English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 269-283 DOI: 10.7536/PC150904 前一篇   后一篇

• 综述与评论 •

双阳离子液体的合成、性能及应用

杨许召1,2*, 王军2, 方云1*   

  1. 1. 江南大学化学与材料工程学院 食品胶体与生物技术教育部重点实验室 无锡 214122;
    2. 郑州轻工业学院材料与化学工程学院 河南省表界面科学重点实验室 郑州 450002
  • 收稿日期:2015-09-01 修回日期:2015-10-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 杨许召, 方云 E-mail:yangxz@zzuli.edu.cn;yunfang@126.com
  • 基金资助:
    国家自然科学基金项目(No.21176228),河南省科技攻关项目(No.132102210188),河南省高等学校青年骨干教师资助计划项目(No.2013GGJS-108),郑州市科技攻关项目(No.141PQYJS555)和江南大学食品胶体与生物技术教育部重点实验室开放课题(No.JDSJ2013-01)资助

Synthesis, Properties and Applications of Dicationic Ionic Liquids

Yang Xuzhao1,2*, Wang Jun2, Fang Yun1*   

  1. 1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
    2. Henan Provincial Key Laboratory of Surface and Interface Science, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
  • Received:2015-09-01 Revised:2015-10-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21176228), the Science and Technology Planning Project of Henan Province (No. 132102210188), the Foundation for University Key Teacher of Henan Province (No. 2013GGJS-108), the Science and Technology Research Project of Zhengzhou City (No.141PQYJS555), and the Foundation of Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Jiangnan University (No. JDSJ2013-01).
双阳离子液体(DILs)是一类新型离子液体,其结构中包括一个双阳离子和两个单的阴离子,两个阳离子之间通过联接基进行连接。此类离子液体因其具有高的热和化学稳定性、优良的可设计性、高热容等特点而备受关注,并广泛应用于高温有机反应、气相色谱固定相、染料敏化太阳能电池、分离过程和高温润滑油。本文简述了近年来双阳离子液体的研究进展,归纳了不同类型DILs的合成,包括:对称DILs的合成和非对称DILs的合成;并对此类离子液体的性能进行了总结,如物化性能、表界面性能、毒性及生物降解性等;介绍了DILs的结构与分子动力学;概括了DILs在有机合成、材料制备、电化学领域的应用;最后对DILs的应用前景与发展趋势进行了展望。
Dicationic ionic liquids (DILs) are a fascinating class of novel ionic liquids consisting of two cationic moieties combined with a spacer and two anionic moieties. DILs have recently received more and more attention because of their unique and interesting advantages compared with traditional monocationic ionic liquids while maintaining the same desirable solvation properties, such as higher thermal and chemical stability, excellent structural tunability, superior heat capacity and so on. Given the tunability of DILs, they are more suitable for use in a plethora of science and engineering applications, such as high-temperature organic synthesis, chromatography stationary phases, stable quasi-solid-state dye-sensitized solar cell, separation process, and novel high-temperature lubricant. The recent research progresses of DILs are systematicly reviewed in this paper. General methods for synthesis of various types of DILs, including symmertrical and asymmertrical DILs, are summarized. Properties of DILs in terms of melting point, density, viscosity, heat capacity, thermal stability, surface and interfacial properties, toxicity and biodegradability are respectively described in detail. The structures and molecular dynamics of DILs are introduced in brief. The applications of DILs in organic synthesis, material preparation and electrochemical field are briefly overviewed. In addition, the application prospect and development trend of DILs are finally prospected.

