English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 474-486 DOI: 10.7536/PC201132 前一篇   

• 综述 •

狄尔斯-阿尔德反应催化剂

王亚奇, 吴强*(), 陈俊玲, 梁峰*()   

  1. 武汉科技大学化学与化工学院 武汉 430081
  • 收稿日期:2020-11-23 修回日期:2020-12-18 出版日期:2022-02-20 发布日期:2020-12-28
  • 通讯作者: 吴强, 梁峰
  • 基金资助:
    国家自然科学基金项目(21807083)

Diels-Alder Reaction Catalyst

Yaqi Wang, Qiang Wu(), Junling Chen, Feng Liang()   

  1. School of Chemistry and Chemical Engineering, Wuhan University of Science & Technology,Wuhan 430081, China
  • Received:2020-11-23 Revised:2020-12-18 Online:2022-02-20 Published:2020-12-28
  • Contact: Qiang Wu, Feng Liang
  • Supported by:
    National Natural Science Foundation of China(21807083)

狄尔斯-阿尔德(Diels-Alder)可以构建结构丰富的有机化合物,被认为是现代有机化学中的基石反应之一。自1928年被发现以来,Diels-Alder (D-A)反应得到了深入发展,这主要是由于该反应能够产生六元环结构,可以一步反应得到具有四个立体中心的产物,从而大大增加分子的复杂性。这种特殊的转化已广泛应用于复杂天然产物的合成、药物化学以及材料科学等领域。近十年,大量天然生物酶(如SpnF、MaDA等)被发现可用于体外单独催化D-A反应,同时,大量的非酶催化剂(如路易斯酸、过渡金属与配体复合物等)也被应用于催化D-A反应。本文主要从D-A反应催化剂的类型分类,对近年来天然酶、酸、过渡金属、电催化等参与的D-A反应进行简要概述,同时对催化剂所存在的问题和局限性进行总结,并对今后发展做了展望。

The Diels-Alder reaction (D-A) is considered as one of the cornerstone reactions in modern organic chemistry due to its powerful ability to build the structured organic compounds. Since it was discovered in 1928, the D-A reaction has been further developed, mainly because it can produce six-membered rings along with the generation of up to four stereogenic centers in one step, which greatly increases the molecule complexity. This particular transformation has been widely used in the synthesis of complex natural products as well as pharmaceutical chemistry or materials science and other fields. In the last decade, many natural biological enzymes (such as SpnF, MaDA, etc.) have been found to be used to catalyze D-A reactions in vitro. On the other hand, many other non-enzymatic catalysts (such as Lewis acid, transition metal and ligand complexes, etc.) have also been applied in the catalytic process of D-A reaction. This article mainly classifies the reaction catalysts, and briefly summarizes D-A reactions involving natural enzymes, acids, transition metals, and electrocatalysis in recent years. At the same time, the deficiencies as well as perspective of the catalyst have been highlighted.

