English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2638-2650 DOI: 10.7536/PC220422 前一篇   后一篇

• 综述 •

过渡金属基MOF材料在选择性催化还原氮氧化物中的应用

张巍1,2,*(), 谢康1,2, 汤云灏1,2, 秦川1,2, 成珊1,2, 马英3   

  1. 1 长沙理工大学能源与动力工程学院 长沙 410114
    2 可再生能源电力技术湖南省重点实验室 长沙 410114
    3 永清环保股份有限公司 长沙 410330
  • 收稿日期:2022-04-15 修回日期:2022-07-11 出版日期:2022-12-24 发布日期:2022-09-19
  • 通讯作者: 张巍
  • 基金资助:
    国家自然科学基金项目(52006016); 国家留学基金项目(201808430112); 湖南省自然科学基金项目(2020JJ4098); 湖南省自然科学基金项目(2021JJ40573); 湖南省教育厅科学研究项目重点项目(21A0216); 长沙市自然科学基金(kq2014104); 长沙理工大学青年教师成长计划项目(2019QJCZ044); “可再生能源电力技术”湖南省重点实验室开放基金(2018ZNDL004); “可再生能源电力技术”湖南省重点实验室开放基金(2020ZNDL001); 2022年长沙理工大学研究生科研创新项目(CXCLY2022092)

Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides

Wei Zhang1,2(), Kang Xie1,2, Yunhao Tang1,2, Chuan Qin1,2, Shan Cheng1,2, Ying Ma3   

  1. 1 College of Energy and Power Engineering, Changsha University of Science and Technology,Changsha 410114, China
    2 Key Laboratory of Renewable Energy and Electric Power Technology of Hunan Province,Changsha 410114, China
    3 Yonker Environmental Protection Company Limited,Changsha 410330, China.
  • Received:2022-04-15 Revised:2022-07-11 Online:2022-12-24 Published:2022-09-19
  • Contact: Wei Zhang
  • Supported by:
    national natural science foundation of China(52006016); state scholarship fund awarded by China scholarship(201808430112); natural science foundation of Hunan province(2020JJ4098); natural science foundation of Hunan province(2021JJ40573); Key projects of scientific research project of Hunan Provincial Department of Education(21A0216); Changsha Municipal Natural Science Foundation(kq2014104); young teachers growth plan project of CSUST(2019QJCZ044); key laboratory of renewable energy electric technology of Hunan province(2018ZNDL004); key laboratory of renewable energy electric technology of Hunan province(2020ZNDL001); 2022 Graduate research and innovation project at Changsha University of Science and Technology(CXCLY2022092)

选择性催化还原(SCR)技术是目前应用最广泛的工业脱硝技术,研发具有优良活性和抗毒化性能的催化剂体系是研究学者关注的重点。过渡金属氧化物和金属有机骨架(MOF)材料因其优良的氧化还原性能在脱硝领域受到了广泛关注和研究,且研究学者发现将过渡金属氧化物与MOF材料结合能够进一步提高催化剂的脱硝活性。本文综述了近年来主要应用于NH3-SCR反应的系列单过渡金属基MOF脱硝催化剂和复合过渡金属基MOF脱硝催化剂的研究进展,阐述了过渡金属基MOF脱硝催化剂抗水抗硫中毒性能和热稳定性的强化方法,并展望了未来过渡金属基MOF脱硝催化剂的主要研究方向:综合利用不同过渡金属氧化物的特点并结合金属氧化物间的强相互作用,制备得到具有优良脱硝活性、抗水抗硫性能和热稳定性的新型过渡金属基MOF脱硝催化剂,进一步通过实验和仿真模拟相结合制备高效过渡金属基MOF脱硝催化剂以满足工业化需求。

Selective catalytic reduction (SCR) technology is the most widely used industrial denitration technology at present, the development of catalyst system with excellent activity and anti-poisoning performance is the focus of researchers. Transition metal oxides and metal organic framework (MOF) materials have been widely studied and applied in the field of denitration catalysts because of their excellent redox performance, and researchers found that the combination of transition metal oxides and MOF materials can further improve the denitration activity of the catalyst. This paper summarizes the research progress of a series of single transition metal based MOF denitration catalysts and composite transition metal based MOF denitration catalysts mainly used in NH3-SCR reaction in recent years, and expounds the strengthening methods of water resistance, sulfur poisoning resistance and thermal stability of transition metal based MOF denitration catalysts, The main research directions of transition metal based MOF denitration catalysts in the future are prospected: new transition metal based MOF denitration catalysts with excellent denitration activity, water and sulfur resistance and thermal stability can be prepared by comprehensively utilizing the characteristics of different transition metal oxides and combined with the strong interaction between metal oxides. Further, transition metal based MOF denitration catalyst can be prepared by combining experiment and simulation to selectively catalyze the reduction of nitrogen oxides to meet the needs of industrialization.

