English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 721-734 DOI: 10.7536/PC221129 前一篇   后一篇

• 综述 •

杂Diels-Alder 环加成反应级联RAFT聚合

曹如月1,2,3, 肖晶晶1,2,3, 王伊轩1,2,3, 李翔宇1,2,3, 冯岸超1,2,3,*(), 张立群1,2,3   

  1. 1 北京化工大学 有机无机复合材料国家重点实验室 北京 100029
    2 北京化工大学 北京新型高分子材料制备与加工重点实验室 北京 100029
    3 北京化工大学材料科学与工程学院 先进弹性体材料研究中心 北京 100029
  • 收稿日期:2022-12-01 修回日期:2023-02-15 出版日期:2023-05-24 发布日期:2023-04-30
  • 作者简介:

    冯岸超 北京化工大学材料科学学院副教授,硕士生导师。2011年毕业于中国科学技术大学高分子科学与工程系,2016年毕业于清华大学化学系并获得博士学位,同年通过青年后备人才计划,加入北京化工大学。主要从事活性自由基聚合方法、刺激响应功能弹性体的开发以及绿色轮胎用特种橡胶及理想填料的研究,在Angew. Chem. Int. Ed.、Macromolecules、ACS Macro Lett.和Chem. Commun.等期刊上发表论文50余篇,相关工作被选为Polymer Chemistry、Macromolecular Rapid Communications等期刊封面论文进行重点报道,担任Frontiers in Chemistry、新加坡Viser(维泽)出版社期刊编委。主持国家自然科学基金面上项目及其他省部级科研项目5项,授权、受理国家发明专利8项。

  • 基金资助:
    国家自然科学基金项目(ZK20220198); 北京化工大学有机无机复合材料国家重点实验室基金项目(oic-202103015)

Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction

Ruyue Cao1,2,3, Jingjing Xiao1,2,3, Yixuan Wang1,2,3, Xiangyu Li1,2,3, Anchao Feng1,2,3(), Liqun Zang1,2,3   

  1. 1 State Key Laboratory of organic and inorganic composites, Beijing University of Chemical Technology,Beijing 100029, China
    2 Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    3 School of Materials Science and Engineering, Center of Advanced Elastomer Materials, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2022-12-01 Revised:2023-02-15 Online:2023-05-24 Published:2023-04-30
  • Contact: * e-mail: fengac@mail.buct.edu.cn
  • Supported by:
    National Natural Science Foundation of China(ZK20220198); Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology(oic-202103015)

Diels-Alder(DA)反应温度可逆、无需催化剂、高效快速且无有害产物,成为构建可自愈和可回收的动态共价弹性体网络的有利选择。然而传统的DA反应(比如呋喃和马来酰亚胺)存在反应时间长、反应温度高和模块化差等问题。近年来研究发现,具有高反应性的二烯可与特异性的RAFT试剂发生HDA反应(含杂原子硫的Diels-Alder环加成反应),实现HDA反应与RAFT聚合的高效级联,降低DA反应温度及反应时间的同时,又将RAFT聚合对于聚合物分子量以及分子量分布的精确可控性结合到DA反应中,在制备高分子量嵌段及接枝聚合物、表面修饰等方面有广泛的应用潜力。本文综述了近十五年来HDA-RAFT级联反应的研究与应用,探讨了目前仍存在的一些问题和解决方法,并对未来这一领域的发展进行了展望。

Diels-Alder (DA) reaction is temperature-reversible, catalyst-free, efficient and fast with none harmful products, making it a favorable choice to build a self-healing and recyclable dynamic covalent elastomer network. However, classic DA reactions (such as the reaction between furan and maleimide) still have the problems of long reaction time, low efficiency and poor chemical modularity. Recent studies have shown that the efficient cascade of HDA reaction (Diels-Alder cycloaddition reaction containing heteroatom sulfur) and RAFT polymerization can be realized by highly reactive dienes reacting with specific RAFT agents, which can reduce the reaction temperature and time of DA. By virtue of the RAFT polymerization, it can control polymer molecular weight and its distribution at the same time. RAFT-HDA cascade reaction shows wide potential applications especially in the preparation of high molecular weight block or grafted polymer and surface modification. In this paper, the research and application of HDA-RAFT cascade reaction in the past 15 years are summarized, existing problems and solutions are discussed and the future development of this field is also prospected.

