English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1504-1514 DOI: 10.7536/PC200220 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

锂离子电池富锂锰基层状正极材料的稳定性

鲁志远1, 刘燕妮1, 廖世军1,**()   

  1. 1. 华南理工大学化学与化工学院 广东省燃料电池重点实验室 广州 510641
  • 收稿日期:2020-02-24 修回日期:2020-06-05 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 廖世军
  • 基金资助:
    *国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金项目(21476088); 国家自然科学基金项目(21776104); 广东省科学技术厅(2015B010106012); 广州市科技创新委员会资助(201504281614372); 广州市科技创新委员会资助(2016GJ006)

Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application

Zhiyuan Lu1, Yanni Liu1, Shijun Liao1,**()   

  1. 1. The Key Laboratory of Fuel Cells Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2020-02-24 Revised:2020-06-05 Online:2020-10-24 Published:2020-09-02
  • Contact: Shijun Liao
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015B010106012); Guangzhou Science Technology and Innovation Committee(201504281614372); Guangzhou Science Technology and Innovation Committee(2016GJ006)

富锂锰基层状正极材料(xLi2MnO3·(1-x)LiMO2,M=Ni,Co,Mn等)因其比容量高、成本低廉以及环境友好等优点,被认为是未来锂离子电池正极材料的最佳候选者之一。然而,该正极材料存在长循环中电压衰减过快、循环性能不佳和倍率性能较差等问题,严重阻碍了该材料的商业化应用。在这篇综述中,我们结合最新的研究进展从富锂锰基层状正极材料的稳定性出发,阐述了该材料的结构特性及电化学行为,并从体相掺杂和表面修饰两个方面,综述了提升富锂正极材料循环过程中稳定性的手段。最后,我们对该领域的发展趋势进行展望并认为体相掺杂和表面调控相结合的联合改性机制是未来该领域发展的方向。

Lithium-rich manganese-based layered cathode materials (xLi2MnO3·(1-x)LiMO2, M=Ni, Co, Mn, etc.), owing to their high specific capacity (≥ 250 mAh·g-1), low cost and environmental friendliness, are considered as one of the best candidate cathode materials for the new generation of lithium-ion batteries. However, these materials suffer from severe capacity/voltage fading during the cycle process and low rate capability which seriously hinder commercial development. In this paper, we analyze the structural characteristics and the reasons which lead to the deterioration of the electrochemical performance of the lithium-rich manganese-based layered cathode materials, systematically review the latest progress and achievements on improving the stability of the cathode materials, and the efforts to improve the electrochemical properties of the cathode materials through bulk doping and surface modification. In this process, the effects of bulk doping at different sites and different coating materials on the structure and electrochemical behavior of lithium-rich manganese-based layered cathode materials are further analyzed. Finally, considering the advantages and disadvantages of the two modification methods of bulk doping and surface coating, a joint modification mechanism combining bulk doping and surface coating has been suggested to improve the stability of lithium-rich cathode materials in the long cycle process, and the introduction and prospect of this mechanism are also given.

