2Mn1/2O2 1.5~4.3 V 190(0.05 C) 79% (After 30 cycle) Solid-state reaction 30
NaxMn2/3Ni1/3O2 2.3~4.5 V 134(1.7 mA/g ) 64% (After 10 cycle) Co-precipitation technique 31
Na0.5Mn0.48Co0.5Al0.02O2 1.5~4.3 V 134 (85 mA/g ) 83% (After 100 cycle) Sol-gel method 32
Na0.9[Cu0.22Fe0.30Mn0.48]O2 2.5~4.05 V 100(0.1 C) 97% (After 100 cycle) Solid-state reaction 33
NaCr1/3Fe1/3Mn1/3O2 1.5~4.2 V 186(0.05 C) 54% (After 35 cycle) Solid-state reaction 34
Na0.67Mn0.67Ni0.28Mg0.05O2 2.5~4.35 V 123(0.1 C) 85% (After 50 cycle) Sol-gel method 35
Prussian blue NayFe0.4Mn0.1[Fe(CN)6] 2.0~4.2 V 119(1 C) 65% (After 350 cycle) Ball-milling method 36
NaxNi0.3Fey[Fe(CN)6] 2.0~4.0 V 117(10 mA/g) 86.3% (After 90 cycle) Co-precipitation technique 37
Na2Mn0.15Co0.15Ni0.1Fe0.6Fe(CN)6 2.0~4.0 V 111(1 C) 78.7% (After 1500 cycle) Co-precipitation technique 38
2.0~4.0 V 118(10 mA/g) 83.8% (After 800 cycle) Co-precipitation technique 39
Na2Ni0.4Co0.6Fe(CN)6 2.0~4.2 V 92(50 mA/g) 89.5% (After 100 cycle) Co-precipitation technique 40
Na2CoFe(CN)6 2.0~4.1 V 150(10 mA/g) 90% (After 200 cycle) Citrate-assisted controlled crystallization method 41
2.0~4.0 V 106(10 mA/g) 96% (After 100 cycle) Co-precipitation technique 42
NaFePO4@C 1.5~4.5 V 145(0.2 C) 89% (After 6300 cycle) Electrospinning technique 43
Br/N/a-C@Na3V2(PO4)3 2.5~4.3 V 83(0.1 C) 80% (After 500 cycle) Sol-gel assisted
Na3Mn1.6Fe0.4P3O11@C 1.8~4.3 V 84.9(0.1 C) 74% (After 100 cycle) Citric based sol-gel method and carbothermal reduction methods 45
Na3V1.9Co0.1(PO4)2F3 1.6~4.6 V 111.3(0.1 C) 70% (After 80 cycle) Sol-gel method 46
Na3MnTi(PO4)3/C 1.5~4.2 V 160(0.2 C) 92% (After 500 cycle) Spray-drying method 47
Na4MnCr(PO4)3 1.4~4.6 V 160.5(0.05 C) 74% (After 50 cycle) Sol-gel method 48
Na4Mn3(PO4)2(P2O7) 1.7~4.5 V 121(0.05 C) 86% (After 100 cycle) Solid-state reaction 49
图1 层状金属氧化物结构示意图及相变过程[8]
Fig. 1 Structure diagram and phase transition process of layered metal oxides[8]. Copyright 2014, American Chemical Society
图2 (a) Na0.9[Cu0.22Fe0.30Mn0.48]O2电极的第一和第二恒流充放电曲线在2.5~4.05 V之间以0.1 C (10 mA/g)的速率循环;(b) 在0.1 C速率下的容量、库仑效率和能量转换效率与循环次数的关系;(c) 倍率性能[33]
Fig. 2 (a) The first and second constant current charge discharge curves of Na0.9[Cu0.22Fe0.30Mn0.48]O2 electrode were cycled between 2.5~4.05 V at the rate of 0.1 C (10 mA/g); (b) the relationship between the capacity, coulomb efficiency and energy conversion efficiency at the rate of 0.1 C and the number of cycles; (c) the rate performance[33]. Copyright 2015, John Wiley and Sons
图3 (a) 各种P2型Na0.67Mn0.67Ni0.33-xMgxO2电极(x = 0,0.02,0.05,0.10和0.15)在0.1 C下的恒流充放电电压分布;(b) 各种P2型Na0.67Mn0.67Ni0.33-xMgxO2电极(x = 0,0.02,0.05,0.10,0.15)在50个循环中的循环性能;(c) P2型Na0.67Mn0.67Ni0.33-xMgxO2电极(x = 0.10和0.15)在100圈中的循环性能[35]
