English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1598-1613 DOI: 10.7536/PC200817 前一篇   后一篇

• 综述 •

元素掺杂碳基材料在锂硫电池中的应用

卢赟1,2,*(), 史宏娟1,2, 苏岳锋1,2,*(), 赵双义1, 陈来1,2, 吴锋1,2,3   

  1. 1 北京理工大学材料学院能源与环境材料系北京市重点实验室 北京 100081
    2 北京理工大学重庆创新中心新材料技术院士工作室 重庆 401135
    3 北京电动车辆协同创新中心 北京 100081
  • 收稿日期:2020-08-06 修回日期:2020-09-15 出版日期:2021-09-20 发布日期:2020-12-09
  • 通讯作者: 卢赟, 苏岳锋
  • 基金资助:
    国家自然科学基金项目(51802019)

Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries

Yun Lu1,2(), Hongjuan Shi1,2, Yuefeng Su1,2(), Shuangyi Zhao1, Lai Chen1,2, Feng Wu1,2,3   

  1. 1 Beijing Key Laboratory, Department of Energy and Environmental Materials, School of Materials Science and Engineering, Beijing Institute of Technology,Beijing 100081, China
    2 Academician's Workshop of New Materials Technology, Chongqing Innovation Center, Beijing Institute of Technology,Chongqing 401135, China
    3 Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing 100081, China
  • Received:2020-08-06 Revised:2020-09-15 Online:2021-09-20 Published:2020-12-09
  • Contact: Yun Lu, Yuefeng Su
  • About author:
    † Yun Lu and Hongjuan Shi contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(51802019)

可移动电子设备、电动汽车及站式储能的蓬勃发展对具有高能量密度和长循环寿命的储能体系的开发提出了迫切需求。锂硫电池由于活性物质硫成本低廉并具有高理论能量密度(2600 Wh·kg-1),成为最具希望的下一代可充电电池。但是,硫及其放电产物导电性差以及多硫化物溶解穿梭导致的一系列严重问题制约了锂硫电池的实际应用。碳基材料通常被用作硫载体以改善正极的导电性,然而,非极性碳材料与极性多硫化物的相互作用较弱,对于多硫化物仅起到有限的物理吸附和阻挡作用,穿梭效应所导致的电池容量严重衰减问题难以得到有效改善。通过杂原子如N、S、Co、B等的掺杂可在碳材料上引入极性或化学吸附位点,大大增强了碳材料对于多硫化物的吸附能力,有效改善了电池的循环稳定性,并且由于掺杂改变了碳材料的电子结构,甚至可以提升碳材料的电子导电性,从而提高了活性物质的利用率。本文对锂硫电池中多孔碳、碳纳米管以及石墨烯等碳基材料常用的元素掺杂进行了介绍,其中包括单元素掺杂、双元素掺杂和多元素掺杂,分析了不同掺杂元素对碳基材料性能的影响,并对元素掺杂碳基材料在锂硫电池中的发展前景进行了展望。

The blossoming of mobile electronic devices, plug-in electric vehicles and stationary energy storage have triggered the urgent demand for the exploration of the energy storage systems with high energy density and long cycle life. Lithium-sulfur battery is regarded as one of the most promising candidates of the next-generation rechargeable batteries, since the active substance sulfur is low cost and possesses high theoretical energy density of 2600 Wh·kg-1. However, the practical applications of lithium-sulfur battery are hindered by a series of severe problems, which are caused by the insulative nature of sulfur and its discharge products, and the dissolution and shuttling of polysulfides. Carbonaceous materials are generally used as sulfur hosts to improve the conductivity of the cathode. Regrettably, due to the weak interaction between non-polar carbonaceous materials and polar polysulfides, the carbonaceous materials can inhibit polysulfides only by limited physical adsorption and restrictions, thus the dramatic capacity decline derived from the notorious “shuttling effect” remains insufficiently resolved. Introducing polar or chemical adsorption sites to carbonaceous materials by element doping, such as N, S, Co and B doping, can greatly enhance the adsorption capacity of carbonaceous materials to polysulfides, so as to sufficiently improve the cycling stability of the cell. Moreover, element doping may improve the electronic conductivity of carbonaceous materials by changing their electronic structure, thus effectively increasing the utilization ratio of the active materials. This article reviews the elements doping commonly applied in carbonaceous materials such as porous carbon, carbon nanotubes and graphene for lithium-sulfur batteries, wherein single-element doping, dual-element doping, and multi-element doping are introduced separately. The effects of different doping elements on performance of carbonaceous materials are analyzed. And the development direction of element-doped carbonaceous materials in lithium-sulfur batteries are prospected.