Contents

1 Introduction

2 Structural characteristic and electrochemical behaviors of lithium-rich manganese-based materials

2.1 Lithium-rich manganese-based materials and its structural characteristic

2.2 Charge-discharge reaction mechanism

2.3 Structural evolution and decay mechanism

3 Bulk doping improves the cycle stability of lith- ium-rich manganese-based materials

3.1 Li site doping

3.2 TM site doping

3.3 O site doping

4 Surface modification improves the cycle stability of lithium-rich manganese-based materials.

4.1 Surface coating

4.2 Surface treatment

5 A joint mechanism

6 Conclusion and outlook

()
图1 (a) LiTMO2,(b) Li2MnO3,(c)Li1+xNiaCobMncO2的XRD图谱和晶体结构示意图[26,27,28,29,30];(d)Li[Li0.2Ni0.2Mn0.6]O2的STEM图[31]
Fig.1 Crystal structures and XRD of the (a) LiTMO2, (b) Li2MnO3-like, (c) LLi1+xNiaCobMnc[26,27,28,29,30]; (d) Aberration-corrected scanning transmission electron microscopy (STEM) image of the Li[Li0.2Ni0.2Mn0.6]O2 crystal[31]
图2 (a)富锂锰基正极材料典型的第1、2圈充放电曲线;(b)前两次循环的容量-电压微分曲线[48]
Fig.2 Lithium-rich manganese-based layered cathode materials (a) galvanostatic charge-discharge voltage profiles measured at 0.1 C, (b) differential capacity (dQ/dV vs E) plots obtained from voltage profiles[48]
图3 (a)在电化学反应过程中不同层状氧化物的晶格氧参与程度[42];(b)锂过量正极的局域原子配位和电子带结构示意图[50]
Fig.3 (a) The participation degree of different layered oxides in lattice oxygen during the electrochemical reaction process[42]. (b) Schematic of local atomic coordination and electron band structure of Li-excess cathodes, that enables the anionic redox reaction[50]
图4 富锂层状正极材料在循环过程中结构的变化机理[60]
Fig.4 The mechanism of the lithium-rich layered cathode materials change during the cycle[60]
图5 (a,b)在0.1 C下,未改性的正极材料(PLR)和改性后的正极材料(SLR)的充放电曲线;(c,e)在0.2 C下,PLR和SLR的充放电曲线和循环性能图;(d)PLR和SLR的倍率性能图[68]
Fig.5 (a, b) The charge-discharge curves of the unmodified anode material (PLR) and modified anode material (SLR) at 0.1 C, respectively. (c, e) the charge-discharge curves and cycling stability tested at 0.2 C and (d) rate performance of PLR and SLR[68]
图6 碳包覆示意图[78]
Fig.6 Illustration of the C-coating[78]
表1 近年来关于富锂锰基正极材料改性策略的代表性研究工作及其相关材料的主要电化学性能
Table 1 Electrochemical performance of typical modification research works about lithium-rich manganese-based layered cathode materials in recent years
[1]
Ji M, Xu Y, Zhao Z, Zhang H, Liu D, Zhao C, Qian X, Zhao C. J. Power Sources, 2014,263:296.
[2]
Cao Y, Li M, Lu J, Liu J, Amine K. Nat. Nanotech., 2019,14:200.
[3]
Yuan L X, Wang Z H, Zhang W X, Hu X L, Chen J T, Huang Y H, Goodenough J B. Energ. Environ. Sci, 2011,4:269. doi: 10.1039/C0EE00029A
[4]
Yu S H, Feng X, Zhang N, Seok J, Abruna H D. Acc. Chem. Res, 2018,51:273.

URL     pmid: 29373023
[5]
Kim T, Song W, Son D Y, Ono L K, Qi Y. J. Mater. Chem. A, 2019,7:2942.
[6]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007,17:3112.
[7]
Rozier P, Tarascon J M. J. Electrochem. Soc., 2015,162:A2490.
[8]
Manthiram A, Knight J C, Myung S T, Oh S M, Sun Y K. Adv. Energy Mater, 2016,6.

URL     pmid: 27134617
[9]
Shi J L, Xiao D D, Ge M, Yu X, Chu Y, Huang X, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L. J. Adv. Mater., 2018,30.
[10]
Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2010,195:567.
[11]
Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C. ACS Nano, 2013,7:760.

URL     pmid: 23237664
[12]
Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Magia F, Lupart S, Lamp P, Shao-Horn Y. J. Phys. Chem. Lett., 2015,6:4653.

URL     pmid: 26510477
[13]
Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet M L, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G, Tarascon J M. Nature Mater., 2015,14:230.
[14]
Yu H, Zhou H. J. Phys. Chem. Lett., 2013,4:1268.

