English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 319-327 DOI: 10.7536/PC210111 前一篇   后一篇

• 综述 •

铝离子电池中过渡金属硫族化合物正极材料

冯小琼1,2, 马云龙3, 宁红2, 张世英1, 安长胜1,*(), 李劲风2,*()   

  1. 1 长沙学院生物与环境工程学院 长沙 410022
    2 中南大学材料科学与工程学院 长沙 410083
    3 北京宇航系统工程研究所 北京 100076
  • 收稿日期:2021-01-14 修回日期:2021-04-28 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 安长胜, 李劲风

Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries

Xiaoqiong Feng1,2, Yunlong Ma3, Hong Ning2, Shiying Zhang1, Changsheng An1(), Jinfeng Li2()   

  1. 1 College of Biology and Environment Enginering, Changsha University,Changsha 410022, China
    2 College of Materials Science and Engineering, Central South University,Changsha 410083, China
    3 Beijing Institute of Aerospace System Engineering,Beijing 100076, China
  • Received:2021-01-14 Revised:2021-04-28 Online:2022-02-20 Published:2021-07-29
  • Contact: Changsheng An, Jinfeng Li

作为铝离子电池(AIBs)的正极材料,过渡金属硫族化合物(MX2 (X=S、Se、Te))具有理论比容量较高和电负性较低等优点,在铝离子电池应用领域极具发展前景。本文以提高过渡金属硫族化合物的储铝性能为目的,综述了过渡金属硫族化合物(MX2 (X=S、Se、Te))的储铝机理及其电化学性能的关系,并针对目前过渡金属硫族化合物存在的问题,总结研究者们提出的相应解决方案并归纳此类材料的主要改性技术手段。最后,对过渡金属硫族化合物正极材料的发展方向进行展望,并探讨改善其整体电化学性能的可行策略。

As a promising cathode of aluminum ion batteries (AIBs), transition metal chalcogenides (MX2 (X=S, Se, Te)) have excellent theoretical specific capacity and lower electronegativity, which endow it with great potential in commercial AIBs. Here, the relationship between the aluminum storage mechanism and the electrochemical properties of the transition metal sulfide compound (MX2 (X = S, Se, Te)) is summarized. According to the current problems of transition metal chalcogenides, we propose the corresponding solutions proposed by researchers and summarize the main material modification techniques. Finally, the development direction of transition metal chalcogenide cathode materials is prospected, and feasible strategies to improve its overall electrochemical performance are discussed.

Contents

1 Introduction

2 Aluminum storage of transition metal chalcogenides

2.1 Intercalation mechanism

2.2 Conversion mechanism

3 Transition metal chalcogenide based on conversion mechanism

3.1 Metal sulfide

3.2 Metal selenide

3.3 Metal telluride

3.4 Other chalcogenide

4 Conclusion and outlook

()
图1 (a)MoX2晶体结构示意图,在M1和M2处可能的插入点;(b)M1插入点;(c)M2插入点[28]
Fig. 1 Schematic representation of (a) a MoX2 crystal structure with possible intercalation sites at M1 and M2; (b) intercalation at M1 site; and (c) intercalation at M2 site[27]. Copyright 2020, Wiley.
图2 MoS2(a)[36]和MoS2/CNFs(b)[37]的SEM图以及MoS2/CNFs的制备方法示意图(c)
Fig. 2 The SEM of (a) MoS2[36], (b) MoS2/CNFs[37] and Schematic diagram of preparation method (c). Copyright 2018, ACS
图3 Co9S8@CNT-CNF材料的制备方法示意图(a)和电化学性能(b)[41]
Fig. 3 The schematic diagram of Co9S8@CNT-CNF material (a) and electrochemical performance (b)[41]. Copyright 2019, Elsevier
图4 CoSe2的SEM(a、b)和mapping图(c)以及循环性能曲线图(d)[45]
Fig. 4 The SEM (a, b), mapping diagram (c) and cycle performance curve (d) of CoSe2[45]. Copyright 2018, RSC
图5 (a)Al-S电池的正极制备示意图、SEM图(b、c)以及电化学性能曲线图(d、e)[60]
Fig. 5 (a) The Schematic preparation, SEM image (b, c) and electrochemical performance curve (d, e) of the positive electrode of Al-S battery[60]. Copyright 2018, Wiley
[1]
An C S, Yuan Y F, Zhang B, Tang L B, Xiao B, He Z J, Zheng J C, Lu J. Adv. Energy Mater., 2019, 9(18): 1900356.

doi: 10.1002/aenm.v9.18     URL    
[2]
Herfurth H J. Nature, 2008, 451: 652.