Contents

1 Introduction

2 Rational design of element-doped carbon-based materials

3 Single element doping

3.1 Nitrogen-doped

3.2 Boron-doped

3.3 Cobalt-doped

3.4 Others

4 Double element co-doping

4.1 Nitrogen and sulfur co-doped

4.2 Nitrogen and boron co-doped

4.3 Nitrogen and cobalt co-doped

4.4 Nitrogen and nickel co-doped

4.5 Others

5 Multi-element doped carbonaceous materials

6 Conclusions and outlook

()
表1 采用单元素掺杂碳材料制备的LSBs的性能
Table 1 Performances of LSBs prepared with mono-doped carbonaceous materials
图1 石墨烯中N掺杂的四种形式[51]
Fig. 1 Four forms of N doping in graphene[51]. Copyright 2015, Elsevier
图2 不同N掺杂态的掺杂石墨烯的制备示意图[56]
Fig. 2 Schematic diagram for preparation of N doped graphene with different N states[56]. Copyright 2012, The Royal Society of Chemistry
图3 HNCM700-S、HNCM800-S和HNCM900-S电极在0.5 C下的1000周循环性能[59]
Fig. 3 Cycle performance of HNCM700-S, HNCM800-S, and HNCM900-S cathodes for 1000 cycles at 0.5 C[59]. Copyright 2019, WILEY-VCH
图4 SC和SC-Co电极在扫描速率100 mV·s-1下的循环伏安图[74]
Fig. 4 Cyclic voltammogram of SC and SC-Co electrodes at a scan rate of 100 mV·s-1[74]. Copyright 2019, WILEY-VCH
表2 采用双元素掺杂碳材料制备的LSBs的性能
Table 2 Performances of LSBs prepared with dual-element doped carbonaceous materials
Material Doping element Element content Sulfur content
(wt%)
Initial discharge
capacity/mAh·g-1
Cycles Capacity retention Binding energy
with Li2S2
NSC[82] N、S - 70% 1280, 0.2 C 100 84.37% 2.59 eV
CNSMC[81] N、S N 5.0 wt%, S 4.6 wt% 54% 1120, 1 C 100 ~71% -
NSHPC[83] N、S N 3.47 wt%, S 4.03 wt% 80% 1549, 0.1 C 100 61.14% -
SN-PCNF[84] N、S - 80% 1133, 0.1 C 150 75% 2.55 eV
N,S-codoped graphene[85] N、S N 5.4 at%, S 3.9 at% 4.6 mg·cm-2 925, 0.5 C 200 72.4% 2.06 eV
N,S-CDs/
rGO[86]
N、S N 2.9 wt%, S 3.8 wt% 76% 1296, 0.5 C 150 ~69% -
SNGE[87] N、S N 6.01 at%, S 1.15 at% 42.1% 770, 2 C 250 79.48% -
NB-PPCA[88] N、B N 3.64 wt%, B 6.89 wt% 56% 988, 1 C 500 59.4% -
G-NBCL[89] N、B N 5.3 wt%, B 2.9 wt% 70% 829, 2 C 300 82% N=B/N-B, 5.15 eV
NBCGNs[90] N、B N 6.6 at%, B 7.0 at% 65% 977, 0.2 C 300 76% 2.65 eV
C-Co-N[91] N、Co - 56% 917, 0.5 C 500 50.2% -
Co@NHCRs[92] N、Co Co 0.53 at% 60% 971, 0.5 C 100 73% -
MC-NS[93] N、Co N 2.18 wt%, Co 3.88 wt% 86% 1172, 0.2 C 100 77.4% 1.35 eV
Co-N-CNTA[94] N、Co N 8.6 at% 40% 1045, 1 C 1000 77.89% 1.79 eV
CoSA-N-C[95] N、Co N 16.3 at % 74% 1038, 1 C 1000 65% Li2S6, 0.5 eV
Co-N/G[96] N、Co N 7.25 at %, Co 0.77 at % 67% 861, 1 C 500 79% -
Co-N-C/rGO[97] N、Co - 63% 865, 0.5 C 500 71.2% -
MFCH[100] N、Ni N 9.8 wt % 50% 1150, 0.84 A·g-1 100 79% -
Ni@NG[101] N、Ni - 1 mg·c m - 2 826.2, 1 C 500 78% 1.98 eV
N,P-C[102] N、P N 3.6 at %, P 3.2 at % - 1000, 0.1 C 100 70% -
NOPC/S[103] N、O N 2.02 at%, O 8.04 at% 51.6% 1185, 0.2 C 100 64% -
