English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2190-2201 DOI: 10.7536/PC220214 前一篇   后一篇

• 综述与评论 •

金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能

孟鹏飞1, 张笑容1, 廖世军1,*(), 邓怡杰2,*()   

  1. 1 华南理工大学化学与化工学院 广州 510641
    2 南华大学资源环境与安全工程学院 衡阳 421001
  • 收稿日期:2022-02-17 修回日期:2022-05-04 出版日期:2022-10-24 发布日期:2022-06-25
  • 通讯作者: 廖世军, 邓怡杰
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金项目(51971094); 国家自然科学基金项目(21476088); 国家自然科学基金项目(21776104); 广东省自然科学基金项目(2015A030312007)

Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction

Meng Pengfei1, Zhang Xiaorong1, Liao Shijun1(), Deng Yijie2()   

  1. 1 School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
    2 School of Resource Environment and Safety Engineering, University of South China,Hengyang 421001, China
  • Received:2022-02-17 Revised:2022-05-04 Online:2022-10-24 Published:2022-06-25
  • Contact: Liao Shijun, Deng Yijie
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(51971094); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015A030312007)

原子级别分散的过渡金属和氮共掺杂碳基催化剂(M-Nx-C)具有反应活性好、选择性高、制备容易等优点,被认为是最有可能取代价格昂贵的铂催化剂用作燃料电池阴极的一类非贵金属催化剂。然而,该类催化剂在阴极侧氧还原反应过程中存在活性位点密度较低、耐久性不足的问题制约了其在燃料电池中的实际应用。研究表明,通过多种金属/非金属元素的掺杂调控活性位点的电子结构与空间构型可显著提升M-Nx-C催化剂的氧还原活性和稳定性,已成为掺杂碳基催化剂领域的热门研究课题。本文综述了近年来国内外在多种金属/非金属元素掺杂提升M-Nx-C碳基催化剂性能方面的主要研究工作,包括金属元素掺杂、非金属元素掺杂等研究。文章进一步总结和指出了M-Nx-C碳基催化剂面临的问题及挑战,并对其发展前景和未来研究方向进行了展望。

Metal-nitrogen-carbon (M-Nx-C), possessing prominent advantages of high reactivity, high selectivity, facile synthesis, have presented potential to replace the conventional platinum-based catalysts. However, when these catalysts are used in the oxygen reduction process of fuel cells, the low active site density and insufficient durability restrict application. It is found that modulating the electronic structure and spatial configuration of the active site by doping with various metal/nonmetal elements can significantly enhance the oxygen reduction activity and stability of M-Nx-C catalysts, which has become a popular research topic in the field. This article reviews the main research works in recent years at home and abroad on the doping of various metal/nonmetal elements to enhance the performance of M-Nx-C carbon-based catalysts, including the studies on doping of metal elements and doping of nonmetal elements. The article also summarizes and points out the problems and challenges faced by M-Nx-C carbon-based catalysts, and gives an outlook on their development prospects and future research directions.

