English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 262-273 DOI: 10.7536/PC190738 前一篇   后一篇

所属专题: 电化学有机合成

• •

软铋矿基微纳米材料的设计合成及其在光催化中的应用

曹秀军1, 张雷1,2,**(), 朱元鑫1, 张鑫1, 吕超南1, 侯长民2   

  1. 1. 安徽理工大学材料科学与工程学院 深部煤矿采动响应与灾害防控国家重点实验室 淮南 232001
    2. 吉林大学无机合成与制备化学国家重点实验室 长春 130012
  • 收稿日期:2019-07-29 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 张雷
  • 基金资助:
    国家自然科学基金项目(21975001); 安徽省高等学校自然科学研究项目(KJ2019A0115); 中国博士后基金项目(2016M592031); 安徽省博士后基金项目(2016B128); 无机合成与制备化学国家重点实验室开放课题(2018-2)

Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis

Xiujun Cao1, Lei Zhang1,2,**(), Yuanxin Zhu1, Xin Zhang1, Chaonan Lv1, Changmin Hou2   

  1. 1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
    2. State Key Lab of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, China;
  • Received:2019-07-29 Online:2020-02-15 Published:2019-12-19
  • Contact: Lei Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21975001); Key Project of Natural Science Research for Colleges and Universities of Anhui Province of China(KJ2019A0115); China Postdoctoral Science Foundation Funded Project(2016M592031); Postdoctoral Science Foundation Funded Project of Anhui Province(2016B128); Open Fund of State Key Lab of Inorganic Synthesis & Preparative Chemistry(2018-2)

软铋矿基光催化材料以其独特的晶体结构、电子结构以及显著的可见光吸收能力吸引着研究者们浓厚的兴趣,然而,该材料由于自身结构及功能缺陷,如光生载流子极易复合、量子产量低、有限的活性位点、活性晶面暴露不足等,导致其光催化活性和稳定性仍有待提高。因此,如何在微纳尺度上对软铋矿基光催化剂进行结构设计和功能整合,进而实现光催化活性和稳定性的优化调变,仍是一个亟待解决的关键科学问题。本文主要综述了软铋矿基微纳米材料的合成策略及其在光催化领域的最新研究进展,重点就软铋矿基光催化材料的形貌调控、贵金属负载、半导体/石墨烯耦合、离子掺杂、新型软铋矿基光催化体系的开发等方面进行总结;同时对软铋矿材料在光催化领域的应用进行了探讨;最后对此类光催化材料今后的研究前景进行了展望。

The sillenite-based photocatalytic materials have attracted the researchers’ interests because of their unique crystal and electronic structures, as well as remarkable visible light absorption abilities. However, they usually have poor photocatalytic activities and stabilities owing to their structural and functional defects, such as high recombination efficiencies of photo-generated charges, low quantum yields, limited active sites, and insufficient exposure of active crystal planes. Therefore, how to achieve optimal modulation of photocatalytic activity and stability based on the structural design and functional integration of sillenite-based photocatalysts on the micro-nano scale is still a key scientific problem. This paper mainly reviews the synthesis strategies of sillenite-based micro/nanomaterials and their latest research progress in the field of photocatalysis, especially focusing on the morphology control, noble metal loading, semiconductor/graphene coupling, ion doping and the development of new sillenite-based photocatalytic systems. Moreover, the photocatalytic applications of sillenite materials are discussed. Finally, the future research prospects of such photocatalytic materials are also pointed out.

