English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1742-1750 前一篇   后一篇

• 综述与评论 •

倍半萜EnglerinA及其类似物的合成

乐贵洲*, 黄乾明, 邹平   

  1. 四川农业大学生命科学与理学院 雅安 625014
  • 收稿日期:2011-12-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 乐贵洲 E-mail:yueguizhou@sicau.edu.cn
  • 基金资助:

    四川省教育厅重点项目(No.00724900)及四川农业大学双支计划(No.00770104)资助

Synthesis of Sesquiterpenoids: Englerin A and Its Analogues

Yue Guizhou, Huang Qianming, Zou Ping   

  1. College of Biology and Science, Sichuan Agricultural University, Ya'an 625014, China
  • Received:2011-12-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
2008年从东非大戟科属植物Phyllanthus engleri 中分离的吉玛烷型倍半萜(-)-englerin A对6种肾脏癌细胞展示了非常好的抑制活性(GI50:1-87nm),甚至比紫杉醇的抗癌活性高1-2个数量级。这类倍半萜因其结构特点和显著的抗癌活性引起了有机化学界的广泛关注, 短短几年之内,就有多条全合成路线先后被报道。本文主要综述了(-)-englerin A及其类似物的合成进展,按照各个研究小组运用的关键策略加以分类,来阐述他们各自的合成特点。
In 2008, the guaiane sesquiterpene (-)-englerin A, isolated from the genus phyllanthus engleri in East Africa, selectively inhibited the growth of renal cancer cell lines with GI50 values ranging from 1—87nm. It was found to be 1—2 orders of magnitude more potent than taxol against certain cell lines. The promising bioactivity and the structural complexity of (-)-englerin A and its analogues have attracted many organic chemists all over the world. Many studies toward the total synthesis of englerin A and its analogues were reported in three years. The article reviews the progress on the synthesis of englerin A and its analogues,We classified these syntheses according to key strategies for syntheses of englerin A and its analogues and elaboratted the characteristics of these synthetic routes. Contents 1 Introduction
2 Key strategies for syntheses of englerin A and its analogues
2.1 Ring-closing metathesis (RCM)
2.2 Gold(Ⅰ)-catalytic domino reaction
2.3 Oxopyrilium [5+2] cycloaddition
2.4 Rh(Ⅱ)-catalytic [4+3] cycloaddition
2.5 Organocatalytic [4+3] cycloaddition
2.6 Transannular epoxide opening reaction
2.7 SmI2-mediated cyclization
3 Conclusions and outlook

中图分类号: 