NONPCM[104] N、O N 4.5 wt%, O 9.43 wt% 70% 690, 800 mA·g-1 180 91.7% N-LiSx, 2.52 eV,
MPNC[105] N、O N 6.2 wt%, O 6.89 wt% 70% ~800, 0.35 mA·cm-2 100 95% =O-LiSx, 1.47 eV
图5 SNGE插层示意图[84]
Fig. 5 The SNGE intercalation schematic diagram[84]. Copyright 2016, Royal Society of Chemistry
图6 Li2S和Li2S4与基体的结合能计算。(a)Li2S与石墨烯的结合能;(b)Li2S与吡啶N的结合能;(c)Li2S与吡咯N的结合能;(d)Li2S与N=B/N-B的结合能;(e)Li2S4与石墨烯的结合能;(f)Li2S4与吡啶N的结合能;(g)Li2S4与吡咯N的结合能;(h)Li2S4与N=B/N-B的结合能[86]
Fig. 6 Calculation of the binding energy of Li2S and Li2S4 with the matrix. (a) Binding energy of Li2S on pristine graphene. (b) Binding energy of Li2S at a pyridinic N site. (c) Binding energy of Li2S at a pyrrolic N site. (d) Binding energy of Li2S at an N=B/N-B site. (e) Binding energy of Li2S4 on pristine graphene. (f) Binding energy of Li2S4 at a pyridinic N site. (g) Binding energy of Li2S4 at a pyrrolic N site. (h) Binding energy of Li2S4 at an N=B/N-B site[86]. Copyright 2016, WILEY-VCH
图7 (a)C、N-C和Co@N-C的静电势图;(b)Li-S与各种碳基体(C、N-C、Co@N-C)相互作用的DFT结合能计算。其中灰色、蓝色、青瓷色、粉红色、黄色和白色球分别表示C、N、Co、Li、S和H原子[89]
Fig. 7 (a) Electrostatic potential maps of C, N-C, and Co@N-C; (b) DFT calculations showing the interaction between Li-S and various carbon substrates. Gray, blue, celadon, pink, yellow, and white denote C, N, Co, Li, S, and H atoms, respectively[89]. Copyright 2016, Elsevier
图8 (a~c)原位拉曼测试中MC-NS/S、C-NS/S和C-NP/S正极在0.1 C下的电压-时间分布;(d~f)对应的充放电原始拉曼光谱[90]
Fig. 8 (a~c) The voltage-time profiles of MC-NS/S, C-NS/S, and C-NP/S cathode at 0.1 C for the in situ Raman test. (d~f) Selected original Raman spectra of MC-NS/S, C-NS/S, and C-NP/S for (dis)charge processes[90]. Copyright 2019, WILEY-VCH
图9 CoSA-N-C在改善固体(S、Li2S)和液体(LiPSs)之间的转化动力学,以及调控Li2S纳米粒子沉积的示意图[92]
Fig. 9 Schematic illustration of the effect of CoSA-N-C in improving the conversion kinetics between the solid (S, Li2S) and liquid (LiPSs), and mediating the deposition of lithium sulfide nanoparticles[92]. Copyright 2020, Elsevier
图10 硫化锂在N / G和Co-N / G上的能量分布[93]
Fig. 10 Energy profiles for Li sulfides on N/G and Co-N/G[93]. Copyright 2019, American Chemical Society
图11 Ni@NG相关性能表征。(a)Ni@NG和NG与多硫化物的结合能;(b)电化学过程中多硫化物在Ni@NG表面的催化机理[98]
Fig. 11 Related performance characterization of Ni@NG. (a) Binding energies between the LiPSs and the Ni@NG or NG. (b) The catalytic mechanism of the LiPSs on the surface of Ni@NG in electrochemical process[98]. Copyright 2019, WILEY-VCH
[1]
Tsagarakis K P, Mavragani A, Jurelionis A, Prodan I, Andrian T, Bajare D, Korjakins A, Magelinskaite-Legkauskiene S, Razvan V, Stasiuliene L. Renew. Energy, 2018, 121: 412.

doi: 10.1016/j.renene.2018.01.020     URL    
[2]
Akhter M Z, Hassan M A. Appl. Mech. Mater., 2016, 819: 507.