Contents

1 Introduction

2 Transition metal based MOF denitration catalyst

2.1 Mono-transition metal based MOF denitration catalysts

2.2 Double-transition metal based MOF denitration catalysts

3 Enhancement of antitoxicity of transition metal based MOF denitration catalysts

3.1 Enhancing the water resistance of transition metal based MOF denitration catalysts

3.2 Enhancing the sulfur resistance of transition metal based MOF denitration catalysts

4 Method for enhancing thermal stability of transition metal based MOF denitration catalysts

4.1 Adding metal clusters

4.2 Optimizing the molar ratio of metal ions to organic ligands

5 Conclusion and Prospect

()
表1 近年来文献报道较多的单过渡金属基MOF脱硝催化剂
Table 1 Mono-transition metal based MOF denitration catalysts reported in the literature in recent years
图1 双金属改性的MOF脱硝催化剂[44]
Fig. 1 Bimetallic modified MOF denitration catalysts[44]
图2 对于MOF脱硝催化剂的制备具有实际应用和发展潜力的元素(蓝色:已应用于制备MOF脱硝催化剂的元素;黄色:已应用于制备MOF催化剂的元素;红色:已应用于制备脱硝催化剂的元素;橙色:已应用于制备MOF催化剂和脱硝催化剂,但未用于制备MOF脱硝催化剂的元素)
Fig. 2 Elements with practical application and development potential for the preparation of MOF denitration catalyst (Blue: elements that have been used to prepare MOF denitration catalyst; Yellow: elements that have been applied to prepare MOF catalyst; Red: elements that have been used to prepare denitration catalyst; Orange: elements that have been used to prepare MOF catalyst and denitration catalyst, but not used to prepare MOF denitration catalyst)
图3 (a) Mn-MOF-74、(b) P123-Mn-MOF-74、(c) PVP-Mn-MOF-74和(d) Mn-MOF-74-CH3的TEM图像[11]
Fig.3 TEM images of (a) Mn-MOF-74, (b) P123-Mn-MOF-74, (c) PVP-Mn-MOF-74 and (d) Mn-MOF-74- CH3[11]
图4 Mn/Ce-400-空气(a)NH3-SCR脱除SO2的机理;(b) Ce2(SO4)3的沉积与分解机理[127]
Fig.4 Mn/Ce-400-Air (a)Mechanism of SO2 removal by NH3-SCR (b) Sedimentation and decomposition of Ce2(SO4)3[127]
图5 NJU-Bai62与一些具有永久孔隙率的代表性MOF的热稳定性比较图[133]
Fig.5 Comparison of thermal stability of NJU-Bai62 with some representative MOFs with permanent porosity[133]
图6 过渡金属基MOF脱硝催化剂的总结与展望概念图
Fig.6Summ ary and prospect of transition metal based MOF denitration catalysts concept map
[1]
Chen H Y, Wei Z, Kollar M, Gao F, Wang Y, Szanyi J, Peden C H F. J Catal., 2015, 329: 490.
[2]
Devaiah D, Padmanabha R E, Benjaram M R, Panagiotis G S. Catalysts., 2019, 9(4): 349.
[3]
Nakajima F, Hamada I. Catal. Today., 1996, 29: 109.
[4]
Luck F, Roiron J. Catal. Today., 1989, 4(2): 205.
[5]
Ciambelli P, Lisi L, Russo G, Volta J C. Appl. Catal. B: Environ., 1995, 7: 1.
[6]
Fritz A, Pitchon V. Appl. Catal. B: Environ., 1997, 13(1): 1.
[7]
Cheng X X, Bi X T. Particuology., 2014, 16: 1.
[8]
Skalska K, Miller J S, Ledakowicz S. Sci. Total Environ., 2010, 408(19): 3976.
[9]
Heck R M. Catal. Today., 1999, 53(4): 519.
[10]
Pu Y, Xie X, Jiang W, Yang L, Jiang X, Yao L. Chinese Chem Lett., 2020, 31(10): 2549.
[11]
Wang S, Gao Q, Dong X, Wang Q, Niu Y, Chen Y, Jiang H. Catalysts., 2019, 9(12): 1004.
[12]
Sun X Y, Shi Y, Zhang W, Li C Y, Zhao Q D, Gao J S, Li X Y. Catal Commun., 2018, 114, 104.
[13]
Zhang W, Tang Y H, Yin Y S, Gong W C. Chem Eng Prog., 2021, 40(3): 1425.
[14]
Liu F D, He H, Zhang C B, Feng Z C, Zheng L R, Xie Y N, Hu T D. Appl Catal B: Environ., 2010, 96: 408.
[15]
Zhang J, Zhang C C, Zhang Y H, Li C Y. M Environ R., 2021, 1395: 249.
[16]
Sultana A, Sasaki M, Hamada H. Catal Today., 2012, 185(1): 284.
[17]
Sun L, Xu Y J, Cao Q Q, Hu B Q, Wang C, Jing G H. Prog Chem., 2010, 22(10): 1882.
(孙亮, 许悠佳, 曹青青, 胡冰清, 王超, 荆国华. 化学进展,2010, 22(10): 1882.).
[18]
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Chem Soc Rev., 2020, 49: 2751.