()
表1 软铋矿基光催化材料的活性调控策略总结
Table 1 Summaries of enhancement strategies of photocatalytic activities for sillenite materials
图1 典型的Bi25GaO39立方块的TEM照片(a)、SAED照片(插图)和晶格条纹(b) 、典型的Bi25GaO39四面体的TEM照片(c)和SAED照片(插图)、晶格条纹(d)[35]
Fig.1 Typical TEM image of Bi25GaO39 cube(a) and corresponding SAED pattern(inset); HRTEM image of Bi25GaO39 cube(b) ;Typical TEM image of Bi25GaO39 tetrahedron(c) and corresponding SAED pattern(inset); HRTEM image of Bi25GaO39 tetrahedron(d)[35]
图2 Bi12TiO20/Co的SEM照片(a,b)、EDS线扫描(c)和元素mapping照片(d~f)、以及TEM照片(g~i)[55]
Fig.2 SEM image of Bi12TiO20/Co particles(a,b); EDX spectrum of line scan(c) and elemental mapping of Ti, Co and Bi(d~f); TEM image of Bi12TiO20/Co particle(g~i)[55]
图3 Bi25FeO40四面体的SEM照片(a~c)和TEM照片(d)[56]
Fig.3 SEM(a~c) and TEM(d) images of nanoparticles-assembled Bi25FeO40 tetrahedrons[56]
图4 “棒-点接触”示意图(a)和“面-面接触”示意图(b)
Fig.4 “Rod-Dot” contact mode(a) and “Face-Face” contact mode(b)
图5 (a)三种不同的Bi25FeO40基光催化剂(S1、S2和S3)的合成示意图,三种不同的Bi25FeO40基光催化剂的SEM照片(b~h):S1(b,c);S2(d~f);S3(g,h)[75]
Fig.5 (a)Synthetic schematic of three different Bi25FeO40-based photocatalysts,SEM images of three different Bi25FeO40-based photocatalysts(b~h): S1(b,c);S2(d~f);S3(g,h)[75]
图6 Ag-Bi12GeO20-Bi2WO6异质结构能带结构示意图和可能的电荷迁移路径[91]
Fig.6 Band structure and possible photo-generated charges migration path of Ag-Bi12GeO20-Bi2WO6 heterostructure [91]
图7 Bi7O9I3 (a)和Ag-Bi7O9I3-Bi25VO40异质结构(b~e)的TEM照片[92]
Fig.7 TEM images of the as-prepared Bi7O9I3 (a) and Ag-Bi7O9I3-Bi25VO40 heterostructure(b~e)[92]
图8 Ba2+和Mg2+共掺杂的Bi12GeO20光催化剂能带结构示意图和可能的电荷迁移路径[101]
Fig.8 Band structure and possible photo-generated charges migration path of Ba2+ and Mg2+ co-doped Bi12GeO20 photocatalyst[101]
[1]
Low J X, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A . Adv. Mater., 2017,29:1601694. http://doi.wiley.com/10.1002/adma.v29.20

doi: 10.1002/adma.v29.20     URL    
[2]
He R A, Xu D F, Cheng B, Yu J G, Ho W K . Nanoscale Horiz., 2018,3:464. https://www.ncbi.nlm.nih.gov/pubmed/32254135

doi: 10.1039/c8nh00062j     URL     pmid: 32254135
[3]
Li J, Li H, Zhan G M, Zhang L Z . Acc. Chem. Res., 2017,50:112. https://www.ncbi.nlm.nih.gov/pubmed/28009157

doi: 10.1021/acs.accounts.6b00523     URL     pmid: 28009157
[4]
丁星(Ding X), 杨祥龙(Yang X L), 熊中亮(Xiong Z L), 陈浩(Chen H), 张礼知(Zhang L Z) . 化学进展 (Prog. Chem.), 2017,29:1115.
[5]
Zheng Z K, Xie W, Huang B B, Dai Y . Chem. Eur. J., 2018,24:18322. https://www.ncbi.nlm.nih.gov/pubmed/30183119

doi: 10.1002/chem.201803705     URL     pmid: 30183119
[6]
Cheng H F, Huang B B, Dai Y . Nanoscale, 2014,6:2009.
[7]
Zhang K, Wang J, Jiang W J, Yao W Q, Yang H P, Zhu Y F . Appl. Catal. B: Environ., 2018,232:175.
[8]
刘迪(Liu D), 刘骞(Liu Q), 王永刚(Wang Y G), 朱永法(Zhu Y F) . 化学进展 (Prog. Chem.), 2018,30:703.
[9]
Yuan L, Lu K Q, Zhang F, Fu X Z, Xu Y J . Appl. Catal. B: Environ., 2018,237:424.
[10]
Zhou M, Wang S B, Yang P J, Huang C J, Wang X C . ACS Catal., 2018,8:4928.
[11]
Zhang S J, Huang W X, Fu X L, Chen G L, Meng S G, Chen S F . J. Hazard. Mater., 2018,360:182. https://www.ncbi.nlm.nih.gov/pubmed/30099361

