English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1076-1087 DOI: 10.7536/PC210522 前一篇   后一篇

• 综述 •

烯烃的氢甲酰化串联反应研究

王鹏1,*(), 刘欢2, 杨妲2   

  1. 1.中国科学院上海有机化学研究所 上海 200032
    2.中国石油大学(华东)理学院化学系 青岛 266580
  • 收稿日期:2021-05-13 修回日期:2021-07-09 出版日期:2022-05-24 发布日期:2021-07-29
  • 通讯作者: 王鹏
  • 基金资助:
    国家自然科学基金项目(21901250)

Recent Advances on Tandem Hydroformylation of Olefins

Peng Wang1(), Huan Liu2, Da Yang2   

  1. 1. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,Shanghai 200032, China
    2. Department of Chemistry, College of Science, China University of Petroleum (East China),Qingdao 266580, China
  • Received:2021-05-13 Revised:2021-07-09 Online:2022-05-24 Published:2021-07-29
  • Contact: Peng Wang
  • Supported by:
    National Natural Science Foundation of China(21901250)

氢甲酰化串联反应是在氢甲酰化反应的基础上,与一个或多个不同类型的反应“一锅法”实现醛类化合物的后续定向转化,得到新的有机分子的合成方法。该反应的产物在日化工业、农业、医药中间体的生产中具有十分重要的用途。本文首先简述了近年来烯烃氢甲酰化串联反应制备高附加值化学品的重要性,随后重点介绍了几种常见的烯烃氢甲酰化串联反应:“异构化-氢甲酰化”串联反应、“氢甲酰化-缩醛化”串联反应、“氢甲酰化-氢化”串联反应和“氢甲酰化-(还原)胺化”串联反应等,以及其在设计新型(多功能)催化剂体系和高效合成目标产物方面的研究进展,最后总结了烯烃氢甲酰化串联反应存在的问题以及对未来发展趋势进行了展望。

Tandem hydroformylation reaction is based on hydroformylation, with one or more different types of reactions "one pot" to achieve the follow-up directional conversion of aldehydes, to get new organic molecules. The products have very important applications in the production of daily chemical industry, agriculture or medical intermediates. In this paper, the importance of olefin tandem hydroformylation to prepare high value-added chemicals in recent years is briefly introduced, then several common tandem hydroformylation (Tandem “Isomerization-hydroformylation”, Tandem “Hydroformylation-acetalization”, Tandem “Hydroformylation-hydrogenation”, Tandem “Hydroformylation-(reductive) amination”) in the design of new (multifunctional) catalyst systems and efficient synthesis of target products are introduced. Finally, the existing problems and future development of the reaction are prospected.