()
图1 硬模板合成Fe—N—C HNS[22]
Fig. 1 Schematic illustration of the hard template method for preparation of Fe—N—C HNS[22]
图2 合成Cr-N-C[21]
Fig. 2 Illustration of synthesis of Cr-N-C[21]
图3 碱性介质中ORR的催化活性图[44]
Fig. 3 Plots of catalytic activities for the ORR in alkaline media[44]
图4 活性中心的动态变化过程[47]
Fig. 4 Dynamic transformation process of active site[47]
图5 Fe-N-C和Pt1@Fe-N-C在空气饱和电解质中经过10 000次电压循环后测得的LSV曲线,0.5 mol/L H2S O 4 [ 60 ]
Fig. 5 LSV curves of Fe-N-C and Pt1@Fe-N-C measured after 10 000 voltage cycles in the air-saturated electrolyte,0.5 mol/L H2S O 4 [ 60 ]
图6 (a)不同催化剂在0.1 mol/L HClO4溶液中的ORR LSV曲线; (b) H2/O2燃料电池的极化图[63]
Fig. 6 (a) ORR LSV curves for different catalysts in 0.1 mol/L HClO4 solution. (b) H2/O2 fuel cell polarization plots[63]
图7 (a) 制备的样品在0.1 mol/L KOH 中的LSV曲线; (b)制备的样品在0.1 mol/L HClO4中的LSV 曲线[67]
Fig. 7 (a) ORR LSV curves for different catalysts in 0.1 mol/L KOH solution.(b) ORR LSV curves for different catalysts in 0.1 mol/L HClO4 solution.[67]
图8 (a) Fe-NSC的合成示意图;(b) 0.1 mol/L KOH 中的LSV 曲线(转速: 1600 r/min);插图为相应的半波电位和转移电子数[68]
Fig. 8 (a) Schematic illustration of the synthesis of FeNSC. (b) ORR LSV curves for different catalysts in 0.1 mol/L KOH solution (rotation rate: 1600 r/min). Inset shows corresponding half-wave potentials and the number of transferred electrons[68]
图9 Fe-N/P-C 催化剂的合成过程示意图[73]
Fig. 9 Schematic of the synthesis process of the Fe-N/P-C[73]
图10 以Fe-N-C-P/N,P-C、Fe-N-C/N-C和Pt/C为阴极催化剂的H2-O2质子交换膜燃料电池的极化和功率密度曲线图[74]
Fig. 10 Polarization and power density curves for a H2-O2 PEMFC with Fe-N-C-P/N,P-C, Fe-N-C/N-C, and Pt/C as the cathode catalysts[74]
图11 PSTA-Co-1000中Co-N2P2位点和Co-N4位点在零电势与平衡电势(U=1.23 V)时的ORR自由能图[75]
Fig. 11 ORR free energy profiles of a Co-N2P2 site in PSTA-Co-1000 as compared with a Co-N4 site at zero potential and equilibrium potential (U=1.23 V)[75]
图12 (a)Co/N-B掺杂的碳纳米片的合成流程图;(b) O2饱和的 0.1 mol/L KOH 中的ORR极化曲线[79]
Fig. 12 (a) Synthetic procedure of the Co/N-B-doped carbon nanosheet. (b) ORR polarization curves in O2-saturated 0.1 mol/L KOH[79]
表1 近年M-Nx-C催化剂电化学性能汇总表
Table 1 Summary of electrochemical performance of M-Nx-C electrocatalysts
[1]
Liu J G, Mooney H, Hull V, Davis S J, Gaskell J, Hertel T, Lubchenco J, Seto K C, Gleick P, Kremen C, Li S X. Science, 2015, 347(6225): 1258832.

doi: 10.1126/science.1258832     URL    
[2]
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Nat. Chem., 2009, 1(1): 37.

doi: 10.1038/nchem.121     pmid: 21378799
[3]
Xia W, Mahmood A, Liang Z B, Zou R Q, Guo S J. Angew. Chem. Int. Ed., 2016, 55(8): 2650.

doi: 10.1002/anie.201504830     URL    
[4]
Debe M K. Nature, 2012, 486(7401): 43.

doi: 10.1038/nature11115     URL    
[5]
Fu J, Cano Z P, Park M G, Yu A P, Fowler M, Chen Z W. Adv. Mater., 2017, 29(7): 1604685.

doi: 10.1002/adma.201604685     URL    
[6]
Wang Z L, Xu D, Xu J J, Zhang X B. Chem. Soc. Rev., 2014, 43(22): 7746.

doi: 10.1039/C3CS60248F     URL    
[7]
Ren Q, Wang H, Lu X F, Tong Y X, Li G R. Adv. Sci., 2018, 5(3): 1700515.

doi: 10.1002/advs.201700515     URL    
[8]
Xu J H, Xia C L, Li M, Xiao R. ChemElectroChem, 2019, 6(22): 5735.

doi: 10.1002/celc.201901763     URL    
[9]
He Q, Chen X H, Jia F Q, Ding W, Zhou Y Y, Wang J, Song X Y, Jiang J X, Liao Q, Li J, Wei Z D. ChemistrySelect, 2019, 4(27): 8135.

doi: 10.1002/slct.201901329     URL    
[10]
Qin X L, Huang Y, Wang K, Xu T T, Wang Y L, Dong W H. Electrochimica Acta, 2019, 322: 134745.

doi: 10.1016/j.electacta.2019.134745     URL    
[11]
Jiao L, Wan G, Zhang R, Zhou H, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2018, 57(28): 8525.

doi: 10.1002/anie.201803262     URL    
[12]
Deng Y J, Luo J M, Chi B, Tang H B, Li J, Qiao X C, Shen Y J, Yang Y J, Jia C M, Rao P, Liao S J, Tian X L. Adv. Energy Mater., 2021, 11(37): 2101222.