URL     pmid: 26282140
[15]
Thackeray M M, de Kock A, Rossouw M H, Liles D, Bittihn R, Hoge D. J. Electrochem. Soc., 1992,139:363.
[16]
Rossouw M H, Liles D C, Thackeray M M. J. Solid State Chem., 1993,104:464.
[17]
Numata K, Sakaki C, Yamanaka S. Chem. Lett., 1997,725.
[18]
Numata K, Sakaki C, Yamanaka S. Solid State Ionics, 1999,117:257.
[19]
Kalyani P, Chitra S, Mohan T, Gopukumar S. J. Power Sources, 1999,80:103.
[20]
Johnson C S, Kim J S, Lefief C, Li N, Vaughey J T, Thackeray M M. Electrochem. Commun, 2004,6:1085.
[21]
Jeom-Soo K, Johnson C S, Vaughey J T, Thackeray M M, Hackney S A, Wonsub Y, Grey C P. Chem. Mater, 2004,16:1996.
[22]
Thackeray M M, Johnson C S, Vaughey J T, Li N, Hackney S A. J. Mater. Chem., 2005,15:2257. doi: 10.1039/b417616m
[23]
Park C W, Kim S H, Mangani I R, Lee J H, Boo S, Kim J. Mater. Res. Bull, 2007,42:1374.
[24]
Guo X J, Li Y X, Zheng M, Zheng J M, Li J, Gong Z L, Yang Y. J. Power Sources, 2008,184:414. doi: 10.1016/j.jpowsour.2008.04.013
[25]
Jacob C, Jian J, Zhu Y, Su Q, Wang H. J.Mater. Chem. A, 2014,2:2283.
[26]
Yu H, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H, Ikuhara Y. Angew. Chem. Int. Ed. Engl, 2013,52:5969. doi: 10.1002/anie.201301236

URL     pmid: 23616487
[27]
Huang Z D, Liu X M, Zhang B, Oh S W, Ma P C, Kim J K. Scripta Mater, 2011,64:122.
[28]
Boulineau A, Croguennec L, Delmas C, Weill F. Chem. Mater., 2009,21:4216.
[29]
Choi J W, Aurbach D. Nature Rev. Materials, 2016,1.

URL     pmid: 29214058
[30]
Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. J. Mater. Chem., 2012,22:11550. doi: 10.1039/c2jm30575e
[31]
Jarvis K A, Deng Z, Allard L F, Manthiram A, Ferreira P J. Chem. Mater, 2011,23:3614.
[32]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Hackney S A. Electrochem. Commun., 2006,8:1531.
[33]
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007,17.

URL     pmid: 19343109
[34]
Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H. PCCP, 2012,14:6584.

URL     pmid: 22456724
[35]
Mohanty D, Huq A, Payzant E A, Sefat A S, Li J, Abraham D P, Wood D L, III , Daniel C. Chem. Mater., 2013,25:4064.
[36]
Lu Z H, Chen Z H, Dahn J R. Chem. Materials, 2003,15:3214.
[37]
Johnson C S, Kim J S, Kropf A J, Kahaian A J, Vaughey J T, Fransson L M L, Edstrom K, Thackeray M M. Chem. Mater., 2003,15:2313.
[38]
Yabuuchi N, Yoshii K, Myung S T, Nakai I, Komaba S. J. Am. Chem. Soc., 2011,133:4404.

URL     pmid: 21375288
[39]
Genevois C, Koga H, Croguennec L, Menetrier M, Delmas C, Weill F. J. Phys. Chem. C, 2015,119:75.
[40]
Assat G, Tarascon J M. Nature Energy, 2018,3:373.
[41]
Sharifi-Asl S, Lu J, Amine K, Shahbazian-Yassar R. Adv. Energy Mater, 2019,9.
[42]
Qiu B, Zhang M, Xia Y, Liu Z, Meng Y S. Chem. Mater, 2017,29:908. doi: 10.1021/acs.chemmater.6b04815
[43]
Pearce P E, Perez A J, Rousse G, Saubanere M, Batuk D, Foix D, McCalla E, Abakumov A M, Van Tendeloo G, Doublet M L, Tarascon J M. Nature Mater., 2017,16:580.
[44]
Saubanere M, McCalla E, Tarascon J M, Doublet M L. Energ. Environ. Sci., 2016,9:984.
[45]
Wu Y, Ma C, Yang J, Li Z, Allard L F, Liang C, Chi M. J. Mater. Chem. A, 2015,3:5385.
[46]
Kim J H, Sun Y K. J. Power Sources, 2003,119:166.
[47]
Hong Y S, Park Y J, Ryu K S, Chang S H, Kim M G. J. Mater.Chem., 2004,14:1424.
[48]
Nayak P K, Grinblat J, Levi M, Markovsky B, Aurbach D. J. Electrochem. Soc., 2014,161:A1534.
[49]
Zhu Z, Kushima A, Yin Z, Qi L, Amine K, Lu J, Li J. Nature Energy, 2016,1.
[50]
Seo D H, Lee J, Urban A, Malik R, Kang S, Ceder G. Nature Chem., 2016,8:692.
[51]
McCalla E, Abakumov A M, Saubanere M, Foix D, Berg E J, Rousse G, Doublet M L, Gonbeau D, Novak P, Van Tendeloo G, Dominko R, Tarascon J M. Science, 2015,350:1516. doi: 10.1126/science.aac8260