Contents
1 Introduction
2 Synthesis of DILs
2.1 Synthesis of symmertrical DILs
2.2 Synthesis of asymmertrical DILs
3 Properties of DILs
3.1 Physicochemical properties
3.2 Surface & interfacial properties
3.3 Toxicity and biodegradability
4 Structures and molecular dynamics of DILs
4.1 Structures
4.2 Molecular dynamics
5 Applications of DILs
5.1 Organic synthesis
5.2 Material preparation
5.3 Electrochemical field
6 Conclusion

中图分类号: 

()
[1] Rogers R D, Seddon K R. Science, 2003, 302:792.
[2] Rogers R D. Nature, 2007, 447:917.
[3] Welton T. Chem. Rev., 1999, 99:2071.
[4] Sheldon R. Chem. Commun., 2001, (23):2399.
[5] Marsh K N, Boxall J A, Lichtenthaler R. Fluid Phase Equilibria, 2004, 219:93.
[6] Short P L. Chem. Eng. News, 2006, 84:15.
[7] Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V, Croce F. J. Phys. Chem. B, 2009, 113:10607.
[8] Han X X, Armstrong D W. Org. Lett., 2005, 7:4205.
[9] Namboodiri V V, Varma R S. Org. Lett., 2002, 4(18):3161.
[10] Singh R P, Shreeve J M. Chem. Commun., 2003, 12:1366.
[11] Anderson J L, Ding R, Ellern A, Armstrong D W. J. Am. Chem. Soc., 2005, 127(2):593.
[12] Liu Q, Rantwijk F, Sheldon R A. J. Chem. Technol. Biotechnol., 2006, 81:401.
[13] Bronger R P J, Silva S M, Kamera P C J, van Leeuwen P W N M. Chem. Commun., 2002, 11:3044.
[14] Jin C M, Ye C F, Phillips B S, Zabinski J S, Liu X Q, Liud W, Shreeve J M. J. Mater. Chem., 2006, 16:1529.
[15] 王军(Wang J), 张真真(Zhang Z Z), 杨许召(Yang X Z), 李刚森(Li G S). 化学试剂(Chemical Reagents), 2009, 31:719.
[16] Yang X Z, Wang J, Zhang Z Z, Li G S. J. Chem. Eng. Data, 2009, 54:1385.
[17] Yang X Z, Wang J. J. Chem. Eng. Data, 2010, 55:1708.
[18] Yang X Z, Wang J. J. Chem. Eng. Data, 2010, 55:2322.
[19] Bhatt D R, Maheria K C, Parikh J K. RSC Adv., 2015, 5:12139.
[20] Subramaniam P, Mohamad S, Alias Y. Int. J. Mol. Sci., 2010, 11:3675.
[21] D'Anna F, Gunaratne H Q N, Lazzara G, Noto R, Rizzo C, Seddon K R. Org. Biomol. Chem., 2013, 11:5836.
[22] Xiao J C, Shreeve J M. J. Org. Chem., 2005, 70:3072.
[23] Ding Y S, Zha M, Zhang J, Wang S S. Colloids Surf. A:Physicochem. Eng. Aspects, 2007, 298:201.
[24] Baltazar Q Q, Chandawalla J, Sawyer K, Anderson J L. Colloids Surf. A:Physicochem. Eng. Aspects, 2007, 302:150.
[25] Frizzo C P, Gindri I M, Bender C R, Tier A Z, Villetti M A, Rodrigues D C, Machado G, Martins M A P. Colloids Surf. A:Physicochem. Eng. Aspects, 2015, 468:285.
[26] Nacham O, Martín-Pérez A, Steyer D J, Trujillo-Rodríguez M J, Anderson J L, PinoV, Afonso A M. Colloids Surf. A:Physicochem. Eng. Aspects, 2015, 469:224.
[27] Liu X F, Xiao L F, Wu H, Chen J, Xia C. Helv. Chim. Acta, 2009, 92:1014.
[28] Jadhav A H, Chinnappan A, Patil R H, Kostjuk S V, Kim H. Chem. Eng. J., 2014, 243:92.