doi: 10.1016/j.jhazmat.2018.07.108     URL     pmid: 30099361
[12]
Gao W Q, Zhang X F, Su X W, Wang F L, Liu Z H, Liu B S, Zhan J, Liu H, Sang Y H . Chem. Eng. J., 2018,346:77. https://linkinghub.elsevier.com/retrieve/pii/S1385894718305837

doi: 10.1016/j.cej.2018.04.017     URL    
[13]
Tien L C, Shen I C . Mater. Lett., 2017,202:73. https://linkinghub.elsevier.com/retrieve/pii/S0167577X17308030

doi: 10.1016/j.matlet.2017.05.068     URL    
[14]
Nogueira A E, Longo E, Leite E R, Camargo E R . J. Colloid Interf. Sci., 2014,415:89.
[15]
Jia K L, Qu J, Hao S M, An F, Jing Y Q, Yu Z Z . J. Colloid Interf. Sci., 2017,506:255. https://www.ncbi.nlm.nih.gov/pubmed/28735199

doi: 10.1016/j.jcis.2017.07.040     URL     pmid: 28735199
[16]
Wang T, Ma C C, Wu D, Liu X L, Liu Y, Wei M B, Liu Z, Huo P W, Yan Y S . Nano, 2017,12:13.
[17]
Noh T H, Hwang S W, Kim J U, Yu H K, Seo H, Ahn B, Kim D W, Cho I S . Ceram. Int., 2017,43:12102.
[18]
Zhu X Q, Zhang J L, Chen F . Chemosphere, 2010,78:1350. https://www.ncbi.nlm.nih.gov/pubmed/20116829

doi: 10.1016/j.chemosphere.2010.01.002     URL     pmid: 20116829
[19]
Ren L, Lu S Y, Fang J Z, Wu Y, Chen D Z, Huang L Y, Chen Y F, Cheng C, Liang Y, Fang Z Q . Catal. Today, 2017,281:656.
[20]
Dai H, Song Z W . Ceram. Int., 2015,41:853.
[21]
Fang G L, Wang L H, Zhang G, Yan X H, Wang D Y . Ceram. Int., 2018,44:16388.
[22]
Lu Y T, Chen L Y, Huang Y L, Cheng H, Kim S I, Seo H J . J. Alloy. Compd., 2015,640:226.
[23]
Oliveira T M, Santos C, Lima A F, Lalic M V . J. Alloy. Compd., 2017,720:187.
[24]
Hou J G, Qu Y F, Krsmanovic D, Ducati C, Eder D, Kumar R V . Chem. Commun., 2009,26:3937. https://www.ncbi.nlm.nih.gov/pubmed/19662258

doi: 10.1039/b906290d     URL     pmid: 19662258
[25]
Lee H, Reddy D A, Kim Y, Chun S Y, Ma R, Kumar D P, Song J K, Kim T K . ACS Sustain. Chem. Eng., 2018,6:16734. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04000

doi: 10.1021/acssuschemeng.8b04000     URL    
[26]
Xi Q Y, Gao G, Jin M Y, Zhang Y Q, Zhou H, Wu C Q, Zhao Y X, Wang L D, Guo P R, Xu J W . Appl. Surf. Sci., 2019,471:714. https://linkinghub.elsevier.com/retrieve/pii/S0169433218333695

doi: 10.1016/j.apsusc.2018.12.033     URL    
[27]
Li Y J, Yin Z H, Ji G R, Liang Z Q, Xue Y J, Guo Y C, Tian J, Wang X Z, Cui H Z . Appl. Catal. B: Environ., 2019,246:12. https://linkinghub.elsevier.com/retrieve/pii/S0926337319300517

doi: 10.1016/j.apcatb.2019.01.051     URL    
[28]
Bai S, Wang L L, Li Z Q, Xiong Y J . Adv. Sci., 2017,4:1600216. https://www.ncbi.nlm.nih.gov/pubmed/28105398

doi: 10.1002/advs.201600216     URL     pmid: 28105398
[29]
Sajan C P, Wageh S, Al-Ghamdi A A, Yu J G, Cao S W . Nano Res., 2016,9:3. http://link.springer.com/10.1007/s12274-015-0919-3