doi: 10.1038/451652a     URL    
[3]
Hueso K B, Armand M, Rojo T. Energy Environ. Sci., 2013, 6(3): 734.

doi: 10.1039/c3ee24086j     URL    
[4]
Zhang Y, Liu S Q, Ji Y J, Ma J M, Yu H J. Adv. Mater., 2018, 30(38): 1706310.

doi: 10.1002/adma.v30.38     URL    
[5]
An C S, Zhang B, Tang L B, Xiao B, Zheng J C. Electrochimica Acta, 2018, 283: 385.

doi: 10.1016/j.electacta.2018.06.149     URL    
[6]
Niu J, Zhang S, Niu Y, Song H H, Chen X H, Zhou J S. Prog. Chem., 2015, 27(9): 1275.

doi: 10.7536/PC150155    
( 牛津, 张苏, 牛越, 宋怀河, 陈晓红, 周继升. 化学进展, 2015, 27(9): 1275.)

doi: 10.7536/PC150155    
[7]
Holleck G L, Giner J. J. Electrochem. Soc., 1972, 119(9): 1161.

doi: 10.1149/1.2404433     URL    
[8]
Lin M C, Gong M, Lu B G, Wu Y P, Wang D Y, Guan M Y, Angell M, Chen C X, Yang J, Hwang B J, Dai H J. Nature, 2015, 520(7547): 324.

doi: 10.1038/nature14340     URL    
[9]
Tu J G, Lei H P, Yu Z J, Jiao S Q. Chem. Commun., 2018, 54(11): 1343.

doi: 10.1039/C7CC09376D     URL    
[10]
Gu S C, Wang H L, Wu C, Bai Y, Li H, Wu F. Energy Storage Mater., 2017, 6: 9.
[11]
Wang H L, Bai Y, Chen S, Luo X Y, Wu C, Wu F, Lu J, Amine K. ACS Appl. Mater. Interfaces, 2015, 7(1): 80.

doi: 10.1021/am508001h     URL    
[12]
Geng L X, Scheifers J P, Fu C Y, Zhang J, Fokwa B P T, Guo J C. ACS Appl. Mater. Interfaces, 2017, 9(25): 21251.

doi: 10.1021/acsami.7b04161     URL    
[13]
Zhang R, Qin Y, Liu P, Jia C K, Tang Y G, Wang H Y. ChemSusChem, 2020, 13(6): 1354.

doi: 10.1002/cssc.201903320     pmid: 32017468
[14]
Remskar M, Mrzel A, Skraba Z. Science, 2001, 292: 479.

pmid: 11313488
[15]
Dong X Z, Xu H Y, Chen H, Wang L Y, Wang J Q, Fang W Z, Chen C, Salman M, Xu Z, Gao C. Carbon, 2019, 148: 134.

doi: 10.1016/j.carbon.2019.03.080     URL    
[16]
Hu H Y, Cai T H, Bai P, Xu J, Ge S H, Hu H, Wu M B, Xue Q Z, Yan Z F, Gao X L, Xing W. Chem. Commun., 2020, 56(10): 1593.

doi: 10.1039/C9CC06895C     URL    
[17]
Bhauriyal P, Mahata A, Pathak B. Phys. Chem. Chem. Phys., 2017, 19(11): 7980.

doi: 10.1039/c7cp00453b     pmid: 28263339
[18]
Kaveevivitchai W, Hua A, Wang S. Small, 2017, 13: 1701296.

doi: 10.1002/smll.v13.34     URL    
[19]
Li C X, Dong S H, Tang R, Ge X L, Zhang Z W, Wang C X, Lu Y P, Yin L W. Energy Environ. Sci., 2018, 11(11): 3201.

doi: 10.1039/C8EE01046C     URL    
[20]
Liu Y P, Li Y G. Chin. Sci. Bull., 2015, 60: 1723.

doi: 10.1360/csb2015-60-18-1723     URL    
( 刘玉平, 李彦光. 科学通报, 2015, 60: 1723.)
[21]
Ye D L, Luo B, Lu G M, Wang L Z. Sci. Bull., 2015, 60(11): 1042.

doi: 10.1007/s11434-015-0808-x     URL    
[22]
Kong D S, Wang H T, Judy J, Mauro P, Kristie J, Yao J, Cui Y. Nano Letters, 2013, 13: 3.
[23]
Zhang Y, Liu S Q, Ji Y J, Ma J M, Yu H J. Adv. Mater., 2018, 30(38): 1706310.

