English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1298-1307 DOI: 10.7536/PC210736 前一篇   后一篇

• 综述与评论 •

RAFT链转移剂的选用原则及通用型RAFT链转移剂

尹航1,2, 李智1,2, 郭晓峰1,2, 冯岸超1,2,*(), 张立群1,2, 汤华燊3   

  1. 1 北京化工大学 有机无机复合材料国家重点实验室 北京 100029
    2 北京化工大学材料科学与工程学院 先进弹性体材料研究中心 北京 100029
    3 澳大利亚莫纳什大学化学学院 澳大利亚克莱顿VIC3800
  • 收稿日期:2021-07-28 修回日期:2021-12-14 出版日期:2022-04-01 发布日期:2022-04-01
  • 通讯作者: 冯岸超
  • 基金资助:
    有机-无机复合材料国家重点实验室(oic-202103015); 中国石油化工总公司(H2019485)

Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents

Hang Yin1,2, Zhi Li1,2, Xiaofeng Guo1,2, Anchao Feng1,2(), Liqun Zhang1,2, San Hoa Thang3   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology,Beijing 100029, China
    2 Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
    3 School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
  • Received:2021-07-28 Revised:2021-12-14 Online:2022-04-01 Published:2022-04-01
  • Contact: Anchao Feng
  • Supported by:
    Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology(oic-202103015); China Petrochemical Corporation(H2019485)

可逆加成-断裂链转移聚合(RAFT Polymerization)是目前最为常用的活性可控自由基聚合方法之一,因其产物分子量分布较窄、适用单体范围广、反应条件温和等优势得到了不同领域科学家的广泛应用。然而,科学家们在选择RAFT链转移剂(也称RAFT试剂)时,经常会忽略RAFT链转移剂与单体活性的匹配原则,导致在制备高活单体与低活单体的嵌段共聚物方面存在产物分子量分布宽、聚合速率慢,甚至反应无法成功进行的问题。基于此,本文首先综述聚合中RAFT链转移剂的选用原则,随后介绍近几年开发的一类同时适用于高/低活性单体聚合的通用型RAFT链转移剂(Universal/Switchable RAFT agent)的作用原理及适用条件,并着重探讨了基于通用型RAFT链转移剂制备高/低活性单体的嵌段共聚物的最新进展及应用。

Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT Polymerization) is currently one of the most common “Reversible Deactivation Radical Polymerization”, and it has been widely used by scientists in different directions because of its advantages such as narrow molecular weight distribution, wide range of applicable monomers, and mild reaction conditions. However, when scientists choose RAFT chain transfer agents (also known as RAFT agents) in polymerization, they often donot clearly understand the principle of matching the activity of RAFT chain transfer agents and monomers. Therefore, in the preparation of block copolymers of “more activated” monomers (MAMs) and “less activated” monomers (LAMs), there are problems that the product has a wide molecular weight distribution, a slow polymerization rate, and even the reaction cannot successfully continue. Based on this, we first review the selection principles of RAFT chain transfer agents in polymerization, and then introduce the principle and application conditions of a universal RAFT chain transfer agent (Universal RAFT agent) (including non switchable type and proton switchable type) developed in recent years that is suitable for the polymerization of MAMs/LAMs. Finally, the latest development and application of block copolymers with MAMs and LAMs based on Universal RAFT agents are discussed in depth.