doi: 10.1002/aenm.202101222     URL    
[13]
Tang T, Ding L, Jiang Z, Hu J S, Wan L J. Sci. China Chem., 2020, 63(11): 1517.

doi: 10.1007/s11426-020-9835-8     URL    
[14]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776     URL    
[15]
Li S P, Zhang G, Tu X M, Li J H. ChemElectroChem, 2018, 5(4): 701.

doi: 10.1002/celc.201701112     URL    
[16]
Lin Y X, Yang L, Zhang Y K, Jiang H L, Xiao Z J, Wu C Q, Zhang G B, Jiang J, Song L. Adv. Energy Mater., 2018, 8(18): 1870087.

doi: 10.1002/aenm.201870087     URL    
[17]
Wang F L, Yang X D, Dong B X, Yu X, Xue H G, Feng L G. Electrochem. Commun., 2018, 92: 33.

doi: 10.1016/j.elecom.2018.05.020     URL    
[18]
Ban J J, Wen X H, Xu H J, Wang Z, Liu X H, Cao G Q, Shao G S, Hu J H. Adv. Funct. Mater., 2021, 31(19): 2010472.

doi: 10.1002/adfm.202010472     URL    
[19]
Malgras V, Tang J, Wang J, Kim J, Torad N L, Dutta S, Ariga K, Hossain M S A, Yamauchi Y, Wu K C W. J. Nanosci. Nanotechnol., 2019, 19(7): 3673.

doi: 10.1166/jnn.2019.16745     pmid: 30764925
[20]
Wan X, Liu X F, Li Y C, Yu R H, Zheng L R, Yan W S, Wang H, Xu M, Shui J L. Nat. Catal., 2019, 2(3): 259.

doi: 10.1038/s41929-019-0237-3     URL    
[21]
Jin X X, Jiang Y, Hu Q, Zhang S H, Jiang Q K, Chen L, Xu L, Xie Y, Huang J H. RSC Adv., 2017, 7(89): 56375.

doi: 10.1039/C7RA09517A     URL    
[22]
Chen Y F, Li Z J, Zhu Y B, Sun D M, Liu X E, Xu L, Tang Y W. Adv. Mater., 2019, 31(8): 1806312.

doi: 10.1002/adma.201806312     URL    
[23]
Yan S Y, Yu Z X, Liu C, Yuan Z W, Wang C J, Chen J S, Wei L, Chen Y. Chem. Asian J., 2020, 15(12): 1881.

doi: 10.1002/asia.202000399     URL    
[24]
Petkovich N D, Stein A. Chem. Soc. Rev., 2013, 42(9): 3721.

doi: 10.1039/c2cs35308c     pmid: 23072972
[25]
Kang H Q, Sui L N, Wang Y T, Zhang S, Dong H Z, Yu L Y, Dong L F. J. Electrochem. Soc., 2017, 164(12): A2328.

doi: 10.1149/2.0641712jes     URL    
[26]
Yu L, Yu X Y, Lou X W D. Adv. Mater., 2018, 30(38): 1800939.

doi: 10.1002/adma.201800939     URL    
[27]
Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18(16): 2073.

doi: 10.1002/adma.200501576     URL    
[28]
Mun Y, Kim M J, Park S A, Lee E, Ye Y, Lee S, Kim Y T, Kim S, Kim O H, Cho Y H, Sung Y E, Lee J. Appl. Catal. B Environ., 2018, 222: 191.

doi: 10.1016/j.apcatb.2017.10.015     URL    
[29]
Liu J L, Zhu D D, Guo C X, Vasileff A, Qiao S Z. Adv. Energy Mater., 2017, 7(23): 1700518.

doi: 10.1002/aenm.201700518     URL    
[30]
Yin P Q, Yao T, Wu Y E, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Angew. Chem. Int. Ed., 2016, 55(36): 10800.

doi: 10.1002/anie.201604802     URL    
[31]
Zhang H G, Hwang S, Wang M Y, Feng Z X, Karakalos S, Luo L L, Qiao Z, Xie X H, Wang C M, Su D, Shao Y Y, Wu G. J. Am. Chem. Soc., 2017, 139(40): 14143.