Contents

1 Introduction

2 Natural enzyme catalysis

2.1 Enzyme catalyzes intramolecular D-A reaction

2.2 Enzyme catalyzes intermolecular D-A reaction

3 Non-enzymatic catalysis

3.1 Acid-catalyzed D-A reaction

3.2 Organic amines-catalyzed D-A reaction

3.3 D-A reaction based on transition metal catalysis

3.4 Photocatalytic D-A reaction

3.5 Electrocatalytic D-A reaction

4 Conclusion and outlook

()
图式1 通过D-A反应合成二加合物[1,2]
Scheme 1 The synthesis of bis-adduct via D-A reaction[1,2]
图式2 LovB催化合成洛伐他汀[33,34]
Scheme 2 LovB-catalyzed synthesis of Lovastatin[33,34]
图式3 多杀菌素A的生物合成路径[38]
Scheme 3 Biosynthesis pathway of Spinosyn A[38]
图式4 酶催化环节及同系物功能对比[39]
Scheme 4 Enzyme catalytic link and functional comparison of homologues[39]
图式5 孢子精和伊博加生物碱的生物合成[40]
Scheme 5 Biosynthesis of aspidosperma and iboga alkaloids[40]
图式6 水杨素A的生物合成[41]
Scheme 6 Biosynthesis of varicidin A[41]
图式7 LepI催化的杂D-A反应和逆克莱森重排[42]
Scheme 7 LepI-catalyzed hetero D-A reaction and retro-Claisen rearrangement[42]
图式8 EupfF催化的杂D-A反应和氧化反应[46]
Scheme 8 EupfF-catalyzed hetero D-A reaction and oxidation reaction[46]
图式9 天然产物衍生物的合成路径及MaDA的底物范围[49]
Scheme 9 Synthesis pathways of natural product derivatives and substrate scope of MaDA[49]
图式10 硼离子液体的合成途径及催化环化反应[55]
Scheme 10 Synthesis and catalytic cyclization of boron ionic liquid[55]
图1 催化剂酸强度与转化率的关系[55]
Fig. 1 The relationship between catalyst acid strength and the conversion rate[55]. Copyright 2017, Royal Society of Chemistry.
图式11 2-溴二烯和N-邻苯二甲酰亚胺烯的D-A反应[56]
Scheme 11 D-A reaction of 2-bromodiene and N-phthalimide[56]
表1 钛阳离子催化剂的性能对比[56]
Table 1 Performance comparison of titanium cation catalyst[56]
图式12 5-溴吲哚和肉桂氧基苯甲醛的D-A反应[57]
Scheme 12 D-A reaction of 5-bromoindole and cinnamyloxybenzaldehyde[57]
表2 布朗斯特酸性能对比[57]
Table 2 Comparison of the performance of Brønsted acids[57]
图式13 环戊二烯与不饱和醛的D-A反应[58]
Scheme 13 D-A reaction of cyclopentadiene with unsaturated aldehyde[58]
图式14 硝基烯与不饱和醛的D-A反应[60]
Scheme 14 D-A reaction of nitroolefins with unsaturated aldehyde[60]
图式15 吡喃酮与不饱和醛的D-A反应[61]
Scheme 15 D-A reaction of pyrones with unsaturated aldehyde[61]
图式16 烯醇醚分子内D-A反应[65]
Scheme 16 Intramolecular D-A reaction of enol ethers[65]
表3 不同配体复合物性能对比[65]
Table 3 Performance comparison of different ligand complexes[65]
图式17 吲哚C-H活化和炔系环己二烯酮的D-A反应[66]
Scheme 17 D-A reaction of indoles and alkyne-tethered cyclohexadienones[66]
图2 基于咔咯单体的MOF材料[71]
Fig. 2 MOF material based on corrole monomer[71]. Copyright 2019, American Chemical Society.
图式18 MOF 材料催化的D-A反应[71]
Scheme 18 D-A reaction catalyzed by MOF material[71]
图式19 基于过渡金属的光诱导D-A反应[72]
Scheme 19 Light-induced D-A reaction based on transition metals[72]
图式20 吡啶的去芳构化反应[73]
Scheme 20 Dearomatization reaction of pyridine[73]
图式21 光诱导的TAD与萘环的D-A反应[74]
Scheme 21 Light-induced D-A reaction of TAD and naphthalene ring[74]. Copyright 2019, American Chemical Society.
图式22 光诱导的o-MBA与炔烃的D-A反应[75]
Scheme 22 Light-induced D-A reaction of o-MBA and alkynes[75]
图式23 电催化呋喃与烯烃的D-A反应[76]
Scheme 23 Electrocatalytic D-A reaction of furan and olefin[76]
图式24 在SDS胶束中生成醌类的D-A反应[78]
Scheme 24 D-A reaction to generate quinone compounds in SDS micellar[78]
[1]
Albrecht W. Justus Liebigs Ann. Chem., 1906, 348(1/2): 31.

doi: 10.1002/(ISSN)1099-0690     URL    
[2]
Wieland H. Ber. Dtsch. Chem. Ges., 1906, 39(2): 1492.

doi: 10.1002/cber.v39:2     URL    
[3]
Diels O, Alder K. Justus Liebigs Ann. Chem., 1928, 460(1): 98.