Contents

1 Introduction

2 Tandem “isomerization-hydroformylation”

3 Tandem “hydroformylation-acetalization”

4 Tandem “hydroformylation-hydrogenation”

5 Tandem “hydroformylation-(reductive) amination”

5.1 Tandem “hydroformylation-amination”

5.2 Tandem “hydroformylation-reductive amination”

6 Other types of tandem hydroformylation reaction

7 Conclusion and outlook

()
图1 烯烃“氢甲酰化”的反应机理[1]
Fig. 1 General reaction mechanism of hydroformylation of olefins[1]
图2 “合成子”概念中的烷基甲酰基片段[4,5]
Fig. 2 Alkylformyl subunit according to the synthon concept[4,5]
图式1 内烯烃“异构化-氢甲酰化”过程[8⇓⇓⇓⇓⇓⇓⇓⇓⇓~18]
Scheme 1 Isomerization-hydroformylation of internal olefin[8⇓⇓⇓⇓⇓⇓⇓⇓⇓~18]
图式2 两相体系中2-戊烯的“异构化-氢甲酰化”反应[19]
Scheme 2 Isomerization-hydroformylation of isomeric 2-pentenes in an aqueous two-phase system[19]
图式3 钯催化1-辛烯的氢甲酰化反应[20]
Scheme 3 Palladium-catalyzed hydroformylation of 1-octene[20]
图式4 具有联苯骨架的二芳基四膦配体及铑催化内烯烃的“异构化-氢甲酰化”反应[21⇓⇓~24]
Scheme 4 Diaryl tetraphosphine ligand with biphenyl skeleton and isomerization-hydroformylation in an aqueous two-phase system catalyzed by Rh(acac)(CO)2[21⇓⇓~24]
图式5 钌催化2-辛烯的“异构化-氢甲酰化”反应[25,26]
Scheme 5 Isomerization-hydroformylation of 2-octene in the presence of a ruthenium catalyst[25,26]
图式6 烯烃的“氢甲酰化-缩醛化”串联反应[27⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~38]
Scheme 6 Hydroformylation-acetalization tandem reaction of olefins[27⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~38]
图式7 “氢甲酰化-缩醛化”反应中的双功能膦配体[39]
Scheme 7 Bi-functional ligand in hydroformylation-acetalization[39]
图式8 1,3-丁二烯“氢甲酰化-缩醛化”反应合成工业相关重要单体[40]
Scheme 8 Synthesis of important monomers related to industry via double n selective hydroformylation of 1,3-butadiene[40]
图式9 双功能膦配体调控铑催化烯烃的“氢甲酰化-缩醛化”串联反应[41⇓⇓~44]
Scheme 9 The tandem hydroformylation-acetalization of olefins over the bi-functional ligands[41⇓⇓~44]
图式10 Ru(Ⅲ)双功能催化剂催化烯烃的“氢甲酰化-缩醛化-氢解”串联反应[45]
Scheme 10 The tandem hydroformylation-acetalization-hydrogenolysis over Ru(Ⅲ) bi-functional catalyst[45]
图式11 铱催化烯烃“氢甲酰化-缩醛化”串联反应[46]
Scheme 11 The tandem hydroformylation-acetalization over Ir(Ⅲ) bi-functional catalyst[46]
图式12 Rh烯烃“氢甲酰化-氢化”串联反应的催化模式[4]
Scheme 12 Differentiation of hydroformylation-hydrogenation approaches[4]
图式13 Rh/Me-BISBI催化的“氢甲酰化-氢化”串联反应[57]
Scheme 13 Tandem hydroformylation-hydrogenation of olefins with “Rh/Me-BISBI” catalyst[57]
图式14 “氢甲酰化-氢化”串联反应制备PMMA的原料[58]
Scheme 14 Preparation of monomer of PMMA via a hydroformylation-hydrogenation sequence using different catalysts[58]
图式15 Rh/Ru双功能催化剂催化烯烃“氢甲酰化-氢化”串联反应[59⇓~61]
Scheme 15 Tandem hydroformylation/hydrogenation using dual catalyst[59⇓~61]
图式16 双/单膦配体调控的“氢甲酰化-氢化”串联反应[62]
Scheme 16 Reductive hydroformylation of mono-olefins using two different phosphine ligands[62]
图式17 膦配体调控烯烃的“氢甲酰化-氢化”串联反应[63]
Scheme 17 Rh-catalyzed hydroformylation-hydrogenation of mono-olefins[63]
图式18 不同类型的胺参与的氢甲酰化串联反应[64]
Scheme 18 Tandem reactions in the presence of N-nucleophiles[64]
图式19 “氢甲酰化-胺化”串联反应合成二氢吡咯[65]
Scheme 19 Synthesis of dihydropyrrole under hydroformylation/amination reaction[65]
图式20 呋喃衍生物“氢甲酰化-胺化”串联反应[66,67]
Scheme 20 Synthesis of imines by using furane derivatives[66,67]
图式21 “氢甲酰化-胺化”串联反应合成叔丁胺亚胺[68]
Scheme 21 Synthesis of tert-butylamine imines via hydroformylation/amination reaction[68]
图式22 氨气参与的“氢甲酰化-还原胺化”串联反应[69,70]
Scheme 22 Cobalt-catalyzed hydroaminomethylation of ethylene with ammonia[69,70]
图式23 2-丁烯的“氢甲酰化-还原胺化”串联反应[71]
Scheme 23 Hydroaminomethylation of 2-butene[71]
图式24 末端烯烃的“氢甲酰化-还原胺化”串联反应[72,73]
Scheme 24 Hydroaminomethylation of terminal olefins[72,73]
图式25 铑催化苯乙烯和苯胺类化合物的“氢甲酰化-还原胺化”串联反应[74]
Scheme 25 Hydroaminomethylation of styrenes with anilines[74]
图式26 钌催化烯烃的“氢甲酰化-还原胺化”串联反应[75]
Scheme 26 Ruthenium-catalyzed hydroaminomethylation of olefins with amines[75]
图式27 Ir催化H2O作氢源的烯烃“氢甲酰化-还原胺化”串联反应[76]
Scheme 27 Ir-catalyst for hydroaminomethylation of olefins with H2O as the hydrogen source[76]
图式28 Ir催化烯烃的“氢甲酰化-还原胺化”串联反应[77]
Scheme 28 Ir-catalyst for hydroaminomethylation of olefins[77]
图式29 钴催化的Aldox反应[90⇓⇓~93]
Scheme 29 The cobalt-catalyzed Aldox process[90⇓⇓~93]
图式30 铑催化烯烃的Aldox反应[94,95]
Scheme 30 Rhodium-catalyzed Aldox process[94,95]
图式31 “氢甲酰化-Mannich”串联反应[96]
Scheme 31 Hydroformylation-Mannich tandem reaction[96]
图式32 不对称“氢甲酰化-Wittig olefination”反应[97]
Scheme 32 Asymmetric hydroformylation-Wittig olefination reaction[97]
图式33 串联“氢甲酰化-Biginelli”反应[98]
Scheme 33 Tandem hydroformylation-Biginelli reaction[98]
图式34 “氢甲酰化-β-消除”串联反应[99]
Scheme 34 Tandem hydroformylation-β-elimination reaction[99]
[1]
Roelen O. (to Chemische Verwertungsgesellschaft Oberhausenm.b.H.), German Patent DE 849548, 1938.
[2]
Vilches-Herrera M, Domke L, Börner A. ACS Catal., 2014, 4(6): 1706.