Contents

1 Introduction

2 RAFT-HDA reaction between cyclic conjugated diene and BPDF/BDEPDF

2.1 Preparation of high molecular weight copolymer by chain extension

2.2 Material surface finish

2.3 Self healing and self reporting materials

2.4 Crosslinking networks with thermally reversible crosslinking sites

3 RAFT-HDA reaction between linear conjugated diene and BPDF/BDEPDF

3.1 Preparation of high molecular weight copolymer by chain extension

3.2 Material surface finish

3.3 Self healing and self reporting materials

3.4 Crosslinking networks with thermally reversible crosslinking sites

4 Others

5 Conclusion and outlooks

()
图1 (a) DA反应机理;(b) RAFT-HDA反应机理
Fig. 1 (a) Reaction mechanism of DA;(b) reaction mechanism of RAFT-HDA
图2 RAFT-HDA反应中可使用的RAFT试剂BPDF/BDEPDF的化学结构
Fig. 2 The structure of RAFT agent used in RAFT-HDA reaction
图3 (a) 通过RAFT-HDA反应制备结构明确的嵌段共聚物的一般合成策略 ;(b) HDA前后分子量对比[11]
Fig. 3 (a) General synthetic strategy for producing well-defined block copolymers via the RAFT-HDA click reaction; (b) comparison of molecular weight before and after HDA[11]
图4 制备具有可逆杂DA键的两亲性P(S-co-I)-b-PTEGA嵌段共聚物的合成策略[13]
Fig. 4 Synthetic strategy for the preparation of amphiphilic P(S-co-I)-b-PTEGA block copolymers with a reversible hetero Diels-Alder linkage[13]
图5 (a) 通过RAFT-HDA反应制备NBR和SAN嵌段共聚物;(b) 通过RAFT-HDA反应制备微臂星形聚合物[14]
Fig. 5 (a) Preparation of NBR and SAN block copolymers by RAFT-HAD reaction;(b) Preparation of micro-armed star-shaped polymers by RAFT-HDA reaction[14]
图6 通过RAFT-HDA反应对微球表面进行改性 [26]
Fig. 6 Surface modification of microspheres by RAFT-HDA reaction[26]
图7 纤维素-肽杂化材料的制备方案[27]
Fig. 7 Preparation scheme of cellulose peptide hybrid materials[27]
图8 通过HDA反应制备星形聚合物[40]
Fig. 8 Star polymers via the hetero-Diels-Alder cycloadditiona[40]
图9 通过RAFT-HDA反应制备梳型聚合物[44]
Fig. 9 Synthetic strategy for the generation of comb polymers via the RAFT-HDA concept[44]
图10 通过RAFT-HDA反应对二乙烯基苯微球进行表面接枝[46]
Fig. 10 Surface grafting of divinylbenzene microspheres by RAFT-HDA reaction[46]
图11 (a) 由蓖麻油、蓖麻酸甲酯和PDTMBA合成HDA硬化剂,(b) 加热前后划痕的OM图像[54]
Fig. 11 (a) Synthesis the HDA hardener from castor oil, methyl ricinoleate and PDTMBA, (b) OM image of scratch before and after heating [54]
图12 二硫代苯甲酸酯封端的聚甲基丙烯酸甲酯与2-甲氧基-6-甲基苯甲醛的光共轭[56]
Fig. 12 Photo-conjugation of the dithiobenzoate end-capped poly(methyl methacrylate) with 2-methoxy-6-methylbenzaldehyde[56]
图13 通过逐步折叠活化-折叠过程将单环纳米颗粒(SRNP)作为环肽模拟物的合成路线示意图[57]
Fig. 13 Schematic illustration of the synthetic route toward single-ring nanoparticles (SRNPs) as cyclotide mimetics by a stepwise folding-activation-collapse process[57]
[1]
Ouchi M, Terashima T, Sawamoto M. Chem. Rev., 2009, 109(11): 4963.

