English
新闻公告
More
化学进展 2023, Vol. 35 Issue (1): 88-104 DOI: 10.7536/PC220544 前一篇   后一篇

• 综述 •

二维材料的一维纳米带

李璇, 黄炯鹏, 张一帆, 石磊*()   

  1. 中山大学材料科学与工程学院 光电材料与技术国家重点实验室 纳米技术研究中心 广州市柔性电子材料与可穿戴设备重点实验室 广州 510275
  • 收稿日期:2022-05-31 修回日期:2022-10-09 出版日期:2023-01-24 发布日期:2022-10-30
  • 作者简介:
    † These authors contributed equally to this work.
  • 基金资助:
    广州市基础研究计划基础与应用基础研究项目(202201011790); 国家自然科学基金项目(51902353); 中山大学中央高校基本科研业务费专项资金(22lgqb03)

1D Nanoribbons of 2D Materials

Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi()   

  1. State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Material Science and Engineering, Sun Yat-sen University,Guangzhou 510275, China
  • Received:2022-05-31 Revised:2022-10-09 Online:2023-01-24 Published:2022-10-30
  • Contact: *e-mail: shilei26@mail.sysu.edu.cn
  • Supported by:
    Guangzhou Basic and Applied Basic Research Foundation(202201011790); National Natural Science Foundation of China(51902353); Fundamental Research Funds for the Central Universities, and the Sun Yat-sen University(22lgqb03)

自石墨烯被发现以来,二维材料研究成为一个新的研究热点。当二维材料制备成一维纳米带结构后,由于宽度方向上的限域效应和边缘结构的差异,导致其具有区别于二维材料的独特的电学、光学和磁学性质,因此逐步成为科学家关注的焦点。本文主要介绍了石墨烯、石墨炔、联苯烯、氮化硼、黑磷、过渡金属二硫族化合物等二维材料的一维纳米带的结构、制备方法和性能研究。首先讨论了二维材料制备成一维纳米带后的结构与性能的改变;其次,着重阐述了典型的纳米带制备方法,包括“自上而下”和“自下而上”两种策略,如二维片层刻蚀、打开纳米管、化学合成、化学气相沉积、外延生长及碳纳米管限域生长等方法,实现可控制备指定纳米宽度与具有特定边缘结构的纳米带,最终获得不同于其二维材料本体的特殊性能。最后,总结了不同方法制备纳米带的优缺点,提出了需要克服的困难和挑战,并展望了未来的研究方向,希望能引起国内外同行的广泛关注。

Since the discovery of graphene, studies on two-dimensional (2D) materials have become a hot research area. 2D materials can be prepared into one-dimensional (1D) nanoribbons by using different methods. The obtained 1D nanoribbons present unique electrical, optical, and magnetic properties, which are different from that of their 2D material counterparts, due to their limited width and specific edge structures. Therefore, more and more researches focus on the 1D nanoribbons of 2D materials recently. In this review, we introduce several typical 1D nanoribbons of 2D materials, such as graphene, graphdiyne, biphenylene, boron nitride, black phosphorus, and transition metal dichalcogenides. We firstly discuss the structures and modified properties when the 2D materials are formed into 1D nanoribbons. Then, typical synthesis methods including “top-down” and “bottom-up” strategies are presented in detail. Especially, several methods are mainly introduced including on-surface synthesis, solution synthesis, confined synthesis, unzipping the nanotubes, and chemical vapor deposition, leading to controllable synthesis of nanoribbons with sub-nanometer in width and/or with designed edge structure, which ultimately result in nanoribbons with tailored properties. Finally, advantages and disadvantages of these synthesis methods are summarized and perspectives on the precision synthesis of certain nanoribbons with specific properties as well as applications are highlighted. We hope that this review is able to attract domestic and international peers’ attention on this new research focus on the 1D nanoribbons of 2D materials.