doi: 10.1021/cs500273d     URL    
[3]
Tietze L F. Chem. Rev., 1996, 96(1): 115.

pmid: 11848746
[4]
Börner A, Franke R. Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis. Wiley-VCH Verlag GmbH & Co. KgaA, 2016.
[5]
Patai S. The Chemistry of the Carbonyl Group. New York: Wiley-Interscience, 1966. 970.
[6]
Bondžić B P. J. Mol. Catal. A: Chem., 2015, 408: 310.

doi: 10.1016/j.molcata.2015.07.026     URL    
[7]
CiprÉs I, Kalck P, Park D C, Serein-Spirau F. J. Mol. Catal., 1991, 66(3): 399.

doi: 10.1016/0304-5102(91)80031-W     URL    
[8]
Haymore B L, van Asselt A, Beck G R, Ann. N. Y. Acad. Sci., 1983, 415: 159.

doi: 10.1111/j.1749-6632.1983.tb47357.x     URL    
[9]
Pino P, Major A, Spindler F, Tannenbaum R, Bor G, Horváth I T. J. Organomet. Chem., 1991, 417(1/2): 65.

doi: 10.1016/0022-328X(91)80161-C     URL    
[10]
Lazzaroni R, Uccello-Barretta G, Benetti M. Organometallics, 1989, 8(10): 2323.

doi: 10.1021/om00112a008     URL    
[11]
Paganelli S, Battois F, Marchetti M, Lazzaroni R, Settambolo R, Rocchiccioli S. J. Mol. Catal. A: Chem., 2006, 246(1/2): 195.

doi: 10.1016/j.molcata.2005.10.032     URL    
[12]
Knifton J F. J. Mol. Catal., 1987, 43(1): 65.

doi: 10.1016/0304-5102(87)87022-0     URL    
[13]
van Duren R, van der Vlugt J I, Kooijman H, Spek A L, Vogt D. Dalton Trans., 2007(10): 1053.
[14]
Meessen P, Vogt D, Keim W. J. Organomet. Chem., 1998, 551(1/2): 165.

doi: 10.1016/S0022-328X(97)00396-3     URL    
[15]
Konya D, Almeida Leñero K Q, Drent E. Organometallics, 2006, 25(13): 3166.