Fig. 3 (a) Constant current charge discharge voltage distribution of various P2 type Na0.67Mn0.67Ni0.33-xMgxO2 electrodes (x = 0, 0.02, 0.05, 0.10 and 0.15) at 0.1 C;(b) cycling performance of various P2 type Na0.67Mn0.67Ni0.33-xMgxO2 electrodes (x = 0, 0.02, 0.05, 0.10 and 0.15) in 50 cycles;(c) cycling performance of P2 type Na0.67Mn0.67Ni0.33-xMgxO2 electrodes (x = 0.10 and 0.15) in 100 cycles[35]. Copyright 2016, John Wiley and Sons
图4 (a) NaCr1/3Fe1/3Mn1/3O2在0.03 C (5 mA/g)电流下的恒流循环曲线与Na+/Na的关系;(b) 在1.5~4.2 V的电位范围内,NaCr1/3Fe1/3Mn1/3O2电极在0.05 C (10 mA/g)下的恒流循环曲线与Na+/Na的关系;(c) NaCr1/3Fe1/3Mn1/3O2电极在1.5~4.1 V之间循环的前三圈循环伏安曲线[34]
Fig. 4 (a) The relationship between the constant current cyclic curve and Na+/Na of NaCr1/3Fe1/3Mn1/3O2 electrode at 0.03 C (5 mA/g); (b) the relationship between the constant current cyclic curve and Na+/Na of NaCr1/3Fe1/3Mn1/3O2 electrode at 0.05 C (10 mA/g) in the potential range of 1.5~4.2 V; (c) The first three cycles of cyclic voltammetry of NaCr1/3Fe1/3Mn1/3O2 electrode between 1.5~4.1 V[34]. Copyright 2017, The Royal Society of Chemistry
图5 普鲁士蓝类似物的结构[62]
Fig. 5 Structure of Prussian blue analogues[62]. Copyright 2012, The Royal Society of Chemistry
图6 (a) 电流密度为10 mA/g时,NixFe-PBAs的恒流曲线;(b) NixFe-PBAs扫描速率为0.1 mV/s时的循环伏安曲线[37]
Fig. 6 (a) Constant current curve of NixFe-PBAs at current density of 10 mA/g; (b) cyclic voltammetry curve of NixFe-PBAs at scanning rate of 0.1 mV/s[37]. Copyright 2017, The Royal Society of Chemistry
图7 (a) PBM、PBN和PBMN的恒流充放电特性; (b) PBM、PBN和PBMN的循环性能[39]
Fig. 7 (a) The galvanostatic charge-discharge profiles of PBM, PBN and PBMN; (b) cyclic performances of PBM, PBN and PBMN[39]. Copyright 2014, The Royal Society of Chemistry
图8 NaFePO4@C正极材料的倍率性能[43]
Fig. 8 NaFePO4@C rate performance of cathode materials[43]. Copyright 2018, John Wiley and Sons
图9 (a,b) Br/N/a-C@NVP-1,Br/N/a-C@NVP-2,Br/N/a-C@NVP-3,纯NVP和NVP/C正极的倍率性能[44]
Fig. 9 (a, b) Rate performance of Br/N/a-C@NVP-1, Br/N/a-C@NVP-2, Br/N/a-C@NVP-3, pure NVP and NVP/C cathode[44]. Copyright 2020, The Royal Society of Chemistry
图10 (a) Na3V2-xMgx(PO4)3/C在不同电流密度下的倍率性能; (b) Na3V2-xMgx(PO4)3/C在10 C下的循环性能; (c) Na3V2-xMgx(PO4)3/C在20 C下的循环性能[86]
Fig. 10 (a) Rate capability of Na3V2-xMgx(PO4)3/C at different current densities; (b) cycling stability of Na3V2-xMgx(PO4)3/C at 10 C; (c) cycling stability of Na3V2-xMgx(PO4)3/C at 20 C[86]. Copyright 2015, The Royal Society of Chemistry
图11 Na0.66Ni0.33Mn0.67O2掺杂材料在相结构转变的原理示意图[87]
Fig. 11 Schematic diagram of the phase structure transformation of Na0.66Ni0.33Mn0.67O2 doped materials[87]. Copyright 2016, American Chemical Society
表2 三种正极材料的导电性
Table 2 Conductivity of three cathode materials
图12 (a) 模拟800 K温度下P2-Na0.57NMT中Na+的运动轨迹; (b) Na+扩散系数Arrhenius图[92]
Fig. 12 (a) Trajectories of Na+ in P2-Na0.57NMT simulated at a temperature of 800 K; (b) Arrhenius plot of Na+ diffusion coefficients[92]. Copyright 2018, American Association for the Advancement of Science
Nagelberg A S, Worrell W L. J. Solid State Chem., 1979, 29(3): 345.