doi: 10.1039/c9cs00609e     pmid: 32236174
[19]
Li B Y, Zhang Y M, Ma D X, Li L, Li G H, Li G D, Shi Z, Feng S H. Chem Commun., 2012, 48: 6151.
[20]
Zhang M H, Huang X W, Chen Y F. Phys Chem Chem Phys., 2016, 18(41): 28854.
[21]
Jiang H X, Wang Q Y, Wang H Q, Chen Y F, Zhang M H. ACS Appl Mater Inter., 2016, 8(40): 26817.
[22]
Hashimoto T, Niwa E, Uematsu C, Miyashita E, Ohzeki T, Shozugawa K, Matsuo M. Sn Appl Sci., 2012, 206: 47.
[23]
Brose P H. J Phys Conf Ser., 2012, 365: 012006.
[24]
Huo S H, Yan X P. J Mater Chem., 2012, 22: 7449.
[25]
Zhang M H, Wang W Y, Chen Y F. Phys Chem Chem Phys., 2018, 20(4): 2211.
[26]
Wang D K, Huang R K, Liu W J, Sun D R, Li Z H. ACS Catal., 2014, 4(12): 4254.
[27]
Shi Y, Li C Y, Liu X W, Zhang H, Zhao Q D, Li X Y. Integr Ferroelectr., 2017, 181(1): 14.
[28]
Wang P, Zhao H M, Sun H, Yu H T, Chen S, Quan X. RSC Adv., 2014,4, 48912.
[29]
Liu T G, Zhao M L, Wang B, Wang M. Opt Laser Technol., 2012, 44(6): 1762.
[30]
Günter T, Carvalho H W P, Doronkin D E, Sheppard T, Glatzel P, Atkins A J, Rudolph J, Jacob C R, Casapu M, Grunwaldt J D. RSC Adv., 2015, 51: 9227.
[31]
Liu Z Z, Shi Y, Li C Y, Zhao Q D, Li X Y. Acta Phys-Chim Sin., 2015, 31(12): 2366.
[32]
Li C Y, Shi Y, Zhang H, Zhao Q D, Xue F H, Li X Y. Integr Ferroelectr., 2016, 172(1): 169.
[33]
Huang W H, Yang G P, Chen J, Chen X, Zhang C P, Wang Y Y, Shi Q Z. Cryst Growth Des, 2012, 13: 66.
[34]
Jia M C, Chen E Y, Menon A G, Tan H Y, Hor A T S, Schreyer M K, Xu J. Crystengcomm, 2012, 15:654.
[35]
Jiang H X, Wang S T, Wang C X, Chen Y F, Zhang M H. J Cheminformatics., 2018, 22: 95.
[36]
Yang Y, Shukla P, Wang S B, Rudolph V, Chen X M, Zhu Z H. RSC Adv., 2013, 3: 17065.
[37]
Shu H, Liu Y L, Jia Y. J Mol Struct., 2022, 1251: 132046.
[38]
Calleja G, Sanz R, Orcajo G, Briones D, Leo P, Martínezb F. Catal Today., 2014, 227: 130.
[39]
Jiang H X, Zhou J L, Wang C X, Li Y H, Chen Y F, Zhang M H. Ind Eng Chem Res., 2017, 56: 3542.
[40]
Li S C, Zhai Y, Wei X X, Zhang Z, Kong X F, Tang F S. Chemcatchem., 2021, 13(3): 940.
[41]
Sakai M, Hamaguchi T, Tanaka T. Appl Catal A-Gen., 2019, 582: 117105.
[42]
Chen H F, Xia Y, Huang H, Gan Y P, Tao X Y, Liang C, Luo J M, Fang R Y, Zhang J, Zhang W K, Liu X S. Chem Eng J., 2017, 330: 1195.
[43]
Liu Y, Yao W Y, Cao X L, Weng X L, Wang Y, Wang H Q, Wu Z B. Appl Catal B-Environ., 2014, 160: 684.
[44]
Wang L J, Deng H, Furukawa H, Gandara F, Cordova K E, Peri D, Yaghi O M. Inorg Chem., 2014, 53(12): 5881.
[45]
Liu X Q, Huang H, Liu C, Zhuo M, Hong F S. Cell Death Differ., 2009, 130: 141.
[46]