doi: 10.1021/om0601293     URL    
[16]
Fukuoka A, Fukagawa S, Hirano M, Komiya S. Chem. Lett., 1997, 26(4): 377.

doi: 10.1246/cl.1997.377     URL    
[17]
Jennerjahn R, Jackstell R, Piras I, Franke R, Jiao H J, Bauer M, Beller M. ChemSusChem, 2012, 5(4): 734.

doi: 10.1002/cssc.201100404     pmid: 22411860
[18]
Booth B L, Goldwhite H, Haszeldine R N. J. Chem. Soc., C, 1966: 1447.
[19]
Beller M, Krauter J G E. J. Mol. Catal. A: Chem., 1999, 143(1/3): 31.

doi: 10.1016/S1381-1169(98)00360-4     URL    
[20]
Jennerjahn R, Piras I, Jackstell R, Franke R, Wiese K D, Beller M. Chem. Eur. J., 2009, 15(26): 6383.

doi: 10.1002/chem.200900700     URL    
[21]
Cai C X, Yu S C, Liu G D, Zhang X W, Zhang X M. Adv. Synth. Catal., 2011, 353(14/15): 2665.

doi: 10.1002/adsc.201100139     URL    
[22]
Klein H, Jackstell R, Wiese K D, Borgmann C, Beller M. Angew. Chem. Int. Ed., 2001, 40(18): 3408.

doi: 10.1002/1521-3773(20010917)40:18【-逻*辑*与-】#x00026;lt;3408::AID-ANIE3408【-逻*辑*与-】#x00026;gt;3.0.CO;2-A     URL    
[23]
Klein H, Jackstell R, Beller M. Chem. Commun., 2005(17): 2283.
[24]
Jackstell R, Klein H, Beller M, Wiese K D, Röttger D. Eur. J. Org. Chem., 2001, 2001(20): 3871.

doi: 10.1002/1099-0690(200110)2001:20【-逻*辑*与-】#x00026;lt;3871::AID-EJOC3871【-逻*辑*与-】#x00026;gt;3.0.CO;2-V     URL    
[25]
Fleischer I, Dyballa K M, Jennerjahn R, Jackstell R, Franke R, Spannenberg A, Beller M. Angew. Chem. Int. Ed., 2013, 52(10): 2949.

doi: 10.1002/anie.201207133     pmid: 23404711
[26]
Fleischer I, Wu L P, Profir I, Jackstell R, Franke R, Beller M. Chem. Eur. J., 2013, 19(32): 10589.

doi: 10.1002/chem.201300899     URL    
[27]
Eilbracht P, Bärfacker L, Buss C, Hollmann C, Kitsos-Rzychon B E, Kranemann C L, Rische T, Roggenbuck R, Schmidt A. Chem. Rev., 1999, 99(11): 3329.

pmid: 11749518
[28]
Currie A W S, Andersen J M. Catal. Lett., 1997, 44(1/2): 109.

doi: 10.1023/A:1018960621837     URL    
[29]
Soulantica K, Sirol S, Koïnis S, Pneumatikakis G, Kalck P. J. Organomet. Chem., 1995, 498(1): C10.

doi: 10.1016/0022-328X(95)05594-F     URL    
[30]
Manjunathan P, Maradur S P, Halgeri A B, Shanbhag G V. J. Mol. Catal. A: Chem., 2015, 396: 47.

doi: 10.1016/j.molcata.2014.09.028     URL    
[31]
Poyraz A S, Kuo C H, Kim E, Meng Y T, Seraji M S, Suib S L. Chem. Mater., 2014, 26(9): 2803.

doi: 10.1021/cm501216c     URL    
[32]
Li X L, Guo Z Y, Xiao C X, Goh T W, Tesfagaber D, Huang W. ACS Catal., 2014, 4(10): 3490.

doi: 10.1021/cs5006635     URL    
[33]
Herbst A, Khutia A, Janiak C. Inorg. Chem., 2014, 53(14): 7319.

doi: 10.1021/ic5006456     URL    
[34]
Norinder J, Rodrigues C, Börner A. J. Mol. Catal. A: Chem., 2014, 391: 139.