doi: 10.1021/cr900234b     URL    
[2]
Braunecker W A, Matyjaszewski K. Prog. Polym. Sci., 2007, 32(1): 93.

doi: 10.1016/j.progpolymsci.2006.11.002     URL    
[3]
Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2012, 65(8): 985.

doi: 10.1071/CH12295     URL    
[4]
Moad G, Rizzardo E, Thang S H. Polymer, 2008, 49(5): 1079.

doi: 10.1016/j.polymer.2007.11.020     URL    
[5]
Inglis A J, Barner-kowollik C. Macromol. Rapid Commun., 2010, 31(14): 1247.

doi: 10.1002/marc.200900924     URL    
[6]
Adzima B J, Bowman C N. AIChE J., 2012, 58(10): 2952.

doi: 10.1002/aic.v58.10     URL    
[7]
Masson G, Lalli C, Benohoud M. Chem. Soc. Rev., 2013, 42(3): 902.

doi: 10.1039/C2CS35370A     URL    
[8]
Tasdelen M A. Polym. Chem., 2011, 2(10): 2133.

doi: 10.1039/c1py00041a     URL    
[9]
Wang Z P, Yuan J Y. Prog. Chem., 2012, 24(12): 2342.
[10]
Knall A C, Slugovc C. Chem. Soc. Rev., 2013, 42(12): 5131.

doi: 10.1039/c3cs60049a     URL    
[11]
Inglis A J, Stenzel M H, Barner-kowollik C. Macromol. Rapid Commun., 2009, 30(21): 1792.

doi: 10.1002/marc.200900363     URL    
[12]
Espinosa E, Glassner M, Boisson C. Macromol. Rapid Commun., 2011, 32(18): 1447.

doi: 10.1002/marc.201100310     URL    
[13]
Langer M, Brandt J, Lederer A, Goldmann A S, Schacher F H, Barner-Kowollik C. Polym. Chem., 2014, 5(18): 5330.

doi: 10.1039/C4PY00644E     URL    
[14]
Dürr C J, Hlalele L, Kaiser A, Brandau S, Barner-Kowollik C. Macromolecules, 2013, 46(1): 49.

doi: 10.1021/ma302017c     URL    
[15]
Glassner M, Delaittre G, Kaupp M, Blinco J P, Barner-Kowollik C. J. Am. Chem. Soc., 2012, 134(17): 7274.

doi: 10.1021/ja301762y     pmid: 22506863
[16]
Kawaguchi H. Prog. Polym. Sci., 2000, 25(8): 1171.
[17]
Zhu J M, Li P. J. Polym. Sci. A Polym. Chem., 2003, 41(21): 3346.
[18]
Blomberg S, Ostberg S, Harth E, Bosman A W, Van Horn B, Hawker C J. J. Polym. Sci. A Polym. Chem., 2002, 40(9): 1309.

doi: 10.1002/(ISSN)1099-0518     URL    
[19]
Voccia S, JÉrôme C, Detrembleur C, Leclère P, Gouttebaron R, Hecq M, Gilbert B, Lazzaroni R, JÉrôme R. Chem. Mater., 2003, 15(4): 923.
[20]
Parvole J, Montfort J P, Reiter G, Borisov O, Billon L. Polymer, 2006, 47(4): 972.

doi: 10.1016/j.polymer.2005.12.072     URL    
[21]
Garcia F G, Pinto M R, Soares B G. Eur. Polym. J., 2002, 38(4): 759.

doi: 10.1016/S0014-3057(01)00225-7     URL    
[22]
Vivek A V, Dhamodharan R. J. Polym. Sci. A Polym. Chem., 2007, 45(17): 3818.