doi: 10.4028/www.scientific.net/AMM.819     URL    
[3]
Joselin Herbert G M, Iniyan S, Sreevalsan E, Rajapandian S. Renew. Sustain. Energy Rev., 2007, 11(6): 1117.

doi: 10.1016/j.rser.2005.08.004     URL    
[4]
Lewis N S. Science, 2007, 315(5813): 798.

doi: 10.1126/science.1137014     URL    
[5]
O'Brien E. J. Biogeogr., 1998, 25(2): 379.

doi: 10.1046/j.1365-2699.1998.252166.x     URL    
[6]
Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135(4): 1167.

doi: 10.1021/ja3091438     pmid: 23294028
[7]
Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S, Allred G D, Zajicek J, Kotani Y. Energy Environ. Sci., 2012, 5(3): 5941.

doi: 10.1039/c2ee03029b     URL    
[8]
Chen L, Su Y F, Chen S, Li N, Bao L Y, Li W K, Wang Z, Wang M, Wu F. Adv. Mater., 2014, 26(39): 6756.

doi: 10.1002/adma.v26.39     URL    
[9]
Tian J, Su Y F, Wu F, Xu S Y, Chen F, Chen R J, Li Q, Li J H, Sun F C, Chen S. ACS Appl. Mater. Interfaces, 2016, 8(1): 582.

doi: 10.1021/acsami.5b09641     URL    
[10]
Wang M, Chen Y B, Wu F, Su Y F, Chen L, Wang D L. Electrochimica Acta, 2010, 55(28): 8815.

doi: 10.1016/j.electacta.2010.08.022     URL    
[11]
Wu F, Li N, Su Y F, Shou H F, Bao L Y, Yang W, Zhang L J, An R, Chen S. Adv. Mater., 2013, 25(27): 3722.

doi: 10.1002/adma.v25.27     URL    
[12]
Wu F, Li N, Su Y F, Zhang L J, Bao L Y, Wang J, Chen L, Zheng Y, Dai L Q, Peng J Y, Chen S. Nano Lett., 2014, 14(6): 3550.

doi: 10.1021/nl501164y     URL    
[13]
Wu F, Li W K, Chen L, Lu Y, Su Y F, Bao W, Wang J, Chen S, Bao L Y. J. Power Sources, 2017, 359: 226.

doi: 10.1016/j.jpowsour.2017.05.063     URL    
[14]
Wu F, Tian J, Liu N, Lu Y, Su Y F, Wang J, Chen R J, Ma X, Bao L Y, Chen S. Energy Storage Mater., 2017, 8: 134.
[15]
Zheng Y, Chen L, Su Y F, Tan J, Bao L Y, Lu Y, Wang J, Chen R J, Chen S, Wu F. J. Mater. Chem. A, 2017, 5(46): 24292.

doi: 10.1039/C7TA08735G     URL    
[16]
Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L. Chemical Engineering Journal, 2017, 322: 538.

doi: 10.1016/j.cej.2017.04.065     URL    
[17]
Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang Q M. Science, 2006, 313: 334.

doi: 10.1126/science.1127798     URL    
[18]
Tang H X, Lin Y R, Sodano H A. Adv. Energy Mater., 2013, 3(4): 451.

doi: 10.1002/aenm.v3.4     URL    
[19]
Wu F, Li J, Su Y F, Wang J, Yang W, Li N, Chen L, Chen S, Chen R J, Bao L Y. Nano Lett., 2016, 16(9): 5488.

doi: 10.1021/acs.nanolett.6b01981     URL    
[20]
Wu F, Zhao S Y, Chen L, Lu Y, Su Y F, Jia Y N, Bao L Y, Wang J, Chen S, Chen R J. Energy Storage Mater., 2018, 14: 383.
[21]
Zeng P, Huang L W, Han Y M, Zhang X L, Zhang R X, Chen Y G. ChemElectroChem, 2018, 5(2): 375.

doi: 10.1002/celc.201700924     URL    
[22]
Gao G P, Zheng F, Pan F, Wang L W. Adv. Energy Mater., 2018, 8(25): 1801823.

doi: 10.1002/aenm.v8.25     URL    
[23]
Ghosh D, Gad M, Lau I, Pope M A. Adv. Energy Mater., 2018, 8(27): 1801979.

doi: 10.1002/aenm.v8.27     URL    
[24]
Shi H F, Lv W, Zhang C, Wang D W, Ling G W, He Y B, Kang F Y, Yang Q H. Adv. Funct. Mater., 2018, 28(38): 1800508.