doi: 10.1021/jacs.7b06514     URL    
[32]
Luo E G, Zhang H, Wang X, Gao L Q, Gong L Y, Zhao T, Jin Z, Ge J J, Jiang Z, Liu C P, Xing W. Angew. Chem. Int. Ed., 2019, 58(36): 12469.

doi: 10.1002/anie.201906289     URL    
[33]
Liu S W, Wang M Y, Yang X X, Shi Q R, Qiao Z, Lucero M, Ma Q, More K L, Cullen D A, Feng Z X, Wu G. Angew. Chem. Int. Ed., 2020, 59(48): 21698.

doi: 10.1002/anie.202009331     URL    
[34]
Deng Y J, Chi B, Li J, Wang G H, Zheng L, Shi X D, Cui Z M, Du L, Liao S J, Zang K T, Luo J, Hu Y F, Sun X L. Adv. Energy Mater., 2019, 9(13): 1802856.

doi: 10.1002/aenm.201802856     URL    
[35]
Zhou Q Y, Cai J J, Zhang Z, Gao R, Chen B, Wen G B, Zhao L, Deng Y P, Dou H Z, Gong X F, Zhang Y L, Hu Y F, Yu A P, Sui X L, Wang Z B, Chen Z W. Small Methods, 2021, 5(6): 2100024.

doi: 10.1002/smtd.202100024     URL    
[36]
Qu Y T, Li Z J, Chen W X, Lin Y, Yuan T W, Yang Z K, Zhao C M, Wang J, Zhao C, Wang X, Zhou F Y, Zhuang Z B, Wu Y E, Li Y D. Nat. Catal., 2018, 1(10): 781.

doi: 10.1038/s41929-018-0146-x     URL    
[37]
Gao Y, Duan X G, Li B, Jia Q Q, Li Y, Fan X B, Zhang F B, Zhang G L, Wang S B, Peng W C. J. Mater. Chem. A, 2021, 9(26): 14793.

doi: 10.1039/D1TA02446A     URL    
[38]
Liu S W, Wang M Y, Yang X X, Shi Q R, Qiao Z, Lucero M, Ma Q, More K L, Cullen D A, Feng Z X, Wu G. Angew. Chem. Int. Ed., 2020, 59(48): 21698.

doi: 10.1002/anie.202009331     URL    
[39]
Tang C, Chen L, Li H J, Li L Q, Jiao Y, Zheng Y, Xu H L, Davey K, Qiao S Z. J. Am. Chem. Soc., 2021, 143(20): 7819.

doi: 10.1021/jacs.1c03135     URL    
[40]
Xu H X, Cheng D J, Cao D P, Zeng X C. Nat. Catal., 2018, 1(5): 339.

doi: 10.1038/s41929-018-0063-z     URL    
[41]
Nie Y, Li L, Wei Z D. Chem. Soc. Rev., 2015, 44(8): 2168.

doi: 10.1039/C4CS00484A     URL    
[42]
Li Y C, Liu X F, Zheng L R, Shang J X, Wan X, Hu R M, Guo X, Hong S, Shui J L. J. Mater. Chem. A, 2019, 7(45): 26147.

doi: 10.1039/C9TA08532G     URL    
[43]
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, JÓnsson H. J. Phys. Chem. B, 2004, 108(46): 17886.

doi: 10.1021/jp047349j     URL    
[44]
Zagal J H, Koper M T M. Angew. Chem. Int. Ed., 2016, 55(47): 14510.

doi: 10.1002/anie.201604311     pmid: 27666439
[45]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2014, 136(11): 4394.

doi: 10.1021/ja500432h     pmid: 24580116
[46]
Peng H L, Liu F F, Liu X J, Liao S J, You C H, Tian X L, Nan H X, Luo F, Song H Y, Fu Z Y, Huang P Y. ACS Catal., 2014, 4(10): 3797.

doi: 10.1021/cs500744x     URL    
[47]
Zhou W L, Su H, Li Y L, Liu M H, Zhang H, Zhang X X, Sun X, Xu Y Z, Liu Q H, Wei S Q. ACS Energy Lett., 2021, 6(9): 3359.

doi: 10.1021/acsenergylett.1c01316     URL    
[48]
Dong J C, Zhang X G, Briega-Martos V, Jin X, Yang J, Chen S, Yang Z L, Wu D Y, Feliu J M, Williams C T, Tian Z Q, Li J F. Nat. Energy, 2019, 4(1): 60.