URL     pmid: 26680196
[52]
Assat G, Iadecola A, Delacourt C, Dedryvere R, Tarascon J M. Chem. Mater., 2017,29:9714.
[53]
Assat G, Iadecola A, Foix D, Dedryvere R, Tarascon J M. ACS Energy Lett, 2018,3:2721. doi: 10.1021/acsenergylett.8b01798
[54]
Hu S, Li Y, Chen Y, Peng J, Zhou T, Pang W K, Didier C, Peterson V K, Wang H, Li Q, Guo Z. Adv. Energy Mater, 2019,9. doi: 10.1002/aenm.201803096

URL     pmid: 31807123
[55]
Sun Z, Xu L, Dong C, Zhang H, Zhang M, Ma Y, Liu Y, Li Z, Zhou Y, Han Y, Chen Y. Nano Energy, 2019,63.
[56]
Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M, Wang C. Nature Nanotechnol., 2019,14:602.
[57]
Zhang X, Meng X, Elam J W, Belharouak I. Solid State Ionics, 2014,268:231.
[58]
Qian D, Xu B, Chi M, Meng Y S. PCCP, 2014,16:14665.

URL     pmid: 24931734
[59]
Xu B, Fell C R, Chi M, Meng Y S. Energ. Environ. Sci, 2011,4:2223.
[60]
Mohanty D, Li J, Abraham D P, Huq A, Payzant E A, Wood D L, III , Daniel C. Chem. Mater., 2014,26:6272.
[61]
Zheng J, Shi W, Gu M, Xiao J, Zuo P, Wang C, Zhang J G. J. Electrochem. Soc., 2013,160:A2212.
[62]
Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K, Yang X Q. Nature Energy, 2018,3:690.
[63]
Li W, Song B, Manthiram A. Chem. Soc. Rev, 2017,46:3006. doi: 10.1039/c6cs00875e

URL     pmid: 28440379
[64]
Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J G. Adv. Energy Mater, 2017,7. doi: 10.1002/aenm.201700358

URL     pmid: 29104523
[65]
Nayak P K, Erickson E M, Schipper F, Penki T R, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D. Adv. Energy Mater, 2018,8.
[66]
Hu E, Lyu Y, Xin H L, Liu J, Han L, Bak S M, Bai J, Yu X, Li H, Yang X Q. Nano Lett, 2016,16:5999. doi: 10.1021/acs.nanolett.6b01609

URL     pmid: 27679872
[67]
Liu S, Liu Z, Shen X, Li W, Gao Y, Banis M N, Li M, Chen K, Zhu L, Yu R, Wang Z, Sun X, Lu G, Kong Q, Bai X, Chen L. Adv. Energy Mater, 2018,8:1802105.
[68]
Qing R P, Shi J L, Xiao D D, Zhang X D, Yin Y X, Zhai Y B, Gu L, Guo Y G. Adv. Energy Mater, 2016,6. doi: 10.1002/aenm.201501555

URL     pmid: 27134617
[69]
Feng X, Gao Y, Ben L, Yang Z, Wang Z, Chen L. J. Power Sources, 2016,317:74.
[70]
Yan W, Xie Y, Jiang J, Sun D, Ma X, Lan Z, Jin Y. ACS Sustain Chem. Eng., 2018,6:4625. doi: 10.1021/acssuschemeng.7b03634
[71]
Bao L, Yang Z, Chen L, Su Y, Lu Y, Li W, Yuan F, Dong J, Fang Y, Ji Z, Chen S, Wu F. ChemSusChem, 2019,12:2294. doi: 10.1002/cssc.201900226

URL     pmid: 30806010
[72]
Wang Y, Gu H T, Song J H, Feng Z H, Zhou X B, Zhou Y N, Wang K, Xie J Y. J. Phys. Chem. C, 2018,122:27836.
[73]
An J, Shi L, Chen G, Li M, Liu H, Yuan S, Chen S, Zhang D. J. Mater. Chem. A, 2017,5:19738. doi: 10.1039/C7TA05971J
[74]
Ming L, Zhang B, Cao Y, Zhang J F, Wang C H, Wang X W, Li H. Front. Chem., 2018,6. doi: 10.3389/fchem.2018.00656