doi: 10.1002/(ISSN)1099-0690     URL    
[4]
Nagaoka H, Shimano M, Yamada Y. Tetrahedron Lett., 1989, 30(8): 971.

doi: 10.1016/S0040-4039(00)95293-6     URL    
[5]
Toyota M, Odashima T, Wada T, Ihara M. J. Am. Chem. Soc., 2000, 122(37): 9036.

doi: 10.1021/ja0017413     URL    
[6]
Mohr J T, Krout M R, Stoltz B M. Nature, 2008, 455(7211): 323.

doi: 10.1038/nature07370     URL    
[7]
Maier M E. Org. Biomol. Chem., 2015, 13(19): 5302.

doi: 10.1039/C5OB00169B     URL    
[8]
Stork G, Tamelen E E V, Friedman L J, Burgstahler A W. J. Am. Chem. Soc., 1951, 73(9): 4501.

doi: 10.1021/ja01153a552     URL    
[9]
Stork G, van Tamelen E E, Friedman L J, Burgstahler A W. J. Am. Chem. Soc., 1953, 75(2): 384.

doi: 10.1021/ja01098a039     URL    
[10]
Nicolaou K C, Snyder S A, Montagnon T, Vassilikogiannakis G E. Angew. Chem., 2002, 114(10): 1742.

doi: 10.1002/(ISSN)1521-3757     URL    
[11]
Nicolaou K C, Snyder S A, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed., 2002, 41(10): 1668.

doi: 10.1002/(ISSN)1521-3773     URL    
[12]
Breuning M, Corey E J. Angew. Chem., 2002, 114: 1724.

doi: 10.1002/(ISSN)1521-3757     URL    
[13]
Breuning M, Corey E J. Angew. Chem. Int. Ed., 2002, 41: 1650.

doi: 10.1002/(ISSN)1521-3773     URL    
[14]
Hudson G A, Zhang Z G, Tietz J I, Mitchell D A, van der Donk W A. J. Am. Chem. Soc., 2015, 137(51): 16012.

doi: 10.1021/jacs.5b10194     URL    
[15]
Schnermann M J, Shenvi R A. Nat. Prod. Rep., 2015, 32(4): 543.

doi: 10.1039/c4np00109e     pmid: 25514696
[16]
Martin S F. J. Org. Chem., 2017, 82: 10757.

doi: 10.1021/acs.joc.7b01368     URL    
[17]
Stocking E M, Williams R M. Angew. Chem. Int. Ed., 2003, 42(27): 3078.

doi: 10.1002/anie.200200534     URL    
[18]
Qi C, Cong H, Cahill K J, Müller P, Johnson R P, Porco J A. Angew. Chem. Int. Ed., 2013, 52(32): 8345.

doi: 10.1002/anie.v52.32     URL    
[19]
Ramaraju P, Pawar A P, Iype E, Mir N A, Choudhary S, Sharma D K, Kant R, Kumar I. J. Org. Chem., 2019, 84(19): 12408.

doi: 10.1021/acs.joc.9b01865     pmid: 31486644
[20]
Zhang Z, Jamieson C S, Zhao Y L, Li D H, Ohashi M, Houk K N, Tang Y. J. Am. Chem. Soc., 2019, 141(14): 5659.

doi: 10.1021/jacs.9b02204     URL    
[21]
Eschenbrenner-Lux V, Kumar K, Waldmann H. Angew. Chem. Int. Ed., 2014, 53(42): 11146.

doi: 10.1002/anie.201404094     URL    
[22]
Caputi L, Franke J, Farrow S C, Chung K, Payne R M E, Nguyen T D, Dang T T T, Soares Teto Carqueijeiro I, Koudounas K, DugÉ de Bernonville T, Ameyaw B, Jones D M, Vieira I J C, Courdavault V, O’Connor S E. Science, 2018, 360(6394): 1235.

doi: 10.1126/science.aat4100     URL    
[23]
Farrow S C, Kamileen M O, Caputi L, Bussey K, Mundy J E A, McAtee R C, Stephenson C R J, O’Connor S E. J. Am. Chem. Soc., 2019, 141(33): 12979.