doi: 10.1002/adma.v30.38     URL    
[24]
Tian H, Zhang S, Meng Z, Meng, Zhen H, Wei H, Wei Q. ACS Energy Letters, 2017: 1170.
[25]
Wang D Y, Wei C Y, Lin M C, Pan C J, Chou H L, Chen H A, Gong M, Wu Y P, Yuan C Z, Angell M, Hsieh Y J, Chen Y H, Wen C Y, Chen C W, Hwang B J, Chen C C, Dai H J. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6     URL    
[26]
Hu Y X, Luo B, Ye D L, Zhu X B, Lyu M Q, Wang L Z. Adv. Mater., 2017, 29(48): 1606132.

doi: 10.1002/adma.v29.48     URL    
[27]
Zhao Z C, Hu Z Q, Li Q, Li H S, Zhang X, Zhuang Y D, Wang F, Yu G H. Nano Today, 2020, 32: 100870.

doi: 10.1016/j.nantod.2020.100870     URL    
[28]
Divya S, Johnston J H, Nann T. Energy Technol., 2020, 8(6): 2000038.

doi: 10.1002/ente.v8.6     URL    
[29]
Takahashi K, Wang Y, Cao G Z. J. Phys. Chem. B, 2005, 109(1): 48.

doi: 10.1021/jp044772j     URL    
[30]
Jiang J L, Li H, Fu T, Hwang B J, Li X, Zhao J B. ACS Appl. Mater. Interfaces, 2018, 10(21): 17942.

doi: 10.1021/acsami.8b03259     URL    
[31]
Hu Z Q, Zhang H, Wang H Z, Zhang F L, Li Q, Li H S. ACS Mater. Lett., 2020, 2(8): 887.
[32]
Bai L, Wang Y F, Huo S H, Lu X Q. Prog. Chem., 2019, 31(1): 191.
( 白蕾, 王艳凤, 霍淑慧, 卢小泉. 化学进展, 2019, 31(1): 191.)

doi: 10.7536/PC180527    
[33]
Yang H, Li H, Li J, Sun Z, He K, Cheng H, Li F. Angew Chem Int Ed, 2019, 58: 11978.

doi: 10.1002/anie.v58.35     URL    
[34]
Zhang R, Qin Y, Liu P, Jia C K, Tang Y G, Wang H Y. ChemSusChem, 2020, 13(6): 1354.

doi: 10.1002/cssc.201903320     pmid: 32017468
[35]
Jeong J M, Kyoung G, Sung J, Jung W K, Young K H, Seok J L, Bong G C. Nanoscale, 2015, 7: 324.

doi: 10.1039/C4NR06215A     URL    
[36]
Li Z Y, Niu B B, Liu J, Li J L, Kang F Y. ACS Appl. Mater. Interfaces, 2018, 10(11): 9451.

doi: 10.1021/acsami.8b00100     URL    
[37]
Yang W, Lu H, Cao Y. ACS Sustainable Chem., 2019, 7: 4861.
[38]
Mori T, Orikasa Y, Nakanishi K, Chen K Z, Hattori M, Ohta T, Uchimoto Y. J. Power Sources, 2016, 313: 9.

doi: 10.1016/j.jpowsour.2016.02.062     URL    
[39]
Takami N, Koura N. Electrochimica Acta, 1988, 33(1): 69.

doi: 10.1016/0013-4686(88)80034-3     URL    
[40]
Zhao Z C, Hu Z Q, Jiao R S, Tang Z H, Dong P, Li Y D, Li S D, Li H S. Energy Storage Mater., 2019, 22: 228.
[41]
Hu Y X, Luo B, Ye D L, Zhu X B, Lyu M Q, Wang L Z. Adv. Mater., 2017, 29(48): 1606132.

doi: 10.1002/adma.v29.48     URL    
[42]
Wang S, Jiao S Q, Wang J X, Chen H S, Tian D H, Lei H P, Fang D N. ACS Nano, 2017, 11(1): 469.

doi: 10.1021/acsnano.6b06446     URL    
[43]
Wang S, Yu Z J, Tu J G, Wang J X, Tian D H, Liu Y J, Jiao S Q. Adv. Energy Mater., 2016, 6(13): 1600137.

doi: 10.1002/aenm.201600137     URL    
[44]
Liang K, Ju L C, Koul S, Kushima A, Yang Y. Adv. Energy Mater., 2019, 9(2): 1802543.

doi: 10.1002/aenm.v9.2     URL    
[45]
Hu Z Q, Zhi K K, Li Q, Zhao Z C, Liang H Y, Liu X, Huang J Y, Zhang C X, Li H S, Guo X X. J. Power Sources, 2019, 440: 227147.

doi: 10.1016/j.jpowsour.2019.227147     URL    
[46]
Cai T H, Zhao L M, Hu H Y, Li T G, Li X C, Guo S, Li Y P, Xue Q Z, Xing W, Yan Z F, Wang L Z. Energy Environ. Sci., 2018, 11(9): 2341.