doi: 10.1002/adfm.v28.38     URL    
[25]
Yu Q H, Lu Y, Luo R J, Liu X M, Huo K F, Kim J K, He J, Luo Y S. Adv. Funct. Mater., 2018, 28(39): 1804520.

doi: 10.1002/adfm.v28.39     URL    
[26]
Zhou G M, Paek E, Hwang G S, Manthiram A. Adv. Energy Mater., 2016, 6(2): 1501355.

doi: 10.1002/aenm.201501355     URL    
[27]
Xiao Z B, Yang Z, Nie H G, Lu Y Q, Yang K Q, Huang S M. J. Mater. Chem. A, 2014, 2(23): 8683.

doi: 10.1039/C4TA00630E     URL    
[28]
Liu M, Li Q, Qin X Y, Liang G M, Han W J, Zhou D, He Y B, Li B H, Kang F Y. Small, 2017, 13(12): 1602539.

doi: 10.1002/smll.v13.12     URL    
[29]
Sun X, Jie W, Xu L, Wei C. Journal of Nanoparticle Research, 2018, 20: 1.

doi: 10.1007/s11051-017-4105-2     URL    
[30]
Gao X, Yang X, Li M, Sun Q, Liang J, Luo J, Wan J, Li W. Adv. Funct. Mater., 2019, 29: 1806724.

doi: 10.1002/adfm.v29.8     URL    
[31]
Jozwiuk A, Sommer H, Janek J, Brezesinski T. J. Power Sources, 2015, 296: 454.

doi: 10.1016/j.jpowsour.2015.07.070     URL    
[32]
Jeong T G, Moon Y H, Chun H H, Kim H S, Cho B W, Kim Y T. Chem. Commun., 2013, 49(94): 11107.

doi: 10.1039/c3cc46358c     URL    
[33]
Fu Y Z, Zu C X, Manthiram A. J. Am. Chem. Soc., 2013, 135(48): 18044.

doi: 10.1021/ja409705u     URL    
[34]
Yue X Y, Li X L, Meng J K, Wu X J, Zhou Y N. J. Power Sources, 2018, 397: 150.

doi: 10.1016/j.jpowsour.2018.07.017     URL    
[35]
Fang R P, Chen K, Yin L C, Sun Z H, Li F, Cheng H M. Adv. Mater., 2019, 31(9): 1800863.

doi: 10.1002/adma.v31.9     URL    
[36]
Zhang X, Wang Z, Yao L, Mai Y Y, Liu J Q, Hua X L, Wei H. Mater. Lett., 2018, 213: 143.

doi: 10.1016/j.matlet.2017.11.002     URL    
[37]
Zhang L, Ling M, Feng J, Mai L Q, Liu G, Guo J H. Energy Storage Mater., 2018, 11: 24.
[38]
Xiong S Z, Xie K, Diao Y, Hong X B. Electrochimica Acta, 2012, 83: 78.

doi: 10.1016/j.electacta.2012.07.118     URL    
[39]
Liu M, Ren Y X, Jiang H R, Luo C, Kang F Y, Zhao T S. Nano Energy, 2017, 40: 240.

doi: 10.1016/j.nanoen.2017.08.017     URL    
[40]
Hong X D, Shun-Li L I, Liu Y L, Modern Chemical Industry, 2018, 2: 30.
[41]
Sun Z J, Wang S J, Yan L L, Xiao M, Han D M, Meng Y Z. J. Power Sources, 2016, 324: 547.

doi: 10.1016/j.jpowsour.2016.05.122     URL    
[42]
Shi H F, Niu S Z, Lv W, Zhou G M, Zhang C, Sun Z H, Li F, Kang F Y, Yang Q H. Carbon, 2018, 138: 18.

doi: 10.1016/j.carbon.2018.05.077     URL    
[43]
Xu Z Y, Liu X, Chen J M, Wang M X, Song J R, Zhai G T, Li C X. Plasma Sci. Technol., 2002, 4(3): 1311.

doi: 10.1088/1009-0630/4/3/008     URL    
[44]
Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Small, 2016, 12(24): 3283.

doi: 10.1002/smll.v12.24     URL    
[45]
Wu J Y, Li X W, Zeng H X, Xue Y, Chen F Y, Xue Z G, Ye Y S, Xie X L. J. Mater. Chem. A, 2019, 7: 7897.

doi: 10.1039/C9TA00458K     URL    
[46]
Wu F, Zhao S Y, Lu Y, Li J, Su Y F, Chen L. Progress in Chemistry, 2017, 29(6): 593.
(吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学进展, 2017, 29(6): 593.).