Zhang W J, Suzuki M, Xie Y P, Bao L P, Cai W T, Slanina Z, Nagase S, Xu M, Akasaka T, Lu X. J Am Chem Soc., 2013, 135(34): 12730.
[47]
Kim J, Kim D H, Kwon D W, Lee K Y, Ha H P. Appl Surf Sci., 2020, 518: 146238.
[48]
Liu Y, Zhao J, Lee J M. Chemcatchem., 2018, 10(7): 1499.
[49]
Wang P, Sun H, Quan X, Chen S. J Hazard Mater., 2016, 301: 512.
[50]
Chen X, Chen X, Yu E Q, Cai S C, Jia H P, Chen J, Peng L. Chen Eng J., 2018, 344: 469.
[51]
Zhang X, Shen B X, Zhang X Q, Wang F M, Chi G L, Si M. RSC Adv., 2017, 7: 5928.
[52]
Xie S Z, Li L L, Jin L J, Wu Y H, Liu H, Qin Q J, Wei X L, Liu J X, Dong L H, Li B. Appl Surf Sci., 2020, 515: 146014.
[53]
You X C, Sheng Z Y, Yu D Q, Yang L, Xiao X, Wang S. Appl Surf Sci., 2017, 423: 845.
[54]
Xie S Z, Qin Q J, Liu H, Jin L J, Wei X L, Liu J X, Liu X, Yao Y C, Dong L H, Li B. ACS Appl Mater Inter., 2020, 12(43): 48476.
[55]
Yoon J W, Seo Y K, Hwang Y K, Chang J S, Leclerc H, Wuttke S, Bazin P, Vimont A, Daturi M, Bloch E. Angew Chem Int Edit., 2010, 49: 5949.
[56]
Rosi N L, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi O M. J Am Chem Soc., 2005, 127:1504.
[57]
Jiang H X, Niu Y, Wang Q Y, Chen Y F, Zhang M H. Catal Commun., 2018, 113: 46.
[58]
Jiang B Q, Zhao S, Wang Y L, Wenren Y S, Zhu Z C, Harding J, Zhang X L, Tu X, Zhang X M. Appl Catal B-Environ., 2021, 286: 119886.
[59]
Yao Z, Qu D L, Guo Y X, Yang Y J, Huang H. Adv Mater Sci Eng., 2019.
[60]
Zhang W, Shi Y, Li C Y, Zhao Q D, Li X Y. Catal Lett., 2016, 146: 1956.
[61]
Boroń P, Chmielarz L, Dzwigaj S. Appl Catal B-Environ., 2015, 168: 377.
[62]
Shi Y, Sun X Y, Zhang W, Li C Y, Zhao Q D, Gao J S, Li X Y. Ferroelectrics., 2018, 522(1): 20.
[63]
Li C Y, Shi Y, Yu F Y, Chu Q, Sun X Y. Ferroelectrics., 2020, 565(1): 26.
[64]
Chang F M, Chen J C, Wei M Y. Fuel., 2010, 89(8): 1919.
[65]
M.Serra R, G.Aspromonte S, E.Miró E, V.Boix A. Appl Catal B-Environ., 2015, 166: 592.
[66]
Huang P B, Tian L Y, Zhang Y H, Shi F N. Inorg Chim Acta., 2021, 525: 120473.
[67]
Wang L B, Wang J J, Yue E L, Tang L, Wang X, Hou X Y, Zhang Y Q, Ren Y X, Chen X L. Spectrochim Actaa., 2022, 265: 120340.
[68]
Liu Y, Ma L N, Shi W J, Lu Y K, Hou L, Wang Y Y. J Solid State Chem., 2019, 277: 636.
[69]
Feng T K, Zhang S W, Li C E, Li T. Green Chem., 2022, 24(4): 1474.
[70]
Liu Y M, Bu Q X, Xu J X, Liu X, Zhang X P, Lu G P, Zhou B J. Mol Catal., 2021, 502: 111405.
[71]
Sargazi G, Afzali D, Ebrahimi A K, Badoei-dalfard A, Malekabadi S, Karami Z. Mater Sci Eng-C., 2018, 93: 768.
[72]
Badoei-dalfard A, Sohrabi N, Karami Z, Sargazi G. Biosens Bioelectron., 2019, 141: 11420.