doi: 10.1021/jacs.9b05999     pmid: 31364847
[24]
Hong L C, Ahles S, Strauss M A, Logemann C, Wegner H A. Org. Chem. Front., 2017, 4(5): 871.

doi: 10.1039/C7QO00172J     URL    
[25]
Jia Z J, Zhou Q, Zhou Q Q, Chen P Q, Chen Y C. Angew. Chem. Int. Ed., 2011, 50(37): 8638.

doi: 10.1002/anie.201102013     URL    
[26]
Vermeeren P, Hamlin T A, Fernández I, Bickelhaupt F M. Angew. Chem. Int. Ed., 2020, 59(15): 6201.

doi: 10.1002/anie.v59.15     URL    
[27]
Takale B S, Bao M, Yamamoto Y. Org. Biomol. Chem., 2014, 12(13): 2005.

doi: 10.1039/c3ob42207k     URL    
[28]
Arto T, Fañanás F J, Rodríguez F. Angew. Chem. Int. Ed., 2016, 55(25): 7218.

doi: 10.1002/anie.201602948     URL    
[29]
Zhu C J, Kuniyil R, Ackermann L. Angew. Chem. Int. Ed., 2019, 58(16): 5338.

doi: 10.1002/anie.v58.16     URL    
[30]
Xu Y S, Li B, Zhang X Y, Fan X S. Adv. Synth. Catal., 2018, 360(14): 2613.

doi: 10.1002/adsc.v360.14     URL    
[31]
Li M L, Kwong F Y. Angew. Chem. Int. Ed., 2018, 57(22): 6512.

doi: 10.1002/anie.v57.22     URL    
[32]
Lu H, Fan Z L, Xiong C D, Zhang A. Org.. 2018, 20(10): 3065.
[33]
Auclair K, Sutherland A, Kennedy J, Witter D J., Van J P, Hutchinson C R, Vederas J C. J. Am. Chem. Soc., 2000, 122: 11519.

doi: 10.1021/ja003216+     URL    
[34]
Ma S M, Li J W H, Choi J W, Zhou H, Lee K K M, Moorthie V A, Xie X, Kealey J T, da Silva N A, Vederas J C, Tang Y. Science, 2009, 326(5952): 589.

doi: 10.1126/science.1175602     URL    
[35]
Watanabe K, Mie T, Ichihara A, Oikawa H, Honma M. J. Biol. Chem., 2000, 275(49): 38393.

doi: 10.1074/jbc.M003119200     pmid: 10984474
[36]
Kim R R, Illarionov B, Joshi M, Cushman M, Lee C Y, Eisenreich W, Fischer M, Bacher A. J. Am. Chem. Soc., 2010, 132(9): 2983.

doi: 10.1021/ja908395r     URL    
[37]
Jeon B S, Wang S A, Ruszczycky M W, Liu H W. Chem. Rev., 2017, 117(8): 5367.

doi: 10.1021/acs.chemrev.6b00578     URL    
[38]
Kim H J, Ruszczycky M W, Choi S H, Liu Y N, Liu H W. Nature, 2011, 473(7345): 109.

doi: 10.1038/nature09981     URL    
[39]
Tian Z H, Sun P, Yan Y, Wu Z H, Zheng Q F, Zhou S X, Zhang H, Yu F T, Jia X Y, Chen D D, Mándi A, Kurtán T, Liu W. Nat. Chem. Biol., 2015, 11(4): 259.

doi: 10.1038/nchembio.1769     URL    
[40]
Caputi L, Franke J, Bussey K, Farrow S C, Vieira I J C, Stevenson C E M, Lawson D M, O’Connor S E. Nat. Chem. Biol., 2020, 16(4): 383.

doi: 10.1038/s41589-019-0460-x     URL    
[41]
Tan D, Jamieson C S, Ohashi M, Tang M C, Houk K N, Tang Y. J. Am. Chem. Soc., 2019, 141(2): 769.

