English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 328-335 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池的安全性技术

夏兰, 李素丽, 艾新平*, 杨汉西   

  1. 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2010-10-01 修回日期:2010-10-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:xpai@whu.edu.cn E-mail:xpai@whu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20773095)、国家高技术发展计划(863)项目(No.2007AA03Z224)和国家重点基础研究发展计划(973)项目(No.2009CB220103)资助

Safety Enhancing Methods for Li-Ion Batteries

Xia Lan, Li Suli, Ai Xinping*, Yang Hanxi   

  1. College of Chemistry and Molecule Science, Wuhan University, Wuhan 430072, China
  • Received:2010-10-01 Revised:2010-10-01 Online:2011-03-24 Published:2011-01-26

锂离子电池兼具高比能和高比功率特性,是目前最为理想的动力与储能电源体系。然而,由于存在安全隐患,大容量和高功率锂离子电池的商业化应用受到了很大程度的限制。因此,发展自激发安全保护技术,提高锂离子电池的使用安全性,是近年来锂离子电池的研究热点之一。本文简要介绍了几种旨在提高锂离子电池安全性的自激发安全保护技术的作用原理,包括可聚合单体添加剂、氧化还原穿梭剂、电压敏感隔膜和温度敏感电极,分析了这些技术的应用特点和研究现状,并对相关领域的发展方向进行了展望。

Li-ion battery (LIB) has been considered as a preferred power source for electric vehicles and energy storage devices due to its high energy density and high rate capability. However, the safety concern severely hinders the developments and applications of large capacity or high power LIBs in these fields. To solve this problem,mang efforts have been focused on the development of internal and self-activating safety mechanisms for LIBs in recent years. This paper is intended to review the recent progresses in this field, including polymerizable electrolyte additives, redox shuttle, potential-sensitive separator, and temperature-sensitive electrode. The problems and further orientation in this research area are discussed after a brief introduction to their working mechanisms and research status.

中图分类号: 

()