doi: 10.7536/PC170333    
[47]
Zhang Y L, Mu Z J, Yang C, Xu Z K, Zhang S, Zhang X Y, Li Y J, Lai J P, Sun Z H, Yang Y, Chao Y G, Li C J, Ge X X, Yang W X, Guo S J. Adv. Funct. Mater., 2018, 28(38): 1707578.

doi: 10.1002/adfm.v28.38     URL    
[48]
Sun D. Surface Technology, 2018, 47: 95.
[49]
Ding Y L, Kopold P, Hahn K, van Aken P A, Maier J, Yu Y. Adv. Funct. Mater., 2016, 26(7): 1112.

doi: 10.1002/adfm.v26.7     URL    
[50]
Xiao S, Liu S H, Zhang J Q, Wang Y. J. Power Sources, 2015, 293: 119.

doi: 10.1016/j.jpowsour.2015.05.048     URL    
[51]
He X C, Tang T, Liu F C, Tang N J, Li X Y, Du Y W. Carbon, 2015, 94: 1037.

doi: 10.1016/j.carbon.2015.07.089     URL    
[52]
Tang T, Zhang T, Li W, Huang X X, Wang X B, Qiu H L, Hou Y L. Nanoscale, 2019, 11(15): 7440.

doi: 10.1039/C8NR09495K     URL    
[53]
Yan H M, Cheng M, Zhong B H, Chen Y X. Ionics, 2016, 22(11): 1999.

doi: 10.1007/s11581-016-1739-5     URL    
[54]
van Dommele S, Romero-Izquirdo A, Brydson R, Jong K P D, Bitter J H. Carbon, 2008, 46(1): 138.

doi: 10.1016/j.carbon.2007.10.034     URL    
[55]
Chung H T, Zelenay P. Chem. Commun., 2015, 51(70): 13546.

doi: 10.1039/C5CC04621A     URL    
[56]
Lai L F, Potts J R, Zhan D, Wang L, Poh C K, Tang C H, Gong H, Shen Z X, Lin J Y, Ruoff R S. Energy Environ. Sci., 2012, 5(7): 7936.

doi: 10.1039/c2ee21802j     URL    
[57]
Han P, Chung S H, Manthiram A. Small, 2019, 15(16): 1900690.

doi: 10.1002/smll.v15.16     URL    
[58]
Xia Y, Fang R Y, Xiao Z, Huang H, Gan Y P, Yan R J, Lu X H, Liang C, Zhang J, Tao X Y, Zhang W K. ACS Appl. Mater. Interfaces, 2017, 9(28): 23782.

doi: 10.1021/acsami.7b05798     URL    
[59]
Wang J L, Yan X F, Zhang Z, Ying H J, Guo R N, Yang W T, Han W Q. Adv. Funct. Mater., 2019, 29(39): 1904819.

doi: 10.1002/adfm.v29.39     URL    
[60]
Zhao Y, Yin F X, Zhang Y G, Zhang C W, Mentbayeva A, Umirov N, Xie H X, Bakenov Z. Nanoscale Res. Lett., 2015, 10(1): 450.

doi: 10.1186/s11671-015-1152-4     pmid: 26586150
[61]
Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Duan W H, Ye Y F, Guo J H, Zhang Y G. Nano Lett., 2014, 14(8): 4821.

doi: 10.1021/nl5020475     URL    
[62]
Cheng D D, Zhao Y L, An T, Wang X, Zhou H, Fan T X. Carbon, 2019, 154: 58.

doi: 10.1016/j.carbon.2019.07.094     URL    
[63]
Wang H F, Fan C Y, Li X Y, Wu X L, Li H H, Sun H Z, Xie H M, Zhang J P, Tong C Y. Electrochimica Acta, 2017, 244: 86.

doi: 10.1016/j.electacta.2017.05.090     URL    
[64]
Wu F, Qian J, Wu W P, Ye Y S, Sun Z G, Xu B, Yang X G, Xu Y H, Zhang J T, Chen R J. Nano Res., 2017, 10(2): 426.

doi: 10.1007/s12274-016-1303-7     URL    
[65]
Xu C X, Zhou H H, Fu C P, Huang Y P, Chen L, Yang L M, Kuang Y F. Electrochimica Acta, 2017, 232: 156.