doi: 10.1021/jacs.8b12010     URL    
[42]
Ohashi M, Liu F, Hai Y, Chen M B, Tang M C, Yang Z Y, Sato M, Watanabe K, Houk K N, Tang Y. Nature, 2017, 549(7673): 502.

doi: 10.1038/nature23882     URL    
[43]
Ose T, Watanabe K, Mie T, Honma M, Watanabe H, Yao M, Oikawa H, Tanaka I. Nature, 2003, 421: 611.

doi: 10.1038/nature01414     URL    
[44]
Eberhardt S, Zingler N, Kemter K, Richter G, Cushman M, Bacher A. Eur. J. Biochem., 2001, 268(15): 4315.

pmid: 11488927
[45]
Kim H J, Ruszczycky M W, Choi S H, Liu Y N, Liu H W. Nature, 2011, 473(7345): 109.

doi: 10.1038/nature09981     URL    
[46]
Chen Q B, Gao J, Jamieson C, Liu J W, Ohashi M, Bai J, Yan D J, Liu B Y, Che Y S, Wang Y N, Houk K N, Hu Y C. J. Am. Chem. Soc., 2019, 141(36): 14052.

doi: 10.1021/jacs.9b06592     URL    
[47]
Guimarães C R W, Udier-Blagovi M, Jorgensen W L. J. Am. Chem. Soc., 2005, 127(10): 3577.

doi: 10.1021/ja043905b     URL    
[48]
Serafimov J M, Gillingham D, Kuster S, Hilvert D. J. Am. Chem. Soc., 2008, 130(25): 7798.

doi: 10.1021/ja8017994     pmid: 18512926
[49]
Gao L, Su C, Du X X, Wang R S, Chen S M, Zhou Y, Liu C W, Liu X J, Tian R Z, Zhang L Y, Xie K B, Chen S, Guo Q Q, Guo L P, Hano Y, Shimazaki M, Minami A, Oikawa H, Huang N, Houk K N, Huang L Q, Dai J G, Lei X G. Nat. Chem., 2020, 12(7): 620.

doi: 10.1038/s41557-020-0467-7     pmid: 32451436
[50]
Vermeeren P, Hamlin T A, Fernández I, Bickelhaupt F M. Angew. Chem. Int. Ed., 2020, 59(15): 6201.

doi: 10.1002/anie.v59.15     URL    
[51]
Corey E J, Shibata T, Lee T W. J. Am. Chem. Soc., 2002, 124(15): 3808.

pmid: 11942799
[52]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Green Chem., 2002, 4(1): 24.

doi: 10.1039/b108431c     URL    
[53]
Erfurt K, Wandzik I, Walczak K, Matuszek K, Chrobok A. Green Chem., 2014, 16(7): 3508.

doi: 10.1039/C4GC00380B     URL    
[54]
Chiappe C, Malvaldi M, Pomelli C S. Green Chem., 2010, 12(8): 1330.

doi: 10.1039/c0gc00074d     URL    
[55]
Matuszek K, Coffie S, Chrobok A, Swadźba-Kwaśny M. Catal. Sci. Technol., 2017, 7(5): 1045.

doi: 10.1039/C7CY00106A     URL    
[56]
Choi H, Shirley H J, Aitken H R M, Schulte T, Söhnel T, Hume P A, Brimble M A, Furkert D P. Org. Lett., 2020, 22(3): 1022.

doi: 10.1021/acs.orglett.9b04567     URL    
[57]
Min C, Lin C T, Seidel D. Angew. Chem. Int. Ed., 2015, 54(22): 6608.

doi: 10.1002/anie.201501536     URL    
[58]
Kim H, Gerosa G, Aronow J, Kasaplar P, Jie O Y, Lingnau J B, Guerry P, Farès C, List B. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[59]
Li J L, Liu T Y, Chen Y C. Acc. Chem. Res., 2012, 45(9): 1491.

doi: 10.1021/ar3000822     URL    
[60]
Liu Y K, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc., 2011, 133(38): 15212.

doi: 10.1021/ja206517s     URL    
[61]
Charles J F C, Fuentes L, Scott A S. Chem. Sci., 2020, 11: 2175.