doi: S0956-5663(19)30499-3     pmid: 31220726
[73]
Meng Y J, Wang Y D, Liu L J, Ma F Q, Zhang C H, Dong H X. Sep Purif Technol., 2022, 28: 120946.
[74]
Guo Z Q, Yang F J, Yang R R, Sun Lei, Li Yuan, Xu J Z. Sep Purif Technol., 2021, 274: 118949.
[75]
Capková D, Kazda T, Čechb O, Király N, Zelenka T, Čudek P, Sharma A, Hornebecq V, Fedorková A S, Almášid M. J Energy Storage., 2022, 51: 104419.
[76]
Wang L B, Wang J J, Yue E L, Tang L, Bai C, Wang X, Hou X Y, Zhang Y Q. Spectrochim Actaa., 2022, 269:120752.
[77]
E.Emam H, Abdelhamid H N, M.Abdelhameed R. Dyes Pigments., 2018, 159: 491.
[78]
Li Z S, Huang G H, Liu K, Tang X K, Peng Q, Huang J, Ao M L, Zhang G F. J Clean Prod., 2020, 272: 122892.
[79]
Almáši M, Zeleñák V, Kuchár J, Bourrelly S, Llewellyn P L. Colloid Surface A., 2016, 496: 114.
[80]
Wang J J, Chen Y, Liu M J, Fan R Y, Si P P, Yang J, Pan Y Y, Chen Y, Zhao S S, Xu J L. Polyhedron., 2018, 154: 411.
[81]
Chitpakdee C, Junkaew A, Maitarad P, Shi L Y, Promarak V, Kungwan N, Namuangruk S. Chem Eng J., 2019, 369: 124.