doi: 10.1016/j.electacta.2017.02.140     URL    
[66]
Xie Y, Meng Z, Cai T W, Han W Q. ACS Appl. Mater. Interfaces, 2015, 7(45): 25202.

doi: 10.1021/acsami.5b08129     URL    
[67]
Li B E, Sun Z H, Zhao Y, Tian Y, Tan T Z, Gao F, Li J D. J. Nanoparticle Res., 2018, 21(1): 1.

doi: 10.1007/s11051-018-4445-6     URL    
[68]
Fan F Y, Carter W C, Chiang Y M. Adv. Mater., 2015, 27(35): 5203.

doi: 10.1002/adma.201501559     URL    
[69]
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Adv. Sci., 2018, 5(1): 1700270.

doi: 10.1002/advs.201700270     URL    
[70]
Cao Y W, Shen C R, Xia C G, He L. Chin. J. Chem. Educ., 2019, 40(6): 3.
(曹彦伟, 沈超仁, 夏春谷, 何林. 化学教育, 2019, 40(6): 3).
[71]
Li M M, Feng W J, Su W X, Song C K, Chen L J. Integr. Ferroelectr., 2019, 200(1): 82.

doi: 10.1080/10584587.2019.1592623     URL    
[72]
Xiao D J, Li Q, Zhang H F, Ma Y Y, Lu C X, Chen C M, Liu Y D, Yuan S X. J. Mater. Chem. A, 2017, 5(47): 24901.

doi: 10.1039/C7TA08483H     URL    
[73]
Li Z Q, Li C X, Ge X L, Ma J Y, Zhang Z W, Li Q, Wang C X, Yin L W. Nano Energy, 2016, 23: 15.

doi: 10.1016/j.nanoen.2016.02.049     URL    
[74]
Xie J, Li B Q, Peng H J, Song Y W, Zhao M, Chen X, Zhang Q, Huang J Q. Adv. Mater., 2019, 31(43): 1903813.

doi: 10.1002/adma.v31.43     URL    
[75]
Li S P, Chen X, Hu F, Zeng R, Huang Y H, Yuan L X, Xie J. Electrochimica Acta, 2019, 304: 11.

doi: 10.1016/j.electacta.2019.02.087     URL    
[76]
Nitze F, Fossum K, Xiong S Z, Matic A, Palmqvist A E C. J. Power Sources, 2016, 317: 112.

doi: 10.1016/j.jpowsour.2016.03.084     URL    
[77]
Du L Y, Cheng X Y, Gao F J, Li Y B, Bu Y F, Zhang Z Q, Wu Q, Yang L J, Wang X Z, Hu Z. Chem. Commun., 2019, 55(45): 6365.

doi: 10.1039/C9CC02134E     URL    
[78]
Wu F, Li J, Tian Y F, Su Y F, Wang J, Yang W, Li N, Chen S, Bao L Y. Sci. Rep., 2015, 5(1): 1.
[79]
Pang Q, Tang J T, Huang H, Liang X, Hart C, Tam K C, Nazar L F. Adv. Mater., 2015, 27(39): 6021.

doi: 10.1002/adma.201502467     URL    
[80]
Jiang S X, Chen M F, Wang X Y, Zhang Y, Huang C, Zhang Y P, Wang Y. Chem. Eng. J., 2019, 355: 478.

doi: 10.1016/j.cej.2018.08.170     URL    
[81]
Yang X D, Ran Z L, Luo F, Li Y L, Zhang P X, Mi H W. Appl. Surf. Sci., 2020, 509: 145270.

doi: 10.1016/j.apsusc.2020.145270     URL    
[82]
Zhou G M, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6(1): 7760.

doi: 10.1038/ncomms8760     URL    
[83]
Chabu J M, Zeng K, Jin G Y, Zhang M Y, Li Y J, Liu Y N. Mater. Chem. Phys., 2019, 229: 226.

doi: 10.1016/j.matchemphys.2019.03.019     URL    
[84]
Wang L, Yang Z, Nie H G, Gu C C, Hua W X, Xu X J, Chen X A, Chen Y, Huang S M. J. Mater. Chem. A, 2016, 4(40): 15343.

doi: 10.1039/C6TA07027B     URL    
[85]
Zhu L, Jiang H T, Ran W X, You L J, Yao S S, Shen X Q, Tu F Y. Appl. Surf. Sci., 2019, 489: 154.

doi: 10.1016/j.apsusc.2019.05.333     URL    
[86]
Yuan S Y, Bao J L, Wang L N, Xia Y Y, Truhlar D G, Wang Y G. Adv. Energy Mater., 2016, 6(5): 1501733.