[29] Wang Y L, Li Z, Luo J, Liu Z L. J. Chin. Chem. Soc., 2013, 60:1431.
[30] Wang Y H, Lu T T. Chiang Mai J. Sci., 2014, 41:138.
[31] Liu W T, Wang Y F, Li W, Yang Y, Wang N N, Song Z X, Xia X F, Wang H. J. Catal. Lett., 2015, 145:1080.
[32] Zhang Z X, Zhou H Y, Yang L, Tachibana K, Kamijima K, Xu J. Electrochim. Acta, 2008, 53:4833.
[33] Payagala T, Huang J M, Breitbach Z S, Sharma P S, Armstrong D W. Chem. Mater, 2007, 19:5848.
[34] 王军(Wang J), 武金超(Wu J C), 杨许召(Yang X Z), 王满满(Wang M M), 苗进辉(Miao J H). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 2014, 28:944.
[35] Yu G Q, Yan S Q, Zhou F, Liu X Q, Liu W M, Liang Y M. Tribol. Lett., 2007, 25:197.
[36] Chang J C, Ho W Y, Sun I W, Li J P, Ren P B. Tetrahedron, 2010, 66:6150.
[37] Kärnä M K, Lahtinen M K, Valkonen J U. J. Chem. Eng. Data, 2013, 58:1893.
[38] Wang J, Wang M M, Yang X Z, Zou W Y, Chen X. Chin. J. Chem. Eng., 2015, 23(5):816.
[39] Shirota H, Mandai T, Fukazawa H, Kato T. J. Chem. Eng. Data, 2011, 56:2453.
[40] Claros M, Galleguillos H R, Brito I, Graber T A. J. Chem. Eng. Data, 2012, 57:2147.
[41] 杨许召(Yang X Z),王军(Wang J),孙新科(Sun X K).北京化工大学学报(自然科学版)(Journal of Beijing University of Chemical Technology (Natural Science Edition)),2011, 38(2):27.
[42] 杨许召(Yang X Z),王军(Wang J),孙新科(Sun X K). 化学工程(Chemical Engineering (China)), 2011, 39(4):61.
[43] Ge R, Hardacre C, Jacquemin J, Nancarrow P, Rooney D W. J. Chem. Eng. Data, 2008, 53:2148.
[44] Valderrama J O, Toro A, Rojas R E. J. Chem. Thermodyn., 2011, 43:1068.
[45] Gardas R L, Coutinho J A P. Ind. Eng. Chem. Res., 2008, 47:5751.
[46] Mahrova M, Pagano F, Pejakovic V, Valea A, Kalin M, Igartua A, Tojo E. Tribol. Int., 2015, 82:245.
[47] Gai C, Zhang Y H, Chen W T, Zhang P, Dong Y P. Bioresour. Technol., 2013, 150:139.
[48] Vrande D? i Dc' N S, Erceg M, Jaki Dc' M, Klari Dc' L. Thermochim. Acta, 2010, 498:71.
[49] Mustata F St C, Tudorachi N, Mustata A, Mustata F. J. Therm. Anal. Calorim., 2015, 120:1703.
[50] Zhang Z X, Yang L, Luo S H, Tian M, Tachibana K, Kamijima K. J. Power Sources, 2007, 167:217.
[51] Haddad B, Villemin D, Belarbi E, Bar N, Rahmouni M. Arab. J. Chem., 2014, 7:781.
[52] Zafer C, Ocakoglu K, Ozsoy C, Icli S. Electrochim. Acta, 2009, 54:5709.
[53] Casal-Dujat L, Griffiths P C, Rodríguez-Abreu C, Solans C, Rogers S, Pérez-García L. J. Mater. Chem. B, 2013, 1:4963.
[54] Luo Y R, Wang S H, Li X Y, Yun M X, Wang J J, Sun Z J. Ecotoxicol. Environ. Saf., 2010, 73:1046.
[55] Ma J G, Dong X Y, Fang Q, Li X Y, Wang J J. J. Biochem. Mol. Toxicol., 2014, 28:69.
[56] Li X Y, Dong X Y, Bai X, Liu L, Wang J J. Environ. Toxicol., 2014, 29:697.
[57] Steudte S, Bemowsky S, Mahrova M, Bottin-Weber U, Tojo-Suarez E, Stepnowski P, Stolte S. RSC Adv., 2014, 4:5198.