doi: 10.1038/s41560-018-0292-z    
[49]
GÓmez-Marín A M, Rizo R, Feliu J M. Catal. Sci. Technol., 2014, 4(6): 1685.

doi: 10.1039/c3cy01049j     URL    
[50]
Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen rongan, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2017, 56(24): 6937.

doi: 10.1002/anie.201702473     URL    
[51]
Liu D X, Wang B, Li H G, Huang S F, Liu M M, Wang J, Wang Q J, Zhang J J, Zhao Y F. Nano Energy, 2019, 58: 277.

doi: 10.1016/j.nanoen.2019.01.011     URL    
[52]
Choi C H, Baldizzone C, Grote J P, Schuppert A K, Jaouen F, Mayrhofer K J J. Angew. Chem. Int. Ed., 2015, 54(43): 12753.

doi: 10.1002/anie.201504903     URL    
[53]
Calle-Vallejo F, Martínez J I, Rossmeisl J. Phys. Chem. Chem. Phys., 2011, 13(34): 15639.

doi: 10.1039/c1cp21228a     pmid: 21796295
[54]
Zagal J H. Coord. Chem. Rev., 1992, 119: 89.

doi: 10.1016/0010-8545(92)80031-L     URL    
[55]
van Veen J A R, van Baar J F, Kroese C J, Coolegem J G F, de Wit N, Colijn H A. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1981, 85(9): 693.

doi: 10.1002/bbpc.19810850917     URL    
[56]
Zhou Y D, Yang W, Utetiwabo W, Lian Y M, Yin X, Zhou L, Yu P W, Chen R J, Sun S R. J. Phys. Chem. Lett., 2020, 11(4): 1404.

doi: 10.1021/acs.jpclett.9b03771     URL    
[57]
Gong S P, Wang C L, Jiang P, Hu L, Lei H, Chen Q W. J. Mater. Chem. A, 2018, 6(27): 13254.

doi: 10.1039/C8TA04564J     URL    
[58]
Du C, Gao Y J, Chen H Q, Li P, Zhu S Y, Wang J G, He Q G, Chen W. J. Mater. Chem. A, 2020, 8(33): 16994.

doi: 10.1039/D0TA06485H     URL    
[59]
Li Y C, Hu R M, Chen Z B, Wan X, Shang J X, Wang F H, Shui J L. Nano Res., 2021, 14(3): 611.

doi: 10.1007/s12274-020-3072-6     URL    
[60]
Zeng X J, Shui J L, Liu X F, Liu Q T, Li Y C, Shang J X, Zheng L R, Yu R H. Adv. Energy Mater., 2018, 8(1): 1701345.

doi: 10.1002/aenm.201701345     URL    
[61]
Xiao M L, Chen Y T, Zhu J B, Zhang H, Zhao X, Gao L Q, Wang X, Zhao J, Ge J J, Jiang Z, Chen S L, Liu C P, Xing W. J. Am. Chem. Soc., 2019, 141(44): 17763.

doi: 10.1021/jacs.9b08362     URL    
[62]
Li J J, Guan Q Q, Wu H, Liu W, Lin Y, Sun Z H, Ye X X, Zheng X S, Pan H B, Zhu J F, Chen S, Zhang W H, Wei S Q, Lu J L. J. Am. Chem. Soc., 2019, 141(37): 14515.

doi: 10.1021/jacs.9b06482     URL    
[63]
Lu Z Y, Wang B, Hu Y F, Liu W, Zhao Y F, Yang R O, Li Z P, Luo J, Chi B, Jiang Z, Li M S, Mu S C, Liao S J, Zhang J J, Sun X L. Angew. Chem. Int. Ed., 2019, 58(9): 2622.

doi: 10.1002/anie.201810175     URL    
[64]
Qiao M F, Wang Y, Wågberg T, Mamat X, Hu X, Zou G A, Hu G Z. J. Energy Chem., 2020, 47: 146.

doi: 10.1016/j.jechem.2019.12.005     URL    
[65]
Zhang Q R, Kumar P, Zhu X F, Daiyan R, Bedford N M, Wu K H, Han Z J, Zhang T R, Amal R, Lu X Y. Adv. Energy Mater., 2021, 11(17): 2100303.