doi: 10.1016/j.molcata.2014.04.009     URL    
[35]
Jin X, Zhao K, Kong F F, Cui F F, Liu Q Q, Zhang Y W. Catal. Lett., 2014, 144(1): 192.

doi: 10.1007/s10562-013-1109-0     URL    
[36]
Venanzi L M. Helv. Chim. Acta, 1992, 75(1): 21.

doi: 10.1002/hlca.19920750103     URL    
[37]
Gorla F, Venanzi L M. Helv. Chim. Acta, 1990, 73(3): 690.

doi: 10.1002/hlca.19900730317     URL    
[38]
Cataldo M, Nieddu E, Gavagnin R, Pinna F, Strukul G. J. Mol. Catal. A: Chem., 1999, 142(3): 305.

doi: 10.1016/S1381-1169(98)00299-4     URL    
[39]
Jin X, Zhao K, Cui F F, Kong F F, Liu Q Q. Green Chem., 2013, 15(11): 3236.

doi: 10.1039/c3gc41231h     URL    
[40]
Mormul J, Breitenfeld J, Trapp O, Paciello R, Schaub T, Hofmann P. ACS Catal., 2016, 6(5): 2802.

doi: 10.1021/acscatal.6b00189     URL    
[41]
Li Y Q, Wang P, Liu H, Lu Y, Zhao X L, Liu Y. Green Chem., 2016, 18(6): 1798.

doi: 10.1039/C5GC02127H     URL    
[42]
Wang P, Liu H, Li Y Q, Zhao X L, Lu Y, Liu Y. Catal. Sci. Technol., 2016, 6(11): 3854.

doi: 10.1039/C5CY01827G     URL    
[43]
Wang P, Chen X, Wang D L, Li Y Q, Liu Y. Green Energy Environ., 2017, 2(4): 419.

doi: 10.1016/j.gee.2017.01.003     URL    
[44]
Wang P. Doctoral Dissertation of East China Normal University, 2018.
(王鹏. 华东师范大学博士论文, 2018.).
[45]
Wang P, Wang D L, Liu H, Zhao X L, Lu Y, Liu Y. Organometallics, 2017, 36(13): 2404.

doi: 10.1021/acs.organomet.7b00266     URL    
[46]
Liu H, Liu L, Guo W D, Lu Y, Zhao X L, Liu Y. J. Catal., 2019, 373: 215.

doi: 10.1016/j.jcat.2019.04.004     URL    
[47]
Agbossou F, Carpentier J F, Mortreux A. Chem. Rev., 1995, 95(7): 2485.

doi: 10.1021/cr00039a008     URL    
[48]
Breit B. Acc. Chem. Res., 2003, 36(4): 264.

doi: 10.1021/ar0200596     URL    
[49]
Klosin J, Landis C R. Acc. Chem. Res., 2007, 40(12): 1251.

doi: 10.1021/ar7001039     URL    
[50]
Slaugh L H, Hill P, Mullineaux R D. Patent 3239569, 1966.
[51]
Solsona A, Suades J, Mathieu R. J. Organomet. Chem., 2003, 669(1/2): 172.

doi: 10.1016/S0022-328X(03)00040-8     URL    
[52]
Boogaerts I I F, White D F S, Cole-Hamilton D J. Chem. Commun., 2010, 46(13): 2194.

doi: 10.1039/b927236d     URL    
[53]
Drent E, Budzelaar P H M. J. Organomet. Chem., 2000, 593/594: 211.

doi: 10.1016/S0022-328X(99)00554-9     URL    
[54]
Konya D, Almeida Leñero K Q, Drent E. Organometallics, 2006, 25(13): 3166.

doi: 10.1021/om0601293     URL    
[55]
Fukuoka A, Matsuzaka H, Hidai M, Ichikawa M. Chem. Lett., 1987, 16(5): 941.

doi: 10.1246/cl.1987.941     URL    
[56]
Mitsudo T A, Suzuki N, Kobayashi T A, Kondo T. J. Mol. Catal. A: Chem., 1999, 137(1/3): 253.

doi: 10.1016/S1381-1169(98)00078-8     URL    
[57]
Ichihara T, Nakano K, Katayama M, Nozaki K. Chem. Asian J., 2008, 3(8/9): 1722.