doi: 10.1007/s12274-015-0919-3     URL    
[30]
Naresh G, Hsieh P L, Meena V, Lee S K, Chiu Y H, Madasu M, Lee A T, Tsai H Y, Lai T H, Hsu Y J, Lo Y C, Huang M H . ACS Appl. Mater. Interf., 2019,11:3582. https://www.ncbi.nlm.nih.gov/pubmed/30592409

doi: 10.1021/acsami.8b19197     URL     pmid: 30592409
[31]
Günnemann C, Haisch C, Fleisch M, Schneider J, Emeline A V, Bahnemann D W . ACS Catal., 2019,9:1001. https://pubs.acs.org/doi/10.1021/acscatal.8b04115

doi: 10.1021/acscatal.8b04115     URL    
[32]
Li Y J, Ye X Z, Cao S X, Yang C J, Wang Y, Ye J F . Chem. Eur. J., 2019,25:3032. https://www.ncbi.nlm.nih.gov/pubmed/30602067

doi: 10.1002/chem.201805356     URL     pmid: 30602067
[33]
Chen Q, Chen X J, Fang M L, Chen J Y, Li Y J, Xie Z X, Kuang Q, Zheng L S . J. Mater. Chem. A, 2019,7:1334.
[34]
Chen P, Sun Y J, Liu H J, Zhou Y, Jiang G M, Lee S C, Zhang Y X, Dong F . Nanoscale, 2019,11:2366. https://www.ncbi.nlm.nih.gov/pubmed/30666330

doi: 10.1039/c8nr09147a     URL     pmid: 30666330
[35]
Liu J, Lu W, Tian B S, Hu B, Jin L, Shi Y R, Li L L, Wang Z L . CrystEngComm, 2016,18:7715.
[36]
Wan Z, Zhang G K . Sci. Rep., 2014,4:6298. https://www.ncbi.nlm.nih.gov/pubmed/25199641

doi: 10.1038/srep06298     URL     pmid: 25199641
[37]
Ji W D, Li M M, Zhang G K, Wang P . Dalton Trans., 2017,46:10586. https://www.ncbi.nlm.nih.gov/pubmed/28168266

doi: 10.1039/c6dt04864a     URL     pmid: 28168266
[38]
Song J, Zhang L, Yang J, Hu J S, Huang X H . J. Alloy. Compd., 2018,735:660.
[39]
Song J, Zhang L, Yang J, Huang X H, Hu J S . Mater. Des., 2017,123:128.
[40]
Song J, Zhang L, Yang J, Huang X H, Hu J S . Ceram. Int., 2017,43:9214.
[41]
Lin X P, Huang F Q, Wang W D, Shi J L . Scripta Mater., 2007,56:189.
[42]
Allende-González P, Laguna-Bercero M Á, Barrientos L, Valenzuela M L, Díaz C . ACS Appl. Energy Mater., 2018,1:3159.
[43]
Wang D, Liu Z P, Yang W M . ACS Catal., 2018,8:7270.
[44]
Mu Q Q, Zhu W, Yan G B, Lian Y B, Yao Y Z, Li Q, Tian Y Y, Zhang P, Deng Z, Peng Y . J. Mater. Chem. A, 2018,6:21110.
[45]
Wang D K, Li X, Zheng L L, Qin L M, Li S, Ye P, Li Y, Zou J P . Nanoscale, 2018,10:19509. https://www.ncbi.nlm.nih.gov/pubmed/30320326

doi: 10.1039/c8nr06691d     URL     pmid: 30320326
[46]
Guo Y Z, Jia H L, Yang J H, Yin H, Yang Z, Wang J F, Yang B C . Phys. Chem. Chem. Phys., 2018,20:22296. https://www.ncbi.nlm.nih.gov/pubmed/30124712

doi: 10.1039/c8cp04241a     URL     pmid: 30124712
[47]
Qiao X B, Pu Y F, Li Y Z, Huang Y L, Cheng H, Seo H J . Powder Technol., 2016,287:277.
[48]
Deng C, Wei X X, Liu R X, Du Y J, Pan L, Zhong X, Song J H . Front. Mater. Sci., 2018,12:415.
[49]
Darabdhara G, Das M R . J. Hazard. Mater., 2019,368:365. https://www.ncbi.nlm.nih.gov/pubmed/30690389