doi: 10.1002/(ISSN)1099-0518     URL    
[23]
Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K. Macromolecules, 2004, 37(10): 3651.

doi: 10.1021/ma0359887     URL    
[24]
Li Y, Schadler L S, Benicewicz B C. Handbook of RAFT Polymerization. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 423.
[25]
Quinn J F, Davis T P, Barner L, Barner-Kowollik C. Polymer, 2007, 48(22): 6467.

doi: 10.1016/j.polymer.2007.08.043     URL    
[26]
Nebhani L, Schmiedl D, Barner L, Barner-Kowollik C. Adv. Funct. Mater., 2010, 20(12): 2010.

doi: 10.1002/adfm.v20:12     URL    
[27]
Tischer T, Goldmann A S, Linkert K, Trouillet V, Börner H G, Barner-Kowollik C. Adv. Funct. Mater., 2012, 22(18): 3853.

doi: 10.1002/adfm.v22.18     URL    
[28]
Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Prog. Polym. Sci., 2010, 35(3): 357.

doi: 10.1016/j.progpolymsci.2009.09.003     URL    
[29]
Zydziak N, Hübner C, Bruns M, Barner-Kowollik C. Macromolecules, 2011, 44(9): 3374.

doi: 10.1021/ma200107z     URL    
[30]
Zydziak N, Preuss C M, Winkler V, Bruns M, Hübner C, Barner-Kowollik C. Macromol. Rapid Commun., 2013, 34(8): 672.

doi: 10.1002/marc.201300025     URL    
[31]
Kaupp M, Vogt A P, Natterodt J C, Trouillet V, Gruendling T, Hofe T, Barner L, Barner-Kowollik C. Polym. Chem., 2012, 3(9): 2605.

doi: 10.1039/c2py20369c     URL    
[32]
Ge G, Lu Y, Qu X. ACS Nano, 2020, 14(1): 218.

doi: 10.1021/acsnano.9b07874     URL    
[33]
Zhang F, Ju P F, Pan M Q, Zhang D W, Huang Y, Li G L, Li X G. Corros. Sci., 2018, 144: 74.

doi: 10.1016/j.corsci.2018.08.005     URL    
[34]
Wang H, Wang P P, Feng Y P, Liu J, Wang J Q, Hu M M, Wei J, Huang Y. ChemElectroChem, 2019, 6(6): 1605.

doi: 10.1002/celc.201801612    
[35]
Döhler D, Michael P, Binder W H. Acc. Chem. Res., 2017, 50(10): 2610.

doi: 10.1021/acs.accounts.7b00371     URL    
[36]
Zhang Q H, Niu S M, Wang L, Lopez J, Chen S C, Cai Y F, Du R C, Liu Y X, Lai J C, Liu L, Li C H, Yan X Z, Liu C G, Tok J B H, Jia X D, Bao Z N. Adv. Mater., 2018, 30(33): 1801435.

doi: 10.1002/adma.v30.33     URL    
[37]
Mutlu H, Schmitt C W, Wedler-Jasinski N, Woehlk H, Fairfull-Smith K E, Blinco J P, Barner-Kowollik C. Polym. Chem., 2017, 8(40): 6199.

doi: 10.1039/C7PY01437F     URL    
[38]
Guimard N K, Ho J, Brandt J, Lin C Y, Namazian M, Mueller J O, Oehlenschlaeger K K, Hilf S, Lederer A, Schmidt F G, Coote M L, Barner-Kowollik C. Chem. Sci., 2013, 4(7): 2752.

doi: 10.1039/c3sc50642h     URL    
[39]
Schenzel A M, Klein C, Rist K, Moszner N, Barner-Kowollik C. Adv. Sci., 2016, 3(3): 1500361.

doi: 10.1002/advs.201500361     URL    
[40]
Inglis A J, Sinnwell S, Davis T P, Barner-Kowollik C, Stenzel M H. Macromolecules, 2008, 41(12): 4120.