[58] Gindri I M, Siddiqui D A, Bhardwaj P, Rodriguez L C, Palmer K L, Frizzo C P, Martins M A P, Rodrigues D C. RSC Adv., 2014, 4:62594.
[59] Silva F A e, Siopa F, Figueiredo B F H T, Gonçalves A M M, Pereira J L, Gonçalves F, Coutinho J A P, Afonso C A M, Ventura S P M. Ecotoxicol. Environ. Saf., 2014, 108:302.
[60] Kärnä M, Lahtinen M, Hakkarainen P L, Valkonen J. Aust. J. Chem., 2010, 63:1122.
[61] Sun H, Zhang D J, Liu C B, Zhang C Q. J. Mol. Struct.:THEOCHEM, 2009, 900:37.
[62] Lee M, Niu Z B, Slebodnick C, Gibson H W. J. Phys. Chem. B, 2010, 114:7312.
[63] Farmanzadeh D, Soltanabadi A, Yeganegi S. J. Chin. Chem. Soc., 2013, 60:551.
[64] Bodo E, Chiricotto M, Caminiti R. J. Phys. Chem. B, 2011, 115:14341.
[65] Lopes J N C, Padua A A H. J. Phys. Chem. B, 2004, 108:16893.
[66] Yeganegi S, Soltanabadi A, Farmanzadeh D. J. Phys. Chem. B, 2012, 116:11517.
[67] Bhargava B L, Klein M L. J. Chem. Theory Comput., 2010, 6:873.
[68] Li S, Feng G, Cummings Peter T. J. Phys.:Condens. Matter, 2014, 26:284106.
[69] Priede E, Nakurte I, Zicmanis A. Synth. Commun., 2014, 44:1803.
[70] Khosropour A R, Noei J, Mirjafari A. J. Iran. Chem. Soc., 2010, 7:752.
[71] Bronger R P J, Silva S M, Kamer P C J, Leeuwen P W N M. Dalton Trans., 2004, 10:1590.
[72] Zhang C Y, Shi R B, Chen C Y, Jin C M. Chin. J. Org.Chem., 2013, 33:611.
[73] Wang Y L, Luo J, Liu Z L. Appl. Organometal. Chem., 2013, 27:601.
[74] Huang Q, Qiu J B, Li L M, Xu G H, Zhou Z G. Transition Met. Chem., 2014, 39:661.
[75] Wang Y L, Luo J, Liu Z L. J. Organomet. Chem., 2013, 739:1.
[76] Fang D, Yang J M, Jiao C M. ACS Catal., 2011, 1:42.
[77] Zhao D S, Liu M S, Zhang J, Li J P, Ren P B. Chem. Eng. J., 2013, 221:99.
[78] Jadhav A H, Lee K Y, Koo S H, Seo J G. RSC Adv., 2015, 5:26197.
[79] Jadhav V H, Kim J G, Jeong H J, Kim D W. J. Org. Chem., 2015, 80:7275.
[80] Yavari I, Mahjoub A R, Kowsari E, Movahedi M. J. Nanopart. Res., 2009, 11:861.
[81] Sabbaghann M, Beheshtian J, Mirsaeidi S A M. Ceram. Int., 2014, 40:7769.
[82] Sahiner N, Yasar A O, Aktas N. J. Ind. Eng. Chem., 2015, 23:100.
[83] Kore R, Satpati B, Srivastava R. Chem. Eur. J., 2011, 17:14360.
[84] Li S, Zhang P F, Fulvio P F, Hillesheim P C, Feng G, Dai S, Cummings P T. J. Phys.:Condens. Matter, 2014, 26:284105.
[85] Zhang C, Ingram I C, Hantao L W, Anderson J L. J. Chromatogr. A, 2015, 1386:89.
[86] Rizzo C, D'Anna F, Marullo S, Vitale P, Noto R. Eur. J. Org. Chem., 2014, 2014:1013.
[87] Lim S R, Hwang J, Kim C S, Park H S, Cheong M, Kim H S, Lee H. J. Hazard. Mater., 2015, 289:63.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[6] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[14] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[15] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.