doi: 10.1002/asia.200800163     URL    
[58]
García L, Claver C, DiÉguez M, Masdeu-BultÓ A M. Chem. Commun., 2006(2): 191.
[59]
Takahashi K, Yamashita M, Nozaki K. J. Am. Chem. Soc., 2012, 134(45): 18746.

doi: 10.1021/ja307998h     pmid: 23116366
[60]
Takahashi K, Yamashita M, Ichihara T, Nakano K, Nozaki K. Angewandte Chemie, 2010, 122(26): 4590.

doi: 10.1002/ange.201001327     URL    
[61]
Yuki Y, Takahashi K, Tanaka Y, Nozaki K. J. Am. Chem. Soc., 2013, 135(46): 17393.

doi: 10.1021/ja407523j     URL    
[62]
Boogaerts I I F, White D F S, Cole-Hamilton D J. Chem. Commun., 2010, 46(13): 2194.

doi: 10.1039/b927236d     URL    
[63]
Diebolt O, Müller C, Vogt D. Catal. Sci. Technol., 2012, 2(4): 773.

doi: 10.1039/c2cy00450j     URL    
[64]
Eilbracht P, Bärfacker L, Buss C, Hollmann C, Kitsos-Rzychon B E, Kranemann C L, Rische T, Roggenbuck R, Schmidt A. Chem. Rev., 1999, 99(11): 3329.

pmid: 11749518
[65]
Lin J J, Larkin J M, Knifton J F, Rylander P N, Greenfield H, Augustine R L. Eds. Catalysis of Organic Reactions. New York: Dekker, 1988. 29.
[66]
Lapidus A L, Brezhnev L Y, Vartanyan M M, Solov’eva T Y, Vol’f E Y. Akad. Nauk SSSR, Ser. Khim., 1989. 1198.
[67]
Lapidus A L, Rodin A P, Brezhnev L Y, Pruidze I G, Ugrak B I. Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 1448.
[68]
Baig T, Kalck P. J. Chem. Soc., Chem. Commun., 1992(18): 1373.
[69]
Larson A T. (E. I. du Pont de Nemours & Co.). U.S. Patent 2497310, 1950.
[70]
Larson A T. Chem. Abstr., 1950, 44: 4489h.
[71]
Seayad A, Ahmed M, Klein H, Jackstell R, Gross T, Beller M. Science, 2002, 297(5587): 1676.

pmid: 12215640
[72]
Ahmed M, Seayad A M, Jackstell R, Beller M. J. Am. Chem. Soc., 2003, 125(34): 10311.

doi: 10.1021/ja030143w     URL    
[73]
Ahmed M, Bronger R P J, Jackstell R, Kamer P C J, van Leeuwen P W N M, Beller M. Chem. Eur. J., 2006, 12(35): 8979.

doi: 10.1002/chem.200600702     URL    
[74]
Routaboul L, Buch C, Klein H, Jackstell R, Beller M. Tetrahedron Lett., 2005, 46(43): 7401.

doi: 10.1016/j.tetlet.2005.08.107     URL    
[75]
Wu L P, Fleischer I, Jackstell R, Beller M. J. Am. Chem. Soc., 2013, 135(10): 3989.

doi: 10.1021/ja312271c     URL    
[76]
Liu H, Yang D, Wang D L, Wang P, Lu Y, Giang V T, Liu Y. Chem. Commun., 2018, 54(57): 7979.

doi: 10.1039/C8CC03431A     URL    
[77]
Liu H, Yang D, Yao Y X, Xu Y Q, Shang H Y, Lin X F. Mol. Catal., 2020, 485: 110843.
[78]
Dias A D O, Augusti R, dos Santos E N, Gusevskaya E V. Tetrahedron Lett., 1997, 38(1): 41.
[79]
Vieira C G, de Freitas M C, Dos Santos E N, Gusevskaya E V. ChemCatChem, 2012, 4(6): 795.

doi: 10.1002/cctc.201200057     URL    
[80]
Chercheja S, Eilbracht P. Adv. Synth. Catal., 2007, 349(11/12): 1897.