doi: 10.1021/ma8002328     URL    
[41]
Sinnwell S, Inglis A J, Davis T P, Stenzel M H, Barner-Kowollik C. Chem. Commun., 2008, (17): 2052.
[42]
Sinnwell S, Inglis A J, Stenzel M H, Barner-Kowollik C. Macromol. Rapid Commun., 2008, 29(12/13): 1090.

doi: 10.1002/marc.v29:12/13     URL    
[43]
Sinnwell S, Lammens M, Stenzel M H, Du Prez F E, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2009, 47(8): 2207.S.
[44]
Bousquet A, Barner-Kowollik C, Stenzel M H. J. Polym. Sci. A Polym. Chem., 2010, 48(8): 1773.

doi: 10.1002/pola.v48:8     URL    
[45]
Wang Z J, Ma Z Y, Zhang Z Y, Wu F, Jiang H, Jia X R. Polym. Chem., 2014, 5(24): 6893.

doi: 10.1039/C4PY00964A     URL    
[46]
Nebhani L, Sinnwell S, Inglis A J, Stenzel M H, Barner-Kowollik C, Barner L. Macromol. Rapid Commun., 2008, 29(17): 1431.

doi: 10.1002/marc.v29:17     URL    
[47]
Nebhani L, Gerstel P, Atanasova P, Bruns M, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2009, 47(24): 7090.

doi: 10.1002/pola.23756     URL    
[48]
Le Droumaguet B, Nicolas J. Polym. Chem., 2010, 1(5): 563.

doi: 10.1039/b9py00363k     URL    
[49]
Gauthier M A, Klok H A. Polym. Chem., 2010, 1(9): 1352.

doi: 10.1039/c0py90001j     URL    
[50]
Ko J H, Maynard H D. Chem. Soc. Rev., 2018, 47(24): 8998.

doi: 10.1039/C8CS00606G     URL    
[51]
Wright T A, Page R C, Konkolewicz D. Polym. Chem., 2019, 10(4): 434.

doi: 10.1039/C8PY01399C     URL    
[52]
Beloqui A, Mane S R, Langer M, Glassner M, Bauer D M, Fruk L, Barner-Kowollik C, Delaittre G. Angew. Chem. Int. Ed., 2020, 59(45): 19951.

doi: 10.1002/anie.v59.45     URL    
[53]
Zhou J W, Guimard N K, Inglis A J, Namazian M, Lin C Y, Coote M L, Spyrou E, Hilf S, Schmidt F G, Barner-Kowollik C. Polym. Chem., 2012, 3(3): 628.

doi: 10.1039/C1PY00356A     URL    
[54]
Rajappan S C, Davis B J, Dishner I T, Thornell T L, Peyrefitte J J, Simon Y C. Polym. Chem., 2022, 13(6): 741.

doi: 10.1039/D1PY00917F     URL    
[55]
Nebhani L, Sinnwell S, Lin C Y, Coote M L, Stenzel M H, Barner-Kowollik C. J. Polym. Sci. A Polym. Chem., 2009, 47(22): 6053.

doi: 10.1002/pola.23647     URL    
[56]
Oehlenschlaeger K K, Mueller J O, Heine N B, Glassner M, Guimard N K, Delaittre G, Schmidt F G, Barner-Kowollik C. Angew. Chem. Int. Ed., 2013, 52(2): 762.

doi: 10.1002/anie.201206905     pmid: 23090883
[57]
Rubio-Cervilla J, Frisch H, Barner-Kowollik C, Pomposo J A. Macromol. Rapid Commun., 2019, 40(1): 1800491.

doi: 10.1002/marc.v40.1     URL    
[1] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[2] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[5] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[6] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[7] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[8] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[9] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[10] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[11] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[12] 杨彩云, 曹长乾, 蔡垚, 张同伟, 潘永信. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1): 91-102.
[13] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[14] 熊喜悦, 彭泽强, 舒彦, 何海琴, 陈应庄, 陈波. 巯-烯点击反应在毛细管整体柱制备中的应用[J]. 化学进展, 2014, 26(01): 152-157.
[15] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.