doi: 10.1016/0022-4596(79)90191-9     URL    
Whittingham M S. Prog. Solid State Chem., 1978, 12(1): 41.

doi: 10.1016/0079-6786(78)90003-1     URL    
Abraham K M. Solid State Ion., 1982, 7(3): 199.

doi: 10.1016/0167-2738(82)90051-0     URL    
Johnson W B, Worrell W L. Synth. Met., 1982, 4(3): 225.

doi: 10.1016/0379-6779(82)90015-7     URL    
Hwang J Y, Myung S T, Sun Y K. Chem. Soc. Rev., 2017, 46(12): 3529.

doi: 10.1039/C6CS00776G     URL    
Slater M D, Kim D, Lee E, Johnson C S. Adv. Funct. Mater., 2013, 23(8): 947.

doi: 10.1002/adfm.201200691     URL    
Kundu D P, Talaie E, Duffort V, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(11): 3431.

doi: 10.1002/anie.201410376     URL    
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Chem. Rev., 2014, 114(23): 11636.

doi: 10.1021/cr500192f     pmid: 25390643
Ning Z, Liu Y, Chen C, Tao Z, Chen J. Chin. J. Inorg. Chem., 2015, 31(9): 1739.
Armand M, Tarascon J M. Nature, 2008, 451(7179): 652.

doi: 10.1038/451652a     URL    
Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058): 928.

doi: 10.1126/science.1212741     URL    
Pan H L, Hu Y S, Chen L Q. Energy Environ. Sci., 2013, 6(8): 2338.

doi: 10.1039/c3ee40847g     URL    
Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Chem. Rev., 2011, 111(5): 3577.

doi: 10.1021/cr100290v     URL    
Kim H, Kim H, Ding Z, Lee M H, Lim K, Yoon G, Kang K. Adv. Energy Mater., 2016, 6(19): 1600943.

doi: 10.1002/aenm.201600943     URL    
Ong S P, Chevrier V L, Hautier G, Jain A, Moore C, Kim S, Ma X H, Ceder G. Energy Environ. Sci., 2011, 4(9): 3680.

doi: 10.1039/c1ee01782a     URL    
Tang Y C, Zhao Z B, Wang Y W, Dong Y F, Liu Y, Wang X Z, Qiu J S. Electrochimica Acta, 2017, 225: 369.

doi: 10.1016/j.electacta.2016.12.176     URL    
Zhao C T, Yu C, Zhang M D, Sun Q, Li S F, Norouzi Banis M, Han X T, Dong Q, Yang J, Wang G, Sun X L, Qiu J S. Nano Energy, 2017, 41: 66.

doi: 10.1016/j.nanoen.2017.08.030     URL    
Qian J F. Doctoral Dissertation of Wuhan University, 2012.
Zhao L W. Master Dissertation of Soochow University, 2013.
Qi Y R. Doctoral Dis sertation of University of Chinese Academy of Sciences. 2019.
(戚钰若. 中国科学院大学博士论文. 2019.).
Xiang X D, Zhang K, Chen J. Adv. Mater., 2015, 27(36): 5343.

doi: 10.1002/adma.201501527     URL    
Li W J, Han C, Wang W L, Gebert F, Chou S L, Liu H K, Zhang X H, Dou S X. Adv. Energy Mater., 2017, 7(24): 1700274.

doi: 10.1002/aenm.201700274     URL    
Cai Y, Cao X, Luo Z, Fang G, Liang S. Adv Sci, 2018, 5(9), 1800680.

doi: 10.1002/advs.201800680     URL    
Lin C, Fiore M, Ji E W, Ruffo R, Do-Kyung Kim, Longoni G. Adv. Sustainable Syst., 2018, 2(3): 1700153.

doi: 10.1002/adsu.201700153     URL    
Skundin A M, Kulova T L, Yaroslavtsev A B. Russ. J. Electrochem., 2018, 54(2): 113.