doi: 10.1039/C9SC05738B     URL    
[62]
Nakamura I, Yamamoto Y. Chem. Rev., 2004, 104(5): 2127.

pmid: 15137788
[63]
Asao N, Nogami T, Takahashi K, Yamamoto Y. J. Am. Chem. Soc., 2002, 124(5): 764.

doi: 10.1021/ja017366b     URL    
[64]
Xie J H, Zhu S F, Zhou Q L. Chem. Rev., 2011, 111(3): 1713.

doi: 10.1021/cr100218m     URL    
[65]
McGee P, BÉtournay G, BarabÉ F, Barriault L. Angew. Chem. Int. Ed., 2017, 56(22): 6280.

doi: 10.1002/anie.201611606     URL    
[66]
Liu B X, Li J, Hu P J, Zhou X K, Bai D C, Li X W. ACS Catal., 2018, 8(10): 9463.

doi: 10.1021/acscatal.8b02560     URL    
[67]
Bai D C, Xu T, Ma C R, Zheng X, Liu B X, Xie F, Li X W. ACS Catal., 2018, 8(5): 4194.

doi: 10.1021/acscatal.8b00746     URL    
[68]
Zhou X K, Pan Y P, Li X W. Angew. Chem. Int. Ed., 2017, 56(28): 8163.

doi: 10.1002/anie.v56.28     URL    
[69]
Xie F, Yu S J, Qi Z S, Li X W. Angew. Chem. Int. Ed., 2016, 55(49): 15351.

doi: 10.1002/anie.v55.49     URL    
[70]
Zhou X K, Luo Y X, Kong L H, Xu Y W, Zheng G F, Lan Y, Li X W. ACS Catal., 2017, 7(10): 7296.

doi: 10.1021/acscatal.7b02248     URL    
[71]
Zhao Y M, Qi S B, Niu Z, Peng Y L, Shan C, Verma G, Wojtas L, Zhang Z J, Zhang B, Feng Y Q, Chen Y S, Ma S Q. J. Am. Chem. Soc., 2019, 141(36): 14443.

doi: 10.1021/jacs.9b07700     URL    
[72]
Higgins R F, Fatur S M, Damrauer N H, Ferreira E M, RappÉ A K, Shores M P. ACS Catal., 2018, 8(10): 9216.

doi: 10.1021/acscatal.8b03013     URL    
[73]
Ma J J, Strieth-Kalthoff F, Dalton T, Freitag M, Schwarz J L, Bergander K, Daniliuc C, Glorius F. Chem, 2019, 5(11): 2854.

doi: 10.1016/j.chempr.2019.10.016     URL    
[74]
Houck H A, Blasco E, du Prez F E, Barner-Kowollik C. J. Am. Chem. Soc., 2019, 141(31): 12329.

doi: 10.1021/jacs.9b05092     URL    
[75]
Feist F, Rodrigues L L, Walden S L, Krappitz T W, Dargaville T R, Weil T, Goldmann A S, Blinco J P, Barner-Kowollik C. J. Am. Chem. Soc., 2020, 142(17): 7744.

doi: 10.1021/jacs.0c02002     URL    
[76]
Aragonès A C, Haworth N L, Darwish N, Ciampi S, Bloomfield N J, Wallace G G, Diez-Perez I, Coote M L. Nature, 2016, 531(7592): 88.

doi: 10.1038/nature16989     URL    
[77]
Meir R, Chen H, Lai W Z, Shaik S. ChemPhysChem, 2010, 11(1): 301.

doi: 10.1002/cphc.v11:1     URL    
[78]
Heravi M M, Zadsirjan V, Kouhestanian E, AlimadadiJani B. Chem. Rec., 2020, 20(4): 273.

doi: 10.1002/tcr.201900018    
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[3] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[4] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[5] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[6] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[7] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[8] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[11] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[12] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[13] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[14] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[15] 杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 镍铁水滑石电催化氧析出研究进展[J]. 化学进展, 2020, 32(9): 1386-1401.
阅读次数
全文


摘要

狄尔斯-阿尔德反应催化剂