doi: 10.1039/C8EE00822A     URL    
[47]
Guan W, Wei L J, Jiao S Q. Nanoscale, 2019, 11: 16437.

doi: 10.1039/c9nr06481h     pmid: 31441921
[48]
Zhou Q P, Wang D W, Lian Y, Hou S Y, Ban C L, Wang Z F, Zhao J, Zhang H H. Electrochimica Acta, 2020, 354: 136677.

doi: 10.1016/j.electacta.2020.136677     URL    
[49]
Feng X Q, Li J M, Ma Y L, Yang C Y, Zhang S Y, Li J F, An C S. ACS Appl. Energy Mater., 2021, 4(2): 1575.

doi: 10.1021/acsaem.0c02797     URL    
[50]
Song G S, Liang C, Gong H, Li M F, Zheng X C, Cheng L, Yang K, Jiang X Q, Liu Z. Adv. Mater., 2015, 27(40): 6110.

doi: 10.1002/adma.201503006     URL    
[51]
Du Y Q, Zhao S M, Xu C. ChemElectroChem, 2019, 6: 4437.

doi: 10.1002/celc.v6.17     URL    
[52]
Jiang L, Zhu Y J, Cui J B. J. Solid State Chem., 2010, 183(10): 2358.

doi: 10.1016/j.jssc.2010.08.004     URL    
[53]
Xu J, Yin Y Q, Xiong H Q, Du X D, Jiang Y J, Guo W, Wang Z, Xie Z Z, Qu D Y, Tang H L, Deng Q B, Li J S. Appl. Surf. Sci., 2019, 490: 516.

doi: 10.1016/j.apsusc.2019.06.080     URL    
[54]
Seo J U, Seong G K, Park C M. Sci. Rep., 2015, 5(1): 1.
[55]
Yu Z J, Jiao S Q, Tu J G. ACS Nano, 2020, 14: 3469.

doi: 10.1021/acsnano.9b09550     URL    
[56]
Zhang B, Zhang Y, Li J L, Liu J, Huo X G, Kang F Y. J. Mater. Chem. A, 2020, 8(11): 5535.

doi: 10.1039/D0TA00674B     URL    
[57]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23): 11751.

doi: 10.1021/cr500062v     pmid: 25026475
[58]
Wang H L, Yang Y, Liang Y Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Nano Lett., 2011, 11(7): 2644.

doi: 10.1021/nl200658a     URL    
[59]
Cohn G, Ma L, Archer L A. J. Power Sources, 2015, 283: 416.

doi: 10.1016/j.jpowsour.2015.02.131     URL    
[60]
Gao T, Li X, Wang X, Han J K, Fan F D, Suo X L, Pearse L M, Alex J L, Rubloff S B, Gary W, Gaskell K J, Noked M, Wang C S. Angew. Chem., 2016, 12: 1.
[61]
Zhang X F, Jiao S Q, Tu J G, Song W L, Xiao X, Li S J, Wang M Y, Lei H P, Tian D H, Chen H S, Fang D N. Energy Environ. Sci., 2019, 12(6): 1918.

doi: 10.1039/C9EE00862D     URL    
[62]
Liu S Q, Zhang X, He S M, Tang Y S, Wang J, Wang B Y, Zhao S, Su H, Ren Y, Zhang L Q, Huang J Y, Yu H J, Amine K. Nano Energy, 2019, 66: 104159.

doi: 10.1016/j.nanoen.2019.104159     URL    
[1] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[2] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[3] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[4] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[5] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[6] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[7] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[8] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[9] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[10] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[11] 易罗财, 次素琴, 孙成丽, 温珍海. 非水系锂氧气电池正极材料研究现状[J]. 化学进展, 2016, 28(8): 1251-1264.
[12] 陈军, 丁能文, 李之峰, 张骞, 钟盛文. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
[13] 蔡克迪, 赵雪, 仝钰进, 肖尧, 高勇, 王诚. 锂氧电池关键技术研究[J]. 化学进展, 2015, 27(12): 1722-1731.
[14] 刘渝萍, 谢剑, 李婷婷, 邓玲, 陈昌国, 张丁非. 镁-过渡金属复合物正极材料[J]. 化学进展, 2014, 26(09): 1596-1608.
[15] 白莹, 李雨, 仲云霞, 陈实, 吴锋, 吴川. 锂离子电池富锂过渡金属氧化物xLi2MnO3·(1-x)LiMO2(M=Ni,Co或Mn)正极材料[J]. 化学进展, 2014, 26(0203): 259-269.