doi: 10.1002/adsc.200700160     URL    
[81]
Abillard O, Breit B. Adv. Synth. Catal., 2007, 349(11/12): 1891.

doi: 10.1002/adsc.200700216     URL    
[82]
Breit B, Zahn S K. Angew. Chem. Int. Ed., 1999, 38(7): 969.
[83]
Breit B, Zahn S K. Tetrahedron, 2005, 61(26): 6171.

doi: 10.1016/j.tet.2005.03.112     URL    
[84]
Risi R M, Maza A M, Burke S D. J. Org. Chem., 2015, 80(1): 204.

doi: 10.1021/jo502301k     URL    
[85]
Subhani M A, Müller K S, Koç F, Eilbracht P. Org. Biomol. Chem., 2009, 7(19): 4000.

doi: 10.1039/b907787a     URL    
[86]
Stiller J, Vorholt A J, Ostrowski K A, Behr A, Christmann M. Chem. Eur. J., 2012, 18(31): 9496.

doi: 10.1002/chem.201200639     URL    
[87]
Fang X J, Jackstell R, Beller M. Chem. Eur. J., 2014, 20(26): 7939.

doi: 10.1002/chem.201402981     URL    
[88]
de Wildeman S M A, de Vries J G, Boogers J A F. Patent WO2012/116977. 2012.
[89]
Vasylyev M, Alper H. Angew. Chem. Int. Ed., 2009, 48(7): 1287.

doi: 10.1002/anie.200802550     pmid: 19140145
[90]
Inventor not nominated. Patent US 3127451. 1964.
[91]
Inventor not nominated. Patent US 32786121. 1966.
[92]
Chauvel A, Lefebvre G. Eds.: Petrochemical Processes, Institut Français du PÉtrole Publications, Imprimerie Nouvelle, Saint-Jean-de-Braye. 1989, 92.
[93]
Weissermel K, Arpe H J. Eds.: Industrial Organic Chemistry, VCH Publishers, Weinheim. 1997, 138.
[94]
Sharma S K, Shukla R S, Parikh P A, Jasra R V. J. Mol. Catal. A: Chem., 2009, 304(1/2): 33.

doi: 10.1016/j.molcata.2009.01.020     URL    
[95]
Sharma S K, Jasra R V. Ind. Eng. Chem. Res., 2011, 50(5): 2815.

doi: 10.1021/ie1015365     URL    
[96]
Chercheja S, Rothenbücher T, Eilbracht P. Adv. Synth. Catal., 2009, 351(3): 339.

doi: 10.1002/adsc.200800720     URL    
[97]
Wong G W, Landis C R. Angew. Chem. Int. Ed., 2013, 52(5): 1564.

doi: 10.1002/anie.201208819     URL    
[98]
Breit B, Fuchs D, Nasr-Esfahani M, Diab L, Šmejkal T. Synlett, 2013, 24(13): 1657.

doi: 10.1055/s-0033-1339298     URL    
[99]
Breit B, Bruch A, Gebert A. Synthesis, 2008, 2008(14): 2169.

doi: 10.1055/s-2008-1067140     URL    
[1] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[2] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[3] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[4] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[5] 杨文清, 谢大乐, 程俊, 唐维克, 汪若冰, 冯乙巳. 负载型BINAP-M类催化剂[J]. 化学进展, 2021, 33(10): 1706-1720.
[6] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[7] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
[8] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[9] 朱成浩, 张俊良. 钯催化有机卤化物与烷基炔的Heck型反应[J]. 化学进展, 2020, 32(11): 1745-1752.
[10] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[11] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[12] 曲树璋, 张韬毅, 王伟. 氮配位单茂金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(7): 929-938.
[13] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[14] 商天奕, 吕琪妍, 刘琰, 於兵. Ugi/Diels-Alder串联反应在构建杂环化合物中的应用[J]. 化学进展, 2019, 31(10): 1362-1371.
[15] 袁梦娅, 陈孝云*, 林生岭*. 功能化烯胺的合成[J]. 化学进展, 2018, 30(8): 1082-1096.
阅读次数
全文


摘要

烯烃的氢甲酰化串联反应研究