doi: 10.1016/j.cej.2019.03.053    
[82]
Yu C L, Huang B C, Dong L F, Chen F, Yang Y, Fan Y M, Yang Y X, Liu X Q, Wang X N. Chem Eng J., 2017, 316: 1059.
[83]
Dranga B A, Koeser H. Appl Catal B-Environ., 2015, 166: 302.
[84]
Gao C, Xiao B, Shi J W, He C, Wang B R, Ma D D, Cheng Y H, Niu C M. J Catal., 2019, 380: 55.

doi: 10.1016/j.jcat.2019.10.003    
[85]
Chen Z, Bian C, Fan C, Li T. Chinese Chem Lett., 2022, 33(2): 893.
[86]
Chang H Z, Li J H, Yuan J, Chen L, Dai Y, Arandiyan H, Xu J Y, Hao J M. Catal Today., 2013, 201: 139.87] Wang M M, Ren S, Jiang Y H, Su B X, Chen Z C, Liu W Z, Yang J, Chen L. Fuel., 2022, 319:123763.
[88]
Liu X S, Yu Q F, Chen H F, Jiang P, Li J F, Shen Z Y. Appl Surf Sci., 2020, 508: 144694.
[89]
Liu Z, Han J, Zhao L, Wu Y W, Wang H X, Pei X Q, Xu M X, Lu Q, Yang Y P. Appl Catal A-Gen., 2019, 587: 117263.
[90]
Jiang W K, Liu H J, Liao Q, Tang T, Liu J, Liu Z, Xie L, Yan J. Polyhedron., 2021, 196: 114983.
[91]
Sun W Y, Guo J, Ou H, Zhang L, Wang D G, Ma Z H, Zhu B K, Ali I, Naz L. J Solid State Chem., 2022, 16: 123073.
[92]
Xiao F Y, Gao W, Wang H, Wang Q, Bao S J, Xu M W. Mater Lett., 2021, 286: 129264.
[93]
Wang X K, Wang Y T, Lu K B, Jiang W F, Dai F N. Chinese Chem Lett., 2021, 32(3): 1169.
[94]
Zhang Y, Wei N, Xing Z Q, Han Z B. Appl Catal A-Gen., 2020, 602: 117668.
[95]
Guo X M, Tian X Y, Xu X, He J R. J Environ Chem Eng., 2021, 9(6): 106428.
[96]
Yan B C, Tan J, Zhang H F, Liu L D, Chen L, Qiao Y Q, Liu X Y. Mat Sci Eng-C., 2022, 6: 112699.
[97]
You D, Shi H, Yang L M, Shao P H, Yin K, Wang H Z, Luo S L, Luo X B. Chem Eng J., 2022, 435: 134874.
[98]
Cai W, Yu X, Cao Y, Hu C Y, Wang Y, Zhan Y X, Bu Y F. J Environ Chem Eng., 2022, 10(3): 107461.
[99]
Du J K, Chai J L, Li Q M, Zhang W, Tang B H J. Colloid Surface A., 2022, 632: 127810.
[100]
S.Alqarni D, Marshall M, R.Gengenbach T, Lippi R, L.Chaffee A. Micropor Mesopor Mat., 2022, 27: 111855.
[101]
Wu N, Guo H, Xue R, Wang M Y, Cao Y J, Wang X Q, Xu M N, Wang W. Colloid Surface A., 2021, 618: 126484.
[102]
Hu Y, Yang H L, Ma S J, Li J H, Liu X, Tian Y J, Jin L, Lin Z X. Micropor Mesopor Mat., 2022, 330: 111632.
[103]
Pan W Z, Li Z, Qiu S, Dai C B, Wu S Y, Zheng X, Guan M, Gao F L. Mater Today Bio., 2022, 13: 100214.
[104]
Zhang X Y, Ma Q Q, Liu X F, Niu H W, Luo L, Li R F, Feng X. Food Chem., 2022, 382: 132379.
[105]
Tan Z K, Gong J L, Fang S Y, Li J, Cao W C, Chen Z P. Appl Surf Sci., 2022, 590: 153059.
[106]
Wang B H, Yan B. Talanta., 2020, 208: 120438.
[107]
Li Z X, Zhang Y, Cao Y M, Zhou S L, Han Y H, Yue L. Mater Lett., 2021, 282: 128647.
[108]
Xue K, He R, Yang T, Wang J, Sun R, Wang L, Yu X, Omeoga U, Pi S, Yang T, Wang W. Appl Surf Sci., 2019, 493: 41.
[109]
Liao J M, Xue Z H, Sun H, Xue F J, Zhao Z X, Wang X X, Dong W, Yang D X, Nie M. J Alloy Compd., 2022, 898: 162991.
[110]
Guo M C, Zhong W D, Wu T, Han W D, Gao X S, Ren X M. J Solid State Chem., 2022, 309: 123005.
[111]
You D, Shi H, Yang L M, Shao P H, Yin K, Wang H Z, Luo S L. Chem Eng J., 2022, 435: 134874.
[112]
Rajabalizadeh Z, Seifzadeh D, Khodayarib A, Sohrabnezhad S. J Magnes Alloy., 2021, 7.
[113]
Qi L Q, Li J T, Yao Y, Zhang Y J. J Hazard Mater., 2019, 366: 492.
[114]
Wang H J, Huang B C, Yu C L, Lu M J, Huang H, Zhou Y L. Appl Catal A-Gen., 2019, 588: 117207.
[115]
Zhang N Q, Li L C, Guo Y Z, He J D, Wu R, Song L Y, Zhang G Z, Zhao J S, Wang D S, He H. Appl Catal B Environ., 2020, 270(5): 118860.
[116]
Zhang J, Li X C, Chen P A, Zhu B Q. Materials., 2018, 11(9): 1632.
[117]
Ma Y S, Tang X Y, Chen M, Mishima A, Li L C, Hori A, Wu X Y, Ding L F, Kusaka S, Matsuda R. Chem Commun., 2022, 58: 1139.
[118]
Bai Y, Dou Y B, Xie L H, Rutledge W, Li J R, Zhou H C. Chem Soc Rev., 2016, 45: 2327.
[119]
Yang C, Kaipa U, Mather Q Z, Wang X P, Nesterov V, Venero A F, Omary M A. J Am Chem Soc., 2011, 133: 18094.