Contents

1 Introduction

2 Structure of RAFT agents and selection principle

3 (Non Switchable) Universal RAFT agents

4 Proton Switchable RAFT agents

4.1 Chain transfer kinetics

4.2 Application of Switchable RAFT agents in aqueous solution

4.3 Effect of acids’ type and amount on Switchable RAFT agents’ activity

4.4 Removal method of end group

4.5 Block copolymer realized with Switchable RAFT agents

5 Conclusions and outlook

()
图1 RAFT聚合机理[2]
Fig. 1 Mechanism of RAFT polymerization[2]
图2 RAFT试剂结构
Fig. 2 Structures of RAFT agents
图3 (a)适用于聚合各种单体的RAFT试剂R基团的选用原则;(b)适用于聚合各种单体的RAFT试剂Z基团的选用原则[2]
Fig. 3 (a) Guidelines for selection of the R-group of RAFT agents for various polymerizations; (b) Guidelines for selection of the Z-group of RAFT agents for various polymerization[2]
图4 常见(无切换型)Universal RAFT试剂结构
Fig. 4 Structures of popular (Non Switchable)Universal RAFT agents
图5 Proton Switchable RAFT 试剂的作用机理与常见Proton Switchable RAFT试剂结构[50]
Fig. 5 Mechanism and structure of Proton Switchable RAFT[50]
表1 利用Switchable RAFT试剂制备的高活/低活嵌段共聚物
Table 1 MAMs-b-LAMs copolymer prepared with Switchable RAFT agent
图6 Switchable RAFT试剂制备pH刺激响应生物相容性嵌段共聚物[56]
Fig. 6 pH stimuli biocompatible block copolymer utilizing Switchable RAFT agents[56]
图7 利用Switchable RAFT试剂合成 CO2 响应梯度共聚物及其受控自组装[13]
Fig. 7 CO2-responsive gradient copolymers by Switchable RAFT polymerization and their controlled self-assembly
[1]
Rizzardo E, Chiefari J, Chong B Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Thang S H. Macromol. Symp., 1999, 143(1): 291.

doi: 10.1002/masy.19991430122     URL    
[2]
Perrier S. Macromolecules, 2017, 50(19): 7433.

doi: 10.1021/acs.macromol.7b00767     URL    
[3]
Xiang Q, Luo Y W. Prog. Chem., 2018, 30(1): 101.

doi: 10.7536/PC170836    
( 项青, 罗英武. 化学进展, 2018, 30(1): 101.)

doi: 10.7536/PC170836    
[4]
Peng J Y, Xu Q H, Ni Y Y, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2019, 10(16): 2064.

doi: 10.1039/C9PY00069K     URL    
[5]
Zapata-Gonzalez I, Hutchinson R A, Buback M, Rivera-Magallanes A. Chem. Eng. J., 2021, 415: 128970.

doi: 10.1016/j.cej.2021.128970     URL    
[6]
Wang Y J, Wang M Q, Bai L J, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2020, 11(12): 2080.

doi: 10.1039/C9PY01763A     URL    
[7]
Zetterlund P B, Perrier S. Macromolecules, 2011, 44(6): 1340.

doi: 10.1021/ma102689d     URL    
[8]
Guerrero-Sanchez C, Keddie D J, Saubern S, Chiefari J. ACS Comb. Sci., 2012, 14(7): 389.

doi: 10.1021/co300044w     pmid: 22709484
[9]
Hoff E A, Abel B A, Tretbar C A, McCormick C L, Patton D L. Polym. Chem., 2017, 8(34): 4978.

doi: 10.1039/C6PY01563H     URL    
[10]
Altintas O, Riazi K, Lee R, Lin C Y, Coote M L, Wilhelm M, Barner-Kowollik C. Macromolecules, 2013, 46 (20): 8079.

doi: 10.1021/ma401749h     URL    
[11]
Wang Z J, Ma Z Y, Zhang Z Y, Wu F, Jiang H, Jia X R. Polym. Chem., 2014, 5(24): 6893.

doi: 10.1039/C4PY00964A     URL    
[12]
Sun Z H, Choi B, Feng A C, Moad G, Thang S H. Macromolecules, 2019, 52(4): 1746.

doi: 10.1021/acs.macromol.8b02146     URL    
[13]
Guo X F, Zhang T R, Wu Y T, Shi W C, Choi B, Feng A C, Thang S H. Polym. Chem., 2020, 11(42): 6794.

doi: 10.1039/D0PY01109F     URL    
[14]
Moad G, Rizzardo E, Thang S H. Acc. Chem. Res., 2008, 41(9): 1133.

doi: 10.1021/ar800075n     URL    
[15]
Li Z, Li H, Sun Z H, Hao B T, Lee T C, Feng A C, Zhang L Q, Thang S H. Polym. Chem., 2020, 11(18): 3162.

doi: 10.1039/D0PY00318B     URL    
[16]
Sun Z H, Mi X, Yu Y N, Shi W C, Feng A C, Moad G, Thang S H. Macromolecules, 2021, 54(11): 5022.