doi: 10.1016/j.jhazmat.2019.01.010     URL     pmid: 30690389
[50]
Kamranifar M, Allahresani A, Naghizadeh A . J. Hazard. Mater., 2019,366:545. https://www.ncbi.nlm.nih.gov/pubmed/30572294

doi: 10.1016/j.jhazmat.2018.12.046     URL     pmid: 30572294
[51]
Zhang C, Zhou Y M, Bao J H, Sheng X L, Fang J S, Zhao S, Zhang Y W, Chen W X . ACS Appl. Mater. Interf., 2018,10:18796. https://www.ncbi.nlm.nih.gov/pubmed/29745646

doi: 10.1021/acsami.8b04947     URL     pmid: 29745646
[52]
Zhu L Y, Li H, Xia P F, Liu Z R, Xiong D H . ACS Appl. Mater. Interf., 2018,10:39679. https://www.ncbi.nlm.nih.gov/pubmed/30365889

doi: 10.1021/acsami.8b13782     URL     pmid: 30365889
[53]
Chen P, Chen L, Zeng Y, Ding F, Jiang X, Liu N, Au C T, Yin S F . Appl. Catal. B: Environ., 2018,234:311.
[54]
Meng A Y, Wu S, Cheng B, Yu J G, Xu J S . J. Mater. Chem. A, 2018,6:4729. http://xlink.rsc.org/?DOI=C7TA10073F

doi: 10.1039/C7TA10073F     URL    
[55]
Wang Y F, Zhang Y, Yan L, Li J, Wang C, Fu F . Ceram. Int., 2017,43:15965. https://linkinghub.elsevier.com/retrieve/pii/S0272884217318928

doi: 10.1016/j.ceramint.2017.08.181     URL    
[56]
Zhang L, Zhang X, Zou Y, Xu Y H, Pan C L, Hu J S, Hou C M . CrystEngComm, 2015,17:6527.
[57]
Huang X H, Zhang L, Song J, Cao X F, Guo Y C . RSC Adv., 2016,6:92560.
[58]
Yang Z, Fan H Q, Wang X, Long C B . J. Phys. Chem. Solid., 2013,74:1739.
[59]
Meng S G, Cui Y J, Wang H, Zheng X Z, Fu X L, Chen S F . Dalton Trans., 2018,47:12671. https://www.ncbi.nlm.nih.gov/pubmed/30151533

doi: 10.1039/c8dt02406e     URL     pmid: 30151533
[60]
Hou D F, Hu X L, Wen Y W, Shan B, Hu P, Xiong X Q, Qiao Y, Huang Y H . Phys. Chem. Chem. Phys., 2013,15:20698. https://www.ncbi.nlm.nih.gov/pubmed/24194100

doi: 10.1039/c3cp53945h     URL     pmid: 24194100
[61]
Bibi R, Huang H L, Kalulu M, Shen Q H, Wei L F, Oderinde O, Li N X, Zhou J C . ACS Sustain. Chem. Eng., 2019,7:4868.
[62]
Ma D D, Shi J W, Sun D K, Zou Y J, Cheng L H, He C, Wang H K, Niu C M, Wang L Z . Appl. Catal. B: Environ., 2019,244:748.
[63]
Wan Z, Zhang G K, Wang J T, Zhang Y L . RSC Adv., 2013,3:19617.
[64]
Cai J S, Huang J Y, Lai Y K . J. Mater. Chem. A, 2017,5:16412.
[65]
Chen Y X, Shi T T, Liu P Y, Ma X G, Shui L L, Shang C Q, Chen Z H, Wang X, Kempa K, Zhou G F . J. Mater. Chem. A, 2018,6:19167.
[66]
Ruan X W, Hu H, Che H N, Che G B, Li C M, Liu C B, Dong H J . J. Alloy. Compd., 2019,773:1089. https://linkinghub.elsevier.com/retrieve/pii/S0925838818335709

doi: 10.1016/j.jallcom.2018.09.312     URL    
[67]
Li X W, Wang L, Zhang L, Zhuo S P . Appl. Surf. Sci., 2017,419:586.
[68]
Nan Y H, Yang D, Tong Z W, Sun Y Y, Jiang Z Y . Mater. Res. Bull., 2017,93:91.
[69]
Hou J G, Wang Z, Jiao S Q, Zhu H M . J. Hazard. Mater., 2011,192:1772. https://www.ncbi.nlm.nih.gov/pubmed/21794977