doi: 10.1002/aenm.201501733     URL    
[87]
Chen L, Feng J R, Zhou H H, Fu C P, Wang G C, Yang L M, Xu C X, Chen Z X, Yang W J, Kuang Y F. J. Mater. Chem. A, 2017, 5(16): 7403.

doi: 10.1039/C7TA01265A     URL    
[88]
Luo S Q, Zheng C M, Li Y J, Liu S K. J. Power Energy Eng., 2017, 5(12): 16.

doi: 10.4236/jpee.2017.512003     URL    
[89]
Zhang M D, Yu C, Zhao C T, Song X D, Han X T, Liu S H, Hao C, Qiu J S. Energy Storage Mater., 2016, 5: 223.
[90]
Li J B, Chen C Y, Chen Y W, Li Z H, Xie W F, Zhang X, Shao M F, Wei M. Adv. Energy Mater., 2019, 9(42): 1901935.

doi: 10.1002/aenm.v9.42     URL    
[91]
Hu C J, Yang C K, Yang J J, Han N N, Yuan R Y, Chen Y F, Liu H, Xie T H, Chen R D, Zhou H H, Liu W, Sun X M. ACS Appl. Energy Mater., 2019, 2(4): 2904.

doi: 10.1021/acsaem.9b00243     URL    
[92]
Li Y J, Wu J B, Zhang B, Wang W, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y M. Energy Storage Mater., 2020, 30: 250.
[93]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2019, 141(9): 3977.

doi: 10.1021/jacs.8b12973     URL    
[94]
Chen G P, Song X, Wang S Q, Wang Y, Gao T, Ding L X, Wang H H. J. Membr. Sci., 2018, 548: 247.

doi: 10.1016/j.memsci.2017.11.026     URL    
[95]
Yang Y X, Wang Z H, Jiang T Z, Dong C, Mao Z, Lu C Y, Sun W, Sun K N. J. Mater. Chem. A, 2018, 6(28): 13593.

doi: 10.1039/C8TA05176C     URL    
[96]
Li Q, Guo J N, Zhao J, Wang C C, Yan F. Nanoscale, 2019, 11(2): 647.

doi: 10.1039/C8NR07220E     URL    
[97]
Fang R P, Zhao S Y, Pei S F, Cheng Y X, Hou P X, Liu M, Cheng H M, Liu C, Li F. Carbon, 2016, 109: 719.

doi: 10.1016/j.carbon.2016.08.050     URL    
[98]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40): 1903955.

doi: 10.1002/adma.v31.40     URL    
[99]
Zhang J, Shi Y, Ding Y, Peng L L, Zhang W K, Yu G H. Adv. Energy Mater., 2017, 7(14): 1602876.

doi: 10.1002/aenm.v7.14     URL    
[100]
Chen F, Yang J, Bai T, Long B, Zhou X Y. Electrochimica Acta, 2016, 192: 99.

doi: 10.1016/j.electacta.2016.01.192     URL    
[101]
Mi K, Chen S W, Xi B J, Kai S S, Jiang Y, Feng J K, Qian Y T, Xiong S L. Adv. Funct. Mater., 2017, 27(1): 1604265.

doi: 10.1002/adfm.v27.1     URL    
[102]
Song J X, Xu T, Gordin M L, Zhu P Y, Lv D, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Adv. Funct. Mater., 2014, 24(9): 1243.

doi: 10.1002/adfm.v24.9     URL    
[103]
Zhao S L, Wang D W, Amal R, Dai L M. Adv. Mater., 2019, 31(9): 1801526.

doi: 10.1002/adma.v31.9     URL    
[104]
Xiao Y L, Zeng Y, Zeng H B, Zhang W J, Tian B B, Deng Y H. J. Alloys Compd., 2019, 787: 1356.

doi: 10.1016/j.jallcom.2019.01.316     URL    
[105]
Li N, Chen K H, Chen S Y, Wang F, Wang D D, Gan F Y, He X, Huang Y C. Carbon, 2019, 149: 564.

doi: 10.1016/j.carbon.2019.04.022     URL    
[106]
Lee J, Oh J, Jeon Y, Piao Y Z. ACS Appl. Mater. Interfaces, 2018, 10(31): 26485.

doi: 10.1021/acsami.8b00925     URL    
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[4] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[5] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[6] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[7] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[8] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[9] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[10] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[11] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019, 31(2/3): 422-432.
[12] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[13] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[14] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[15] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.