doi: 10.1021/acs.macromol.1c00616     URL    
[17]
Chen C, Guo X F, Du J H, Choi B, Tang H L, Feng A C, Thang S H. Polym. Chem., 2019, 10(2): 228.

doi: 10.1039/C8PY01355A     URL    
[18]
Hou W M, Li Z Q, Xu L, Li Y C, Shi Y, Chen Y M. ACS Macro Lett., 2021, 10(10): 1260.

doi: 10.1021/acsmacrolett.1c00565     URL    
[19]
Sun Q, Liu G Q, Wu H B, Xue H D, Zhao Y, Wang Z L, Wei Y, Wang Z M, Tao L. ACS Macro Lett., 2017, 6(5): 550.

doi: 10.1021/acsmacrolett.7b00220     URL    
[20]
Pound G, McKenzie J M, Lange R F M, Klumperman B. Chem. Commun., 2008: 3193.
[21]
Stace S J, Fellows C M, Moad G, Keddie D J. Macromol. Rapid Commun., 2018, 39(19): 1800228.
[22]
Luo X H, Zhao S Z, Chen Y, Zhang L, Tan J B. Macromolecules, 2021, 54(6): 2948.

doi: 10.1021/acs.macromol.1c00038     URL    
[23]
He W D, Sun X L, Wan W M, Pan C Y. Macromolecules, 2011, 44(9): 3358.

doi: 10.1021/ma2000674     URL    
[24]
Schmidt Bernhard V K J. Macromol. Chem. Phys., 2018, 219(7): 1700494.
[25]
Feng Y N, Liu S H, Zhang S B, Xue T, Zhuang H L, Feng A C. Prog. Chem., 2021, 33(11): 1953.
( 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 化学进展,2021, 33(11): 1953.)
[26]
DelRe C, Jiang Y F, Kang P, Kwon J, Hall A, Jayapurna I, Ruan Z Y, Ma L, Zolkin K, Li T, Scown C D, Ritchie R O, Russell T P, Xu T. Nature, 2021, 592(7855): 558.

doi: 10.1038/s41586-021-03408-3     URL    
[27]
Oral I, Grossmann L, Fedorenko E, Struck J, Abetz V. Polymers, 2021, 13(21): 3675.

doi: 10.3390/polym13213675     URL    
[28]
Tanaka J, Archer N E, Grant M J, You W. J. Am. Chem. Soc., 2021, 143(39): 15918.

doi: 10.1021/jacs.1c07553     pmid: 34581557
[29]
Lee K, Corrigan N, Boyer C. Angew. Chem. Int. Ed., 2021, 60(16): 8839.

doi: 10.1002/anie.202016523     URL    
[30]
Moad G, Rizzardo E. Polym. Int., 2020, 69(8): 658.

doi: 10.1002/pi.5944     URL    
[31]
Sun L W, Sun Z H, Wang X, Xu L, Feng A C, Zhang L Q. Prog. Chem., 2020, 32(6): 727.
( 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 化学进展, 2020, 32(6): 727.)

doi: 10.7536/PC191108    
[32]
Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49(5): 1079.

doi: 10.1016/j.polymer.2007.11.020     URL    
[33]
Guimaraes T R, Bong Y L, Thompson S, Moad G, Perrier S, Zetterlund P B. Polym. Chem., 2021, 12(1), 122.

doi: 10.1039/D0PY01311K     URL    
[34]
Chong Y K, Krstina J, Le T P T, Moad G, Postma A, Rizzardo E, Thang S H. Macromolecules, 2003, 36(7): 2256.

doi: 10.1021/ma020882h     URL    
[35]
Vishnevetskii D V, Chernikova E V, Garina E S, Sivtsov E V. Polym. Sci. Ser. B, 2013, 55(9/10): 515.

doi: 10.1134/S156009041308006X     URL    
[36]
Theis A, Stenzel M H, Davis T P, Coote M L, Barner-Kowollik C. Aust. J. Chem., 2005, 58(6): 437.

doi: 10.1071/CH05069     URL    
[37]
Coote M L, Izgorodina E I, Cavigliasso G E, Roth M, Busch M, Barner-Kowollik C. Macromolecules, 2006, 39(13): 4585.