doi: 10.1134/S1023193518020076     URL    
Liang Y R, Lai W H, Miao Z C, Chou S L. Small, 2018, 14(5): 1702514.

doi: 10.1002/smll.201702514     URL    
Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Chem. Rec., 2018, 18(4): 459.

doi: 10.1002/tcr.201700057     URL    
Wang Y, Liu W, Guo R, Luo Y, Xie J. Chem. Ind. Eng. Prog., 2018, 37(8): 3056.
Bucher N, Hartung S, Franklin J B, Wise A M, Madhavi S. Chem. Mater., 2016, 28(7): 2041.

doi: 10.1021/acs.chemmater.5b04557     URL    
Yabuuchi N, Kajiyama M, Yamada Y, Komaba S. Nature Mater., 2012, 11(6): 512.

doi: 10.1038/nmat3309     URL    
Lee D H, Xu J, Meng Y S. Phys. Chem. Chem. Phys., 2013, 15(9): 3304.

doi: 10.1039/c2cp44467d     URL    
Ramasamy H V, Kaliyappan K, Thangavel R, Seong W M, Kang K, Chen Z W, Lee Y S. J. Phys. Chem. Lett., 2017, 8(20): 5021.

doi: 10.1021/acs.jpclett.7b02012     pmid: 28915055
Mu L Q, Xu S Y, Li Y M, Hu Y S, Li H, Chen L Q, Huang X J. Adv. Mater., 2015, 27(43): 6928.

doi: 10.1002/adma.201502449     URL    
Cao M H, Wang Y, Shadike Z, Yue J L, Hu E Y, Bak S M, Zhou Y N, Yang X Q, Fu Z W. J. Mater. Chem. A, 2017, 5(11): 5442.

doi: 10.1039/C6TA10818K     URL    
Wang P F, You Y, Yin Y X, Wang Y S. Angew Chem., 2016, 55(26): 7445.

doi: 10.1002/anie.201602202     URL    
Gong W Z, Zeng R, Su S, Wan M, Rao Z X, Xue L H, Zhang W X. J. Nanoparticle Res., 2019, 21(12): 1.

doi: 10.1007/s11051-018-4445-6     URL    
Fu H Y, Liu C F, Zhang C K, Ma W D, Wang K, Li Z Y, Lu X M, Cao G Z. J. Mater. Chem. A, 2017, 5(20): 9604.

doi: 10.1039/C7TA00132K     URL    
Xie B X, Zuo P J, Wang L G, Wang J J, Huo H, He M X, Shu J, Li H F, Lou S F, Yin G P. Nano Energy, 2019, 61: 201.

doi: 10.1016/j.nanoen.2019.04.059     URL    
Yang D Z, Xu J, Liao X Z, He Y S, Liu H M, Ma Z F. Chem. Commun., 2014, 50(87): 13377.

doi: 10.1039/C4CC05830E     URL    
Man X, Xu M, Huang Y, Chen R, Feng W. Electrochem Commun., 2015, 59: 91.

doi: 10.1016/j.elecom.2015.07.014     URL    
Wu X, Wu C, Wei C, Ling H, Yang H. ACS Appl. Mater. Interfaces, 2016, 8(8): 5393.

doi: 10.1021/acsami.5b12620     URL    
Yu S L, Li Y, Lu Y H, Xu B, Wang Q T, Yan M, Jiang Y Z. J. Power Sources, 2015, 275: 45.

doi: 10.1016/j.jpowsour.2014.10.196     URL    
Liu Y C, Zhang N, Wang F F, Liu X B, Jiao L F, Fan L Z. Adv. Funct. Mater., 2018, 28(30): 1801917.

doi: 10.1002/adfm.201801917     URL    
Wang Z Y, Liu J M, Du Z J, Tao H Z, Yue Y Z. Inorg. Chem. Front., 2020, 7(5): 1289.

doi: 10.1039/C9QI01690B     URL    
Chen L, Jin S, Liu H, Chen S, Chen L,. J. Alloys Compd., 2019, 821: 153206.