()
[1] Ratnayake R, Covell D, Ransom T T, Gustafson K R, Beuler J A. Org. Lett., 2009, 11: 57-60
[2] Beutler J A, Ratnayake R, Covell D, Johnson T R. WO 2009088854, 2009
[3] Akee R K, Ratnayake R, McMaho J B, Beutler J A. J. Nat. Prod., 2012, 75: 459-463
[4] Schuster M, Blechert S. Angew. Chem. Int. Ed., 1997, 36: 2036-2056
[5] Nicolaou K C, Bulger P G, Sarlah D. Angew. Chem. Int. Ed., 2005, 44: 4490-4527
[6] Willot M, Radtke L, Konning D, Frohlich R, Gessner V H, Strohmann C, Christmann M. Angew. Chem. Int. Ed., 2009, 48: 9105-9108
[7] Radtke L, Willot M, Sun H, Ziegler S, Sauerland S, Strohmann C, Fröhlich R, Habenberger P, Waldmann H, Christmann M. Angew. Chem. Int. Ed., 2011, 50: 3992-4002
[8] Schreiber S L, Meyers H V, Wiberg K B. J. Am. Chem. Soc., 1986, 108: 8274-8277
[9] Jimeénez-Núñez E K, Echavarren A M. Chem. Rev., 2008, 108: 3326-3350
[10] Zhou Q, Chen X, Ma D. Angew. Chem. Int. Ed., 2010, 49: 3513-3516
[11] Jiménez-Nénez E K, Claverie C, Nieto-Oberhuber C, Echavarren A M. Angew. Chem. Int. Ed., 2006, 45: 5452-5455
[12] Jiménez-Nénez E, Molawi K, Echavarren A M. Chem. Commun., 2009, 7327-7329
[13] Peng G P, Tian G, Huang X F, Lou F C. Phytochemistry, 2003, 63: 877-881
[14] Huang S X, Yang J, Xiao W L, Zhu Y L, Li R T, Li L M, Pu J X, Li X, Li S H, Sun H D. Helv. Chim. Acta, 2006, 89: 1169-1175
[15] Molawi K, Delpont N, Echavarren A M. Angew. Chem. Int. Ed., 2010, 49: 3517-3519
[16] Echavarren P, Antonio M, Molawi K, Delpont N, Nicolas P R. WO 2011120886, 2011
[17] Willot M, Christmann M. Nat. Chem., 2010, 2: 519-520
[18] Singh V, Krishna U M, Vikrant, Trivedi G K. Tetrahedron, 2008, 64: 3405-3428
[19] Pellissier H. Adv. Synth. Catal., 2011, 353: 189-218
[20] Wender P A, Kogen H, Lee H Y, Munger J D, Wilhelm R S, Williams P D. J. Am. Chem. Soc., 1989, 111: 8957-8958
[21] Wender P A, Jesudason C D, Nakahira H, Tamura N, Tebbe A L, Ueno Y. J. Am. Chem. Soc., 1997, 119: 12976-12977
[22] Ali M A, Bhogal N, Findlay J B C, Fishwick C W G. J. Med. Chem., 2005, 48: 5655-5658
[23] Roethle P A, Hernandez P T, Trauner D. Org. Lett., 2006, 8: 5901-5904
[24] Li Y, Nawrat C C, Pattenden G, Winne J M. Org. Biomol. Chem., 2009, 7: 639-640
[25] Ishida K, Kusama H, Iwasawa N. J. Am. Chem. Soc., 2010, 132: 8842-8843
[26] Burns N, Witten M R, Jacobsen E N. J. Am. Chem. Soc., 2011, 133: 14578-14581
[27] Nicolaou K C, Kang Q A, Ng S Y, Chen D Y K. J. Am. Chem. Soc., 2010, 132: 8219-8222
[28] Chen K P, Chen D Y K. ChemMedChem, 2011, 6: 420-423
[29] Doyle M P, Forbes D C. Chem. Rev., 1998, 98: 911-936
[30] Maas G. Chem. Soc. Rev., 2004, 33: 183-190
[31] Padwa A, Krumpe K E. Tetrahedron, 1992, 48: 5385-5386
[32] Navickas V, Ushakov D B, Maier M E, Stroöbele M, Meyer H J. Org. Lett., 2010, 12: 3418-3421
[33] Xu J, Caro-Diaz E J E, Theodorakis E A. Org. Lett., 2010, 12: 3708-3711
[34] Harmata M, Ghosh S K, Hong X C, Wacharasindhu S, Kirchhoefer P. J. Am. Chem. Soc., 2003, 125: 2058-2059
[35] Sun B F, Wang C L, Ding R, Xu J Y, Lin G Q. Tetrahedron Lett., 2010, 52: 2155-2158
[36] Wang C L, Sun B F, Chen S G, Lin G Q, Ding R, Xu J Y, Shan Y J. Synlett, 2012, 263-266
[37] Ushakov D B, Navickas V, Ströbele M, Maichle-Mössmer C, Sasse F, Maier M E. Org. Lett., 2011, 13: 2090-2093
[38] Namy J L, Girard P, Kagan H B. New J. Chem., 1977, 1: 5-7
[39] Nicolaou K C, Ellery P S, Chen J S. Angew. Chem. Int. Ed., 2009, 48: 7140-7165
[40] Li Z, Nakashige M, Chain W J. J. Am. Chem. Soc., 2011, 133: 6553-6556
[41] Chain W J. Synlett, 2011, 2605-2608
[42] Szostak M, Procter D J. Angew. Chem. Int. Ed., 2011, 50: 7737-7739
[43] Parmar D, Price K, Spain M, Matsubara H, Bradley P A, Procter D J. J. Am. Chem. Soc., 2011, 133: 2418-2490
[44] Pouwer R H, Richard J A, Tseng C C, Chen D Y K. Chem. Asian J., 2011, 7: 22-35
[45] 卢云宇(Lu Y Y), 姚和权(Yao H Q), 孙炳峰(Sun B F). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32: 1-12
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[7] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[8] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[9] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[10] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[11] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[12] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[13] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[14] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[15] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
阅读次数
全文


摘要

倍半萜EnglerinA及其类似物的合成