doi: 10.1021/ma060470z     URL    
[38]
Gigmes D, Bertin D, Marque S, Guerret O, Tordo P. Tetrahedron Lett., 2003, 44(6): 1227.
[39]
Keddie D J, Moad G, Rizzardo E, Thang S H. Macromolecules, 2012, 45(13): 5321.

doi: 10.1021/ma300410v     URL    
[40]
Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65(8): 985.

doi: 10.1071/CH12295     URL    
[41]
Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2009, 62(11): 1402.

doi: 10.1071/CH09311     URL    
[42]
Chiefari J, Mayadunne R T A, Moad C L, Moad G, Rizzardo E, Postma A, And M A S, Thang S H. Macromolecules, 2003, 36(7): 2273.

doi: 10.1021/ma020883+     URL    
[43]
Moad G. J. Polym. Sci. A Polym. Chem., 2019, 57(3): 216.

doi: 10.1002/pola.29199     URL    
[44]
Gardiner J, Martinez-Botella I, Tsanaktsidis J, Moad G. Polym. Chem., 2016, 7(2): 481.

doi: 10.1039/C5PY01382H     URL    
[45]
Gardiner J, Martinez-Botella I, Kohl T M, Krstina J, Moad G, Tyrell J H, Coote M L, Tsanaktsidis J. Polym. Int, 2017, 66(11): 1438.

doi: 10.1002/pi.5423     URL    
[46]
Girard E, Marty J D, Ameduri B, Destarac M. ACS Macro Lett., 2012, 1(2): 270.

doi: 10.1021/mz2001143     URL    
[47]
Dayter L A, Murphy K A, Shipp D A. Aust. J. Chem., 2013, 66(12): 1564.

doi: 10.1071/CH13375     URL    
[48]
Keddie D J, Guerrero-Sanchez C, Moad G, Rizzardo E, Thang S H. Macromolecules, 2011, 44(17): 6738.

doi: 10.1021/ma200760q     URL    
[49]
Benaglia M, Chen M, Chong Y K, Moad G, Rizzardo E, Thang S H. Macromolecules, 2009, 42(24): 9384.

doi: 10.1021/ma9021086     URL    
[50]
Moad G, Keddie D, Guerrero-Sanchez C, Rizzardo E, Thang S H. Macromol. Symp., 2015, 350(1): 34.

doi: 10.1002/masy.201400022     URL    
[51]
Benaglia M, Chiefari J, Chong Y K, Moad G, Rizzardo E, Thang S H. J. Am. Chem. Soc., 2009, 131(20): 6914.

doi: 10.1021/ja901955n     pmid: 19402660
[52]
Moad G, Benaglia M, Chen M, Chiefari J, Chong Y K, Keddie D J, Rizzardo E, Thang S H.. Non-Conventional Functional Block Copolymers. Washington, DC: American Chemical Society, 2011: 81.
[53]
Keddie D J, Guerrero-Sanchez C, Moad G, Mulder R J, Rizzardo E, Thang S H. Macromolecules, 2012, 45(10): 4205.

doi: 10.1021/ma300616g     URL    
[54]
Stace S J, Moad G, Fellows C M, Keddie D J. Polym. Chem., 2015, 6(40): 7119.

doi: 10.1039/C5PY01021G     URL    
[55]
Pound G, Eksteen Z, Pfukwa R, McKenzie J M, Lange R F M, Klumperman B. J. Polym. Sci. A Polym. Chem., 2008, 46(19): 6575.

doi: 10.1002/pola.22968     URL    
[56]
Pan X Y, Guo X F, Choi B, Feng A C, Wei X H, Thang S H. Polym. Chem., 2019, 10(16): 2083.

doi: 10.1039/C9PY00110G     URL    
[57]
Tselepy A, Schiller T L, Harrisson S, Guerrero-Sanchez C, Moad G, Keddie D J. Macromolecules, 2018, 51(2): 410.

doi: 10.1021/acs.macromol.7b02104     URL    
[58]
Zhou Y W, He J P, Li C X, Hong L X, Yang Y L. Macromolecules, 2011, 44(21): 8446.

doi: 10.1021/ma201570f     URL    
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.