URL     pmid: 30697538
[75]
Guo B, Zhao J, Fan X, Zhang W, Li S, Yang Z, Chen Z, Zhang W. Electrochim. Acta, 2017,236:171.
[76]
Li Z, Du F, Bie X, Zhang D, Cai Y, Cui X, Wang C, Chen G, Wei Y. J. Phys. Chem. C, 2010,114:22751.
[77]
Kong S, Gong Y, Liu P, Xiao Y, Qi F, Zhao X Z. Ceram. Int, 2019,45:13011.
[78]
Lee H, Lim S B, Kim J Y, Jeong M, Park Y J, Yoon W S. ACS Appl. Mater. Interfaces, 2018,10:10804.

URL     pmid: 29561131
[79]
Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey D G, Wei W. J. Mater. Chem. A, 2015,3:3995. doi: 10.1039/C4TA05848H
[80]
Ma D, Li Y, Wu M, Deng L, Ren X, Zhang P. Acta Mater., 2016,112:11. doi: 10.1016/j.actamat.2016.04.010
[81]
Li X, Zhang K, Mitlin D, Paek E, Wang M, Jiang F, Huang Y, Yang Z, Gong Y, Gu L, Zhao W, Du Y, Zheng J. Small, 2018,14. doi: 10.1002/smll.201803638

URL     pmid: 30444578
[82]
Zhu Z, Cai F, Yu J. Ionics, 2016,22:1353. doi: 10.1007/s11581-016-1653-x
[83]
Cho J, Kim T J, Kim J, Noh M, Park B. J. Electrochem. Soc., 2004,151:A1899.
[84]
Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144:1188.
[85]
Song J, Wang Y, Feng Z, Zhang X, Wang K, Gu H, Xie J. ACS Sustain Chem. Eng., 2018,10:27326.
[86]
Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh M P, Yang L, Sham T K, Li R, Cai M, Sun X. Nano Energy, 2017,34:120.
[87]
Okamoto Y. J. Electrochem. Soc., 2012,159:A152.
[88]
Gu M, Genc A, Belharouak I, Wang D, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C. Chem. Mater., 2013,25:2319.
[89]
Koga H, Croguennec L, Mannessiez P, Menetrier M, Weill F, Bourgeois L, Duttine M, Suard E, Delmas C. J. Phys. Chem. C, 2012,116:13497. doi: 10.1021/jp301879x
[90]
Erickson E M, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, Grinblat J, Talianker M, Shin J Y, Lampert J K, Markovsky B, Frenkel A I, Aurbach D. Adv. Energy Mater, 2017, 7(18):1700708.1.
[91]
Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng Y S. Nature Communications, 2016,7. doi: 10.1038/ncomms13755

URL     pmid: 28008906
[92]
Zheng F, Deng Q, Zhong W, Ou X, Pan Q, Liu Y, Xiong X, Yang C, Chen Y, Liu M. ACS Sustain Chem. Eng., 2018,6:16399. doi: 10.1021/acssuschemeng.8b03442
[93]
Lu Y, Shi S L, Yang F, Zhang T Y, Niu H Y, Wang T. J. Alloys Compd., 2018,767:23.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[5] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[6] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[7] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[8] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[9] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[10] 李秀娟, 曹云鹤, 华康, 王畅, 徐卫林, 方东. 钒氧基电极材料特点及其改性方法[J]. 化学进展, 2017, 29(10): 1260-1272.
[11] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[12] 杨彩云, 曹长乾, 蔡垚, 张同伟, 潘永信. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1): 91-102.
[13] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[14] 邓海福, 聂平, 申来法, 罗海峰, 张校刚. 锂离子电池用高电位正极材料LiNi0.5Mn1.5O4[J]. 化学进展, 2014, 26(06): 939-949.
[15] 熊喜悦, 彭泽强, 舒彦, 何海琴, 陈应庄, 陈波. 巯-烯点击反应在毛细管整体柱制备中的应用[J]. 化学进展, 2014, 26(01): 152-157.