doi: 10.1016/j.jallcom.2019.153206     URL    
Gao F, Yang K, Lv Y Y, Zhao L N, Fan M S, Liu H, Geng M M, Zhang M J, Wang K F. Synthetic Materials Aging and Application, 2019, 48 (3): 54.
(高飞, 杨凯, 吕扬阳, 赵丽娜, 范茂松, 刘皓, 耿萌萌, 张明杰, 王凯丰. 合成材料老化与应用, 2019, 48 (3): 54.).
Zhu T, Hu P, Wang X P, Liu Z H, Luo W, Owusu K A, Cao W W, Shi C W, Li J T, Zhou L, Mai L Q. Adv. Energy Mater., 2019, 9(9): 1803436.

doi: 10.1002/aenm.201803436     URL    
Zhang J, Liu Y, Zhao X, He L, Chen J. Adv. Mater., 2020, 32(11):1906348.1.
Kim H, Yoon G, Park I, Park K Y, Lee B, Kim J, Park Y U, Jung S K, Lim H D, Ahn D, Lee S, Kang K. Energy Environ. Sci., 2015, 8(11): 3325.

doi: 10.1039/C5EE01876E     URL    
Mu L Q, Qi X G, Hu Y S, Li H, Chen L Q, Huang X J. Energy Storage and Technol, 2016, 5(3): 324.
Delmas C, Fouassier C, Hagenmuller P. Phys. B+C, 1980, 99(1/4): 81.
Xia X, Dahn J R. Electrochem. Solid-State Lett., 2012, 15(1): A1.

doi: 10.1149/2.002201esl     URL    
Sun Y, Guo S H, Zhou H S. Energy Environ. Sci., 2019, 12(3): 825.

doi: 10.1039/C8EE01006D     URL    
Yang L F, Li X, Liu J, Xiong S, Ma X T, Liu P, Bai J M, Xu W Q, Tang Y Z, Hu Y Y, Liu M L, Chen H L. J. Am. Chem. Soc., 2019, 141(16): 6680.

doi: 10.1021/jacs.9b01855     URL    
Komaba S, Yabuuchi N, Nakayama T, Ogata A, Ishikawa T, Nakai I. Inorg. Chem., 2012, 51(11): 6211.

doi: 10.1021/ic300357d     URL    
Yue J L, Zhou Y N, Yu X Q, Bak S M, Yang X Q, Fu Z W. J. Mater. Chem. A, 2015, 3(46): 23261.

doi: 10.1039/C5TA05769H     URL    
Guo H, Wang Y S, Han W Z, Yu Z X, Qi X G, Sun K, Hu Y S, Liu Y T, Chen D F, Chen L Q. Electrochimica Acta, 2015, 158: 258.

doi: 10.1016/j.electacta.2015.01.118     URL    
Wang H, Yang B J, Liao X Z, Xu J, Yang D Z, He Y S, Ma Z F. Electrochimica Acta, 2013, 113: 200.

doi: 10.1016/j.electacta.2013.09.098     URL    
Xu J, Lee D H, ClÉment R J, Yu X Q, Leskes M, Pell A J, Pintacuda G, Yang X Q, Grey C P, Meng Y S. Chem. Mater., 2014, 26(2): 1260.

doi: 10.1021/cm403855t     URL    
Kataoka R, Mukai T, Yoshizawa A, Sakai T. J. Electrochem. Soc., 2013, 160(6): A933.

doi: 10.1149/2.125306jes     URL    
Carlier D, Cheng J H, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang B J, Delmas C. Dalton Trans., 2011, 40(36): 9306.

doi: 10.1039/c1dt10798d     pmid: 21842107
Lu Y H, Wang L, Cheng J G, Goodenough J B. Chem. Commun., 2012, 48(52): 6544.

doi: 10.1039/c2cc31777j     URL    
Wessells C D, Huggins R A, Cui Y. Nat. Commun., 2011, 2: 550.

doi: 10.1038/ncomms1563     pmid: 22109524
Wang L, Lu Y H, Liu J, Xu M W, Cheng J G, Zhang D W, Goodenough J B. Angew. Chem., 2013, 125(7): 2018.

doi: 10.1002/ange.201206854     URL    
Matsuda T, Takachi M, Moritomo Y. Chem. Commun., 2013, 49(27): 2750.

doi: 10.1039/c3cc38839e     URL    
Zhou M, Qian J F, Ai X P, Yang H X. Adv. Mater., 2011, 23(42): 4913.

doi: 10.1002/adma.201102867     URL    
Lee H, Kim Y I, Park J K, Choi J W. Chem. Commun., 2012, 48(67): 8416.