doi: 10.1002/aenm.202100303     URL    
[66]
Chen Z Y, Niu H, Ding J, Liu H, Chen P H, Lu Y H, Lu Y R, Zuo W B, Han L, Guo Y Z, Hung S F, Zhai Y M. Angewandte Chemie Int. Ed., 2021, 60(48): 25404.

doi: 10.1002/anie.202110243     URL    
[67]
Zheng L, Dong Y Y, Chi B, Cui Z M, Deng Y J, Shi X D, Du L, Liao S J. Small, 2019, 15(4): 1803520.

doi: 10.1002/smll.201803520     URL    
[68]
Jia Y, Xiong X Y, Wang D N, Duan X X, Sun K, Li Y J, Zheng L R, Lin W F, Dong M D, Zhang G X, Liu W, Sun X M. Nano Micro Lett., 2020, 12(1): 1.
[69]
Chen Y J, Ji S F, Zhao S, Chen W X, Dong J C, Cheong W C, Shen rongan, Wen X D, Zheng L R, Rykov A I, Cai S C, Tang H L, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Nat. Commun., 2018, 9: 5422.

doi: 10.1038/s41467-018-07850-2     URL    
[70]
Yang Y, Mao K T, Gao S Q, Huang H, Xia G L, Lin Z Y, Jiang P, Wang C L, Wang H, Chen Q W. Adv. Mater., 2018, 30(28): 1801732.

doi: 10.1002/adma.201801732     URL    
[71]
Wang J, Li H G, Liu S H, Hu Y F, Zhang J, Xia M R, Hou Y L, Tse J, Zhang J J, Zhao Y F. Angew. Chem. Int. Ed., 2021, 60(1): 181.

doi: 10.1002/anie.202009991     URL    
[72]
Zhang J T, Zhang M, Zeng Y, Chen J S, Qiu L X, Zhou H, Sun C J, Yu Y, Zhu C Z, Zhu Z H. Small, 2019, 15(24): 1900307.

doi: 10.1002/smll.201900307     URL    
[73]
Yuan K, Lützenkirchen-Hecht D, Li L B, Shuai L, Li Y Z, Cao R, Qiu M, Zhuang X D, Leung M K H, Chen Y W, Scherf U. J. Am. Chem. Soc., 2020, 142(5): 2404.

doi: 10.1021/jacs.9b11852     pmid: 31902210
[74]
Yin H B, Yuan P F, Lu B A, Xia H C, Guo K, Yang G G, Qu G, Xue D P, Hu Y F, Cheng J Q, Mu S C, Zhang J N. ACS Catal., 2021, 11(20): 12754.

doi: 10.1021/acscatal.1c02259     URL    
[75]
Wei X, Zheng D, Zhao M, Chen H Z, Fan X, Gao B, Gu L, Guo Y, Qin J B, Wei J, Zhao Y L, Zhang G C. Angew. Chem. Int. Ed., 2020, 59(34): 14639.

doi: 10.1002/anie.202006175     URL    
[76]
Hu B T, Huang A J, Zhang X J, Chen Z, Tu R Y, Zhu W, Zhuang Z B, Chen C, Peng Q, Li Y D. Nano Res., 2021, 14(10): 3482.

doi: 10.1007/s12274-021-3535-4     URL    
[77]
Han Y H, Wang Y G, Xu R R, Chen W X, Zheng L R, Han A J, Zhu Y Q, Zhang J, Zhang H B, Luo J, Chen C, Peng Q, Wang D S, Li Y D. Energy Environ. Sci., 2018, 11(9): 2348.

doi: 10.1039/C8EE01481G     URL    
[78]
Xue W D, Zhou Q X, Cui X, Jia S R, Zhang J W, Lin Z Q. Nano Energy, 2021, 86: 106073.

doi: 10.1016/j.nanoen.2021.106073     URL    
[79]
Guo Y Y, Yuan P F, Zhang J N, Hu Y F, Amiinu I S, Wang X, Zhou J G, Xia H C, Song Z B, Xu Q, Mu S C. ACS Nano, 2018, 12(2): 1894.

doi: 10.1021/acsnano.7b08721     URL    
[80]
Lin Z Y, Huang H, Cheng L, Hu W, Xu P P, Yang Y, Li J M, Gao F Y, Yang K, Liu S, Jiang P, Yan W S, Chen S, Wang C L, Tong H G, Huang M X, Zheng W, Wang H, Chen Q W. Adv. Mater., 2021, 33(51): 2107103.