[1] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[2] Sun Y K, Myung S T, Park B C, et al. Nature Materials, 2009, 8: 320-324
[3] Gao X P, Yang H X. Energy Environ. Sci., 2010, 3: 174-189
[4] Goodenough J B, Kim Y. Chem. Mater., 2010, 22: 587-603
[5] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[6] Ohsaki T, Kishi T, Kuboki T, et al. J. Power Sources, 2005, 146: 97-100
[7] Zhang Z, Fouchard D, Rea J R. J. Power Sources, 1998, 70: 16-20
[8] Du Pasquier A, Disma F, Bowmer T, et al. J. Electrochem. Soc., 1998, 145: 472-477
[9] Yamaki J I, Baba Y, Katayama N, et al. J. Power Sources, 2003, 119/121: 789-793
[10] Baba Y, Okada S, Yamaki J I. Solid State Ionics, 2002, 148: 311-316
[11] Tobishima S I, Takei K, Sakurai Y, Yamaki J I. J. Power Sources, 2000, 90: 188-195
[12] Tobishima S, Yamaki J. J. Power Sources, 1999, 81/82: 882-886
[13] Leising R A, Palazzo M J, Takeuchi E S, et al. J. Power Sources, 2001, 97/98: 681-683
[14] Xiao L F, Ai X P, Cao Y L, et al. Electrochim. Acta, 2004, 49: 4189-4196
[15] Mao H Y, Von S U. US 5776627, 1998
[16] Tobishima S, Ogino Y, Watanabe Y. J. Appl. Electrochem., 2003, 33: 143-150
[17] Watanabe Y, Yamazaki Y, Yasuda K, Morimoto H, et al. J. Power Sources, 2006, 160: 1375-1380
[18] Feng X M, Ai X P, Yang H X. J. Appl. Electrochem., 2004, 34: 1199-1203
[19] Lee H, Lee J H, Ahn S, et al. Electrochem. Solid-State Lett., 2006, 9: A307-A310
[20] Reimers J N, Way B M. US 6074777, 2000
[21] Kuboki T, Ohsaki T. US 6413679, 2002
[22] Mao H. US 5879834, 1999
[23] Korepp C, Kernb W, Lanzer E A, et al. J. Power Sources, 2007, 174: 637-642
[24] He Y B, Liu Q, Tang Z Y, et al. Electrochim. Acta, 2007, 52: 3534- 3540
[25] Feng J K, Cao Y L, Ai X P, Yang H X. Electrochim. Acta, 2008, 53: 8265-8268
[26] Behl W K, Chin D T. J. Electrochem. Soc., 1988, 135: 16-21
[27] Behl W K, Chin D T. J. Electrochem. Soc., 1988, 135: 21-25
[28] Behl W K, Chin D T. J. Electrochem. Soc., 1989, 136: 2305-2310
[29] Abraham M, Pasquariello D M, Willstaedt E B. J. Electrochem. Soc., 1990, 137: 1856-1858
[30] Golovin M N, Wilkinson D P. J. Electrochem. Soc., 1992, 139: 5-10
[31] Richardson T J. J. Electrochem. Soc., 1996, 143: 3992-3996
[32] Cha C S, Ai X P, Yang H X. J. Power Sources, 1995, 54: 255-258
[33] Hammerich O, Parker V D. Electrochim. Acta, 1973, 18: 537-541
[34] Tran-Van F, Provencher M. Electrochim. Acta, 1999, 44: 2789-2792
[35] Asachi M, Tanaka K, Sekai K. J. Electrochem. Soc., 1999, 146: 1256-1261
[36] Chen J, Buhrmester C, Dahn J R. Electrochem. Solid-State Lett., 2005, 8: A59-A62
[37] Zhang Z C, Zhang L, Schlueter J A, et al. J. Power Sources, 2010, 195: 4957-4962
[38] Feng J K, Ai X P, Cao Y L, Yang H X. Electrochem. Commun., 2007, 9: 25-30
[39] Moshuchak L M, Bulinski M, Lamanna W M, et al. Electrochem. Commun., 2007, 9: 1497-1501
[40] Chen Z H, Amine K. Electrochim. Acta, 2007, 53: 453-458
[41] Moshurchak L M, Buhrmester C, Wang R L, Dahn J R. Electrochim. Acta, 2007, 52: 3779-3784
[42] Taggougui M, Carre B, Willmann P, Lemordant D. J. Power Sources, 2007, 174: 1069-1073
[43] Moshurchak L M, Buhrmester C, Dahn J R. J. Eletrochem. Soc., 2008, 155: A129-A131
[44] Chen Z H, Amine K. Electrochem. Commun., 2007, 9: 703-707
[45] Weng W, Zhang Z C, Redfern P C, et al. J. Power sources, 2010/doi: 10.1016
[46] Chen Z H, Qin Y, Amine K. Electrochim. Acta, 2009, 54: 5605-5613
[47] Buhrmester C, Moshurchak L M, Wang R L, Dahn J R. J. Electrochem. Soc., 2006, 153: A1800-A1804
[48] Wang Q, Zakeeruddin S M, Exnar I, et al. Electrochem. Commun., 2008, 10: 651-654
[49] Feng J K, Ai X P, Cao Y L, Yang H X. J. Power Sources, 2006, 161: 545-549
[50] 艾新平(Ai X P), 曹余良(Cao Y L), 杨汉西(Yang H X). 电化学(Electrochemistry), 2010, 16(1): 6-10
[51] Chen G, Richardson T J. Electrochem. Solid-State Lett., 2004, 7: A23-A26
[52] Li S L, Ai X P, Yang H X, Cao Y L. J. Power Sources, 2009, 189: 771-774
[53] Li S L, Ai X P, Feng J K, et al. J. Power Sources, 2008, 184: 553-556
[54] Xiao L F, Ai X P, Cao Y L, et al. Electrochem. Commun., 2005, 7: 589-592
[55] Chen G Y, Richardson T J. J. Electrochem. Soc., 2010, 157: A735-A740
[56] Feng X M, Ai X P, Yang H X. Electrochem. Commun., 2004, 6: 1021-1024

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
阅读次数
全文


摘要

锂离子电池的安全性技术