doi: 10.1039/c2cc33771a     URL    
Okubo M, Asakura D, Mizuno Y, Kim J D, Mizokawa T, Kudo T, Honma I. J. Phys. Chem. Lett., 2010, 1(14): 2063.

doi: 10.1021/jz100708b     URL    
Pasta M, Wessells C D, Huggins R A, Cui Y. Nat. Commun., 2012, 3: 1149.

doi: 10.1038/ncomms2139     URL    
Mizuno Y, Okubo M, Kagesawa K, Asakura D, Kojima N. Inorg Chem, 2012, 51(19): 10311.

doi: 10.1021/ic301361h     URL    
Mizuno Y, Okubo M, Hosono E, Kudo T, Zhou H S, Oh-Ishi K. J. Phys. Chem. C, 2013, 117(21): 10877.

doi: 10.1021/jp311616s     URL    
Minowa H, Yui Y, Ono Y, Hayashi M, Hayashi K, Kobayashi R, Takahashi K. Solid State Ion., 2014, 262: 216.

doi: 10.1016/j.ssi.2013.12.024     URL    
Moritomo Y, Urase S, Shibata T. Electrochimica Acta, 2016, 210: 963.

doi: 10.1016/j.electacta.2016.05.205     URL    
Jiang X L, Liu H J, Song J, Yin C F, Xu H Y. J. Mater. Chem. A, 2016, 4(41): 16205.

doi: 10.1039/C6TA06658E     URL    
Shen C, Long H, Wang G C, Lu W, Shao L, Xie K Y. J. Mater. Chem. A, 2018, 6(14): 6007.

doi: 10.1039/C8TA00990B     URL    
Shi Z C, Yang Y. Progress in Chemistry, 2005, 17(4): 604.
Chen J. Doctoral Dissertation of Jilin University, 2013.
Padhi A K, Manivannan V, Goodenough J B. J. Electrochem. Soc., 1998, 145(5): 1518.

doi: 10.1149/1.1838513     URL    
Barpanda P, Lander L, Nishimura S I, Yamada A. Adv. Energy Mater., 2018, 8(17): 1703055.

doi: 10.1002/aenm.201703055     URL    
Masquelier C, Croguennec L. Chem. Rev.. 2013, 113(8):6552.

doi: 10.1021/cr3001862     pmid: 23742145
Pan W L, Guan W H, Jiang Y Z. Acta Phys-Chim Sin, 2020, 36(5): 1905017.
Padhi A K. J. Electrochem. Soc., 1997, 144(4):1188.

doi: 10.1149/1.1837571     URL    
Yamada A, Chung S C, Hinokuma K. ChemInform, 2010, 32(29):17.
Huang H, Yin S C, Nazar L F. Electrochem. Solid-State Lett., 2001, 4(10): A170.

doi: 10.1149/1.1396695     URL    
Zhu Y J, Xu Y H, Liu Y H, Luo C, Wang C S. Nanoscale, 2013, 5(2): 780.

doi: 10.1039/C2NR32758A     URL    
Li H, Yu X Q, Bai Y, Wu F, Wu C, Liu L Y, Yang X Q. J. Mater. Chem. A, 2015, 3(18): 9578.

doi: 10.1039/C5TA00277J     URL    
Wu X H, Xu G L, Zhong G M, Gong Z L, McDonald M J, Zheng S Y, Fu R Q, Chen Z H, Amine K, Yang Y. ACS Appl. Mater. Interfaces, 2016, 8(34): 22227.

doi: 10.1021/acsami.6b06701     URL    
Wang L, Wang Y, Zhao J, Li Y, Yang X. Ionics, 2019, 25 (10).
Li Z Y, Gao R, Sun L M, Hu Z B, Liu X F. Electrochimica Acta, 2017, 223: 92.

doi: 10.1016/j.electacta.2016.12.019     URL    
ClÉment R J, Bruce P G, Grey C P. J. Electrochem. Soc., 2015, 162(14): A2589.

doi: 10.1149/2.0201514jes     URL    
Tie D, Gao G F, Xia F, Yue R Y, Wang Q J, Qi R J, Wang B, Zhao Y F. ACS Appl. Mater. Interfaces, 2019, 11(7): 6978.

doi: 10.1021/acsami.8b19134     URL    
Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y R, Yu X Q, Gu L, Guo Y G. Sci. Adv., 2018, 4(3): 6018.
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[6] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[7] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[10] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[11] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[12] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[13] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[14] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.