doi: 10.1021/ja208408n     pmid: 21981413
[120]
Wu T J, Shen L J, Luebbers M, Hu C H, Chen Q M, Ni Z, Masel R I. Chem Commun., 2010, 46: 6120.
[121]
Makal T A, Wang X, Zhou H C. Cryst Growth Des., 2013, 13: 4760.
[122]
Zuluaga S, Fuentes Fernandez E M A, Tan K, Xu F, Li J, Chabal Y J, Thonhauser T. J Mater Chem A., 2016, 4: 5176.
[123]
Li H H, Shi W, Zhao K N, Li H, Bing Y M, Cheng P. Inorg Chem., 2012, 51(17): 9200.
[124]
Xiong S C, Peng Y, Wang D, Huang N, Zhang Q F, Yang S J, Chen J J, Li J H. Chem Eng J., 2020, 387: 124090.
[125]
Si Z C, Weng D, Wu X D, Ran R, Ma Z R. Catal Commun., 2012, 17: 146.
[126]
Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Appl Catal B-Environ., 2010, 95: 160.
[127]
Chen J Y, Fu P, Lv D F, Chen Y, Fan M L, Wu J L, Meshram A, Mu B, Li X, Xia Q B. Chem Eng J., 2021, 407(1): 127071.
[128]
Yeo T Y, Ashok J, Kawi S. Renew Sust Energ Rev., 2019, 100: 52.
[129]
Zhu H T, Song L Y, Li K, Wu R, Qiu W G, He H. Catalysts., 2022, 12(3): 341.
[130]
Nguyen H G T, Schweitzer N M, Chang C Y, Drake T L, So M C, Stair P C, Farha O K, Hupp J T, Nguyen S T. ACS Catal., 2014, 4(8): 2496.
[131]
Tranchemontange D J, Mendoza-Cortes J L, Keefee M O, Yaghi O M. Chem Soc Rev., 2009, 38: 1257.
[132]
Joseph T H, Kenneth R P. Science., 2005, 309(5743): 2008.

pmid: 16179465
[133]
Gao Y J, Zhang M X, Chen C, Zhang Y, Gu Y M, Wang Q, Zhang W W, Pan Y, Ma J, Bai Y F. Chem Commun., 2020, 56: 11985.
[134]
Cravillon J, Munzer S, Lohmeier S J, Feldhoff A, Huber K, Wiebcke M. Chem Mater., 2009, 21(8):1410.
[135]
Wu X W, Zhang D, Wu Z H, Ma J P. Chinese J Struc Chem., 2014, 9: 1326.
[136]
Wang P F, Wu X S, Wei B, Wu G Z. Chinese J Inorg Chem., 2014, 30(7): 1511.
[137]
Zheng X F, Huang Y M, Duan J G, Wang C G, Wen L L, Zhao J B, Li D F. Dalton T., 2014, 43: 8311.
[138]
Wang S, Cui J M, Zhang S Q, Xie X F, Xia W K. Mater Res Express., 2020, 7(2): 1.
[139]
Wang S, Xie X F, Xia W K, Cui J M, Zhang S Q, Du X Y. High Temp Mat Pr-irs., 2020, 39(1): 34.
[140]
Alesaadi S J, Sabzi F. Int J Hydrogen Energ., 2014, 39(27): 14851.
[141]
Dai J, McKee M L, Samokhvalov A. J Porous Mat., 2014, 21(5): 709.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[6] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[7] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[8] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[9] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[10] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[11] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[12] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[13] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.
[14] 赵宝东, 高福磊, 汪营磊, 刘亚静, 陈斌, 潘永飞. 火药用叠氮含能增塑剂[J]. 化学进展, 2019, 31(2/3): 475-490.
[15] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.