Contents

1 Introduction

2 Graphene nanoribbons

2.1 Structure and properties of graphene nanoribbons

2.2 Preparation of graphene nanoribbons

3 Graphdiyne nanoribbons

3.1 Structure and properties of graphdiyne nanoribbons

3.2 Preparation of graphdiyne nanoribbons

4 Biphenylene nanoribbons

4.1 Structure and properties of biphenylen nanoribbons

4.2 Preparation of biphenylen nanoribbons

5 Boron nitride nanoribbons

5.1 Structure and properties of boron nitride nanoribbons

5.2 Preparation of boron nitride nanoribbons

6 Phosphorus nanoribbons

6.1 Structure and properties of phosphorus nanoribbons

6.2 Preparation of phosphorus nanoribbons

7 Transition metal dichalcogenides nanoribbons

7.1 MoS2 nanoribbon

7.2 MoSe2 nanoribbon

7.3 WS2 nanoribbon

7.4 WSe2 nanoribbon

7.5 WTe2 nanoribbon

7.6 ReS2 nanoribbon

8 Conclusion and outlook

()
图1 各类二维材料的一维纳米带发展历程
Fig. 1 Development of one-dimensional nanoribbons of various two-dimensional materials. Copyright can be found separately in the following figures
图2 利用(a)紧束缚;(b) 局域密度近似计算得到的Na-AGNRs带隙随宽度变化的关系图[8]
Fig. 2 The variation of band gaps of Na-AGNRs as a function of width obtained from (a) tight-binding calculations, (b) local density approximation calculations[8]. Copyright 2006, American Physical Society
图3 (a)无电场时锯齿型石墨烯纳米带的电子结构;(b)无电场时基态下α-自旋(红)和β-自旋(蓝)的分布;(c)从左至右施加电场为0.0、0.05 and 0.1 V·?-1时具有α-自旋和β-自旋的电子结构[11]
Fig. 3 (a) Electronic structure of a 16-ZGNR without external electric field, (b) The spatial distribution of the charge difference between α-spin (red) and β-spin (blue) for the ground state without electric field, (c) From left to right, band structures of the α-spin and β-spin with increased electric field of 0.0, 0.05 and 0.1 V·?-1. Copyright 2006, Springer Nature
图4 不同宽度石墨烯纳米带的:(a~c)器件图;(d~f)不同温度下的电导率测试;(g)电导率与宽度关系图;(h)能隙与宽度关系图[12]
Fig. 4 (a~c) Device images, (d~f) conductance as a function of gate voltage measured at different temperatures, (g) conductance versus width, (h) energy gap versus width of GNRs. Copyright 2007, American Physical Society
图5 溶液超声法获得的不同宽度的石墨烯纳米带的原子力显微镜图像[15]
Fig. 5 Atomic force microscopy images of graphene nanoribbons with variable width obtained from solution sonication[15]. Copyright 2008, AAAS
图6 (a)碳纳米管刻蚀法制备石墨烯纳米带[16];(b)单壁碳纳米管逐步裂解形成石墨烯纳米带[17]
Fig. 6 (a) Schematic of multi-walled carbon nanotubes etching to obtain graphene nanoribbons[16]. Copyright 2009, Springer Nature. (b) Schematic of the gradual unzipping of one wall of a carbon nanotube to form a nanoribbon[17]. Copyright 2009, Springer Nature
图7 (a)在Au(111)表面合成石墨烯纳米带的分子反应过程[18];(b)溶液法合成石墨烯纳米带的分子反应过程[21]
Fig. 7 (a) Schematic of molecular reactions of synthesis of graphene nanoribbons on Au(111) surface[18]. Copyright 2010, Springer Nature. (b) Reaction scheme and process of synthesis of graphene nanoribbons in solution[21]. Copyright 2014, Springer Nature
图8 具有特定边缘结构的石墨烯纳米带的合成路线图[30]
Fig. 8 Schematic of synthetic strategy to graphene nanoribbons with specific edges[30]. Copyright 2021, Springer Nature
图9 (a)利用多环芳香族碳氢化合物分子在单壁碳纳米管内合成石墨烯纳米带[31];(b)利用二茂铁合成的扶手椅型石墨烯纳米带的高倍透射电镜图以及相应的模拟示意图[32]
Fig. 9 (a) Synthesis of graphene nanoribbons within a single-walled carbon nanotube from polyaromatic hydrocarbons[31]. Copyright 2011, American Chemical Society. (b) High resolution transmission electron microscopy images and corresponding simulations for armchair graphene nanoribbons synthesized from ferrocene[32]. Copyright 2021, Elsevier
图10 (a)石墨炔结构,(b)合成石墨炔纳米带原理图[41]
Fig. 10 (a) Schematic of graphdiyne fragment, (b) The stepwise intermolecular and intramolecular Glazer-Hay coupling reaction for graphdiyne nanoribbons[41]. Copyright 2020, John Wiley and Sons