doi: 10.1002/adma.202107103     URL    
[81]
Cuesta A. ChemPhysChem, 2011, 12(13): 2375.

doi: 10.1002/cphc.201100164     pmid: 21732520
[82]
O’Keeffe M. Chem. Soc. Rev., 2009, 38(5): 1215.

doi: 10.1039/b802802h     URL    
[83]
Wu R, Song Y J, Huang X, Chen S G, Ibraheem S, Deng J H, Li J, Qi X Q, Wei Z D. J. Power Sources, 2018, 401: 287.

doi: 10.1016/j.jpowsour.2018.08.096     URL    
[84]
Yang L, Cheng D J, Xu H X, Zeng X F, Wan X, Shui J L, Xiang Z H, Cao D P. PNAS, 2018, 115(26): 6626.

doi: 10.1073/pnas.1800771115     pmid: 29891686
[85]
Jiao L, Jiang H L. Chem, 2019, 5(4): 786.

doi: 10.1016/j.chempr.2018.12.011     URL    
[86]
Ye W, Chen S M, Lin Y, Yang L, Chen S J, Zheng X S, Qi Z M, Wang C M, Long R, Chen M, Zhu J F, Gao P, Song L, Jiang J, Xiong Y J. Chem, 2019, 5(11): 2865.

doi: 10.1016/j.chempr.2019.07.020     URL    
[87]
Zhu X F, Zhang D T, Chen C J, Zhang Q R, Liu R S, Xia Z H, Dai L M, Amal R, Lu X Y. Nano Energy, 2020, 71: 104597.

doi: 10.1016/j.nanoen.2020.104597     URL    
[88]
Zhang H B, Zhou W, Chen T, Guan B Y, Li Z, Lou X W D. Energy Environ. Sci., 2018, 11(8): 1980.

doi: 10.1039/C8EE00901E     URL    
[89]
Zhang D Y, Chen W X, Li Z, Chen Y J, Zheng L R, Gong Y, Li Q H, Shen rongan, Han Y H, Cheong W C, Gu L, Li Y D. Chem. Commun., 2018, 54(34): 4274.

doi: 10.1039/C8CC00988K     URL    
[90]
Zhu Z J, Yin H J, Wang Y, Chuang C H, Xing L, Dong M Y, Lu Y R, Casillas-Garcia G, Zheng Y L, Chen S, Dou Y H, Liu P R, Cheng Q L, Zhao H J. Adv. Mater., 2020, 32(42): 2004670.

doi: 10.1002/adma.202004670     URL    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[3] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[4] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[5] 余思妍, 郑龙, 孟鹏飞, 史修东, 廖世军. 金属有机化合物框架材料衍生M-N/C类氧还原电催化剂[J]. 化学进展, 2021, 33(10): 1693-1705.
[6] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
[7] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[8] 黄路露, 孙凯玲, 刘明瑞, 李静, 廖世军. 非水系锂空气电池碳基正极材料[J]. 化学进展, 2019, 31(10): 1406-1416.
[9] 苗鹤, 薛业建, 周旭峰, 刘兆平. 石墨烯基氧还原催化剂在金属空气电池中的应用[J]. 化学进展, 2015, 27(7): 935-944.
[10] 钟轶良, 莫再勇, 杨莉君, 廖世军*. 改性石墨烯用作燃料电池阴极催化剂[J]. 化学进展, 2013, 25(05): 717-725.
[11] 李鹏, 孙彦平* . 非水系二次锂-氧电池正极[J]. 化学进展, 2012, 24(12): 2457-2471.
[12] 张栋, 张存中*, 穆道斌, 吴伯荣, 吴锋 . 锂空气电池研究述评[J]. 化学进展, 2012, 24(12): 2472-2482.
[13] 文越华 程杰 徐艳 刘学虎 曹高萍 杨裕生. 掺氮纳米碳及与非Pt金属复合的电催化剂研究*[J]. 化学进展, 2010, 22(08): 1550-1555.
[14] 原鲜霞 夏小芸 曾鑫 张慧娟 马紫峰. 低温燃料电池氧电极催化剂*[J]. 化学进展, 2010, 22(01): 19-31.
[15] 赵东江 尹鸽平 魏杰. 聚合物膜燃料电池阴极非Pt催化剂[J]. 化学进展, 2009, 21(12): 2753-2759.