doi: 10.1016/j.jhazmat.2011.07.013     URL     pmid: 21794977
[70]
Zhang X, Zhang L, Hu J S, Pan C L, Hou C M . Appl. Surf. Sci., 2015,346:33.
[71]
Zhang L, Zhang X, Huang Y Q, Pan C L, Hu J S, Hou C M . RSC Adv., 2015,5:30239.
[72]
Zhu P F, Chen Y J, Duan M, Ren Z H, Hu M . Catal. Sci. Technol., 2018,8:3818.
[73]
Li F T, Wang Q, Ran J R, Hao Y J, Wang X J, Zhao D S, Qiao S Z . Nanoscale, 2015,7:1116. https://www.ncbi.nlm.nih.gov/pubmed/25482071

doi: 10.1039/c4nr05451b     URL     pmid: 25482071
[74]
Zhou W, Fu H G . Inorg. Chem. Front., 2018,5:1240.
[75]
Zhang L, Zou Y, Song J, Pan C L, Sheng S D, Hou C M . RSC Adv., 2016,6:26038.
[76]
Sun H L, Li J, Zhang G K, Li N . J. Mol. Catal. A: Chem., 2016,424:311.
[77]
Deng F, Zhang Q, Yang L X, Luo X B, Wang A J, Luo S L, Dionysiou D D . Appl. Catal. B: Environ., 2018,238:61.
[78]
Jia Y F, Li S P, Gao J Z, Zhu G Q, Zhang F C, Shi X J, Huang Y, Liu C L . Appl. Catal. B: Environ., 2019,240:241.
[79]
Liu D N, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . Appl. Catal. B: Environ., 2019,243:576.
[80]
He J B, Zhang M, Primo A, García H, Li Z H . J. Mater. Chem. A, 2018,6:19782.
[81]
Wang X F, Mao W W, Wang Q, Zhu Y Y, Min Y G, Zhang J, Yang T, Yang J P, Li X A, Huang W . RSC Adv., 2017,7:10064.
[82]
Huang Y, Zhang X Y, Zhu G X, Gao Y J, Cheng Q F, Cheng X W . Sep. Purif. Technol., 2019,215:490.
[83]
de Góis M M, Araújo W D, da Silva R B, da Luz G E, Soares J M . J. Alloy. Compd., 2019,785:598.
[84]
Gong G, Liu Y H, Mao B D, Tan L L, Yang Y L, Shi W D . Appl. Catal. B: Environ., 2017,216:11.
[85]
Gong Y, Quan X, Yu H T, Chen S . Appl. Catal. B: Environ., 2017,219:439.
[86]
Xu B R, Li Y D, Gao Y Q, Liu S, Lv D, Zhao S J, Gao H, Yang G Q, Li N, Ge L . Appl. Catal. B: Environ., 2019,246:140.
[87]
Chen X X, Li R, Pan X Y, Huang X T, Yi Z G . Chem. Eng. J., 2017,320:644.
[88]
Wen X J, Niu C G, Huang D W, Zhang L, Liang C, Zeng G M . J. Catal., 2017,355:73.
[89]
Wen X J, Niu C G, Zhang L, Liang C, Guo H, Zeng G M . J. Catal., 2018,358:141.
[90]
Lv C N, Zhang L, Zhu Y X, Zhang X, Hu J S, Hou C M . J. Taiwan Inst. Chem. Eng., 2019,97:370.
[91]
Lv C N, Zhang L, Hu J S, Huang X H, Hou C M . Ceram. Int., 2019,45:5249. https://www.ncbi.nlm.nih.gov/pubmed/16871611

doi: 10.1002/anie.200602516     URL     pmid: 16871611
[92]
Lv C N, Zhang L, Zhu Y X, Zhang X, Hu J S, Hou C M . Ceram. Int., 2019,45:6804.
[93]
Cheng Z, Fang W, Zhao T S, Fang S Q, Bi J H, Liang S J, Li L Y, Yu Y, Wu L . ACS Appl. Mater. Interf., 2018,10:41415. https://www.ncbi.nlm.nih.gov/pubmed/30383354

doi: 10.1021/acsami.8b16013     URL     pmid: 30383354
[94]
Valero-Romero M J, Santaclara J G, Oar-Arteta L, van Koppen L V, Osadchii D Y, Gascon J, Kapteijn F . Chem. Eng. J., 2019,360:75.
[95]
Zhao Z W, Fan J Y, Deng X Y, Liu J . Chem. Eng. J., 2019,360:1517.
[96]
Jiamprasertboon A, Powell M J, Dixon S C, Quesada-Cabrera R, Alotaibi A M, Lu Y, Zhuang A Y, Sathasivam S, Siritanon T, Parkin I P, Carmalt C J . J. Mater. Chem. A, 2018,6:12682.
[97]
Jourshabani M, Shariatinia Z, Achari G, Langford C H, Badiei A . J. Mater. Chem. A, 2018,6:13448.
[98]
Wang Y J, Chen J, Liu L M, Xi X X, Li Y M, Geng Z L, Jiang G Y, Zhao Z . Nanoscale, 2019,11:1618. https://www.ncbi.nlm.nih.gov/pubmed/30306173

doi: 10.1039/c8nr05807e     URL     pmid: 30306173
[99]
Yan W, Yan L, Jing C Y . Appl. Catal. B: Environ., 2019,244:475.
[100]
Zhang X B, Zhang L, Hu J S, Huang X H . RSC Adv., 2016,6:32349.
[101]
Chen Y, Fang J Z, Lu S Y, Cen C P, Cheng C, Ren L, Feng W H, Fang Z Q . RSC Adv., 2016,6:15745.
[102]
Kim B H, Lim T H, Roh J W, Lee S G, Ju C S, Park S S, Hong S S, Lee G D . Reac. Kinet. Mech. Catal., 2010,99:217.
[103]
Wang S L, Zhu Y, Luo X, Huang Y, Chai J W, Wong T I, Xu G Q . Adv. Funct. Mater., 2018,28:1705357.
[104]
Tian J, Yan T J, Qiao Z, Wang L L, Li W J, You J M, Huang B B . Appl. Catal. B: Environ., 2017,209:566.
[105]
Shen X F, Zhang Y, Duoerkun G, Shi Z, Liu J S, Chen Z G, Wong P K, Zhang L S . ChemCatChem, 2019,11:1362.
[106]
Qiao P Z, Sun B J, Li H Z, Pan K, Tian G H, Wang L, Zhou W . Chem. Asian J., 2019,14:177. https://www.ncbi.nlm.nih.gov/pubmed/30398305

doi: 10.1002/asia.201801428     URL     pmid: 30398305
[107]
Zhang M M, Lai C, Li B S, Huang D L, Zeng G M, Xu P, Qin L, Liu S Y, Liu X G, Yi H, Li M F, Chu C C, Chen Z . J. Catal., 2019,369:469.
[108]
Zhang Z Y, Huang J D, Fang Y R, Zhang M Y, Liu K C, Dong B . Adv. Mater., 2017,29:1606688.
[109]
Wu X Y, Li M M, Li J, Zhang G K, Yin S . Appl. Catal. B: Environ., 2017,219:132.
[110]
Zhang L, Cao X F, Ma Y L, Chen X T, Xue Z L . New J. C., 2010,34:2027.
[111]
Sun A W, Chen H, Song C Y, Jiang F, Wang X, Fu Y S . RSC Adv., 2013,3:4332.
[112]
Liu Y, Guo H G, Zhang Y L, Tang W H, Cheng X, Li W . Chem. Eng. J., 2018,343:128.
[113]
Wan Z, Zhang G K, Wu X Y, Yin S . Appl. Catal. B: Environ., 2017,207:17.
[114]
Qian X, Yue D, Tian Z, Reng M, Zhu Y, Kan M, Zhang T, Zhao Y . Appl. Catal. B: Environ., 2016,193:16.
[115]
Ma D D, Shi J W, Zou Y J, Fan Z Y, Ji X, Niu C M, Wang L Z . Nano Energy, 2017,39:183.
[116]
Basith M A, Ahsan R, Zarin I, Jalil M A . Sci. Rep., 2018,8:11090. https://www.ncbi.nlm.nih.gov/pubmed/30038398

doi: 10.1038/s41598-018-29402-w     URL     pmid: 30038398
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[6] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[13] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[14] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[15] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.