图11 (a)合成联苯烯纳米带和联苯烯网络示意图;(b)联苯烯纳米带的扫描隧道显微镜图像及原子力显微镜图像[44]
Fig. 11 (a) Reaction process of synthesis of biphenylene nanoribbons and biphenylene network, (b) Scanning tunneling microscopy images and corresponding atomic force microscopy images of biphenylene nanoribbons[44]. Copyright 2021, AAAS
图12 (a)在水溶液中超声辅助水解法剥离和剪切氮化硼示意图[57];(b)石墨烯边缘外延生长氮化硼纳米带示意图[58]
Fig.12 (a) Schematic of exfoliation and cutting of boron nitride in water via Sonication-Assisted Hydrolysis[57]. Copyright 2011, American Chemical Society. (b) Schematic of epitaxial growth of boron nitride nanoribbons from the edge of a graphene[58]. Copyright 2013, American Chemical Society
图13 透射电子显微镜刻蚀法制备磷烯纳米带原理图及扫描透射电镜图[64]
Fig. 13 Schematic of in situ transmission electron microscope and scanning transmission electron microscope nanosculpting of zigzag few-layer phosphorus nanoribbons[64]. Copyright 2016, American Chemical Society
图14 (a)生长过程示意图;(b)在蓝宝石基底上的单层二硫化钼上生长二硫化钼纳米带的光学显微镜图像片;二硫化钼纳米带的(c)相对取向统计图与(d)原子结构示意图[77]
Fig. 14 (a) Schematic illustration of growth process, (b) Optical microscopy image of as-grown MoS2 nanoribbons on sapphire supported monolayer MoS2 flakes, (c) The statistics on the relative orientation of MoS2 nanoribbons, (d) The atomic structure illustration of MoS2 nanoribbons[77]. Copyright 2019, John Wiley and Sons
图15 电化学/化学合成法制备二硫化钼纳米线和二硫化钼纳米带的示意图[79]
Fig. 15 Schematic of the electrochemical/chemical synthesis of MoS2 nanoribbons[79]. Copyright 2005, American Chemical Society
图16 分子束外延生长法制备二硒化钼纳米带[85]
Fig. 16 Fabrication of MoSe2 nanoribbons via molecular beam epitaxy method[85]. Copyright 2017, John Wiley and Sons
图17 (a)金模板生长二硒化钼纳米带步骤示意图;(b~d)分别是对应的扫描隧道显微镜图像[86]
Fig. 17 (a) Schematic of two-step controlled growth of MoSe2 ultranarrow ribbon on Au(100), (b~d) Scanning tunneling microscopy images of corresponding growth stages[86]. Copyright 2017, American Chemical Society
图18 (a,b)分别为空间限域和衬底导向化学气相沉积生长法制备过渡金属二硫族化合物纳米带的示意图;(c,d)分别是使用限域和传统化学气相沉积法制备得到的纳米片或纳米带的示意图[97]
Fig. 18 (a,b) Schematic of synthesis procedure of transition-metal dichalcogenide nanoribbons, (c,d) Illustration of transition-metal dichalcogenide nanoplates and nanoribbons synthesis using space-confined and substrate-directed chemical vapor deposition and conventional chemical vapor deposition strategy, respectively[97]. Copyright 2020, Elsevier
图19 (a)由碲化钨纳米线转化为纳米带的示意图;(b)碲化钨纳米线及反应后垂直和水平排列的纳米带的几何结构示意图;(c~f)分别为碲化钨及制备得到的二硫化钨、二硒化钨、二碲化钨纳米带的扫描电子显微镜图像[106]
Fig. 19 (a) Schematic of stacked WTe converting into zigzag nanoribbons, (b) Illustration showing the geometrical structures of the pristine WTe and the vertically and horizontally aligned WX2 obtained after reaction, (c~f) Scanning electron microscope images of the pristine WTe, and the WS2, WSe2, and WTe2 nanoribbons, respectively[106]. Copyright 2021, American Chemical Society
表1 各类纳米带的制备方法、宽度、层数和能隙
Table 1 Preparation methods, widths, layer number and energy gaps of various nanoribbons
Preparation Method Width Layer Number Energy Gap
Graphene Nanoribbon lithography[12~14] tens of nm single 0.002~0.126 eV[12]
ultrasonication in solution[15] 10~50 nm ≤3 /
nanotube zipping[16,17] 10~20 nm single/few /
on-surface synthesis[18~22] 7-AGNR/3-AGNR single 2.3/3.2 eV[18]
CVD[25~28] ~23 nm/3-AGNR single /
epitaxy[30] <5 nm single /
confined synthesis[31~34] 0.5~1 nm/6,7-AGNR single 1.9~2.3 eV[32]
Graphdiyne Nanoribbon organic synthesis[41] ~60 nm single 1.9 eV[41]
Biphenylene Nanoribbon on-surface synthesis[44,48] 12-/18-/21-
armchair BNR
single 0.1~1 eV[42~47]

Boron Nitride Nanoribbon
nanotube zipping[53~56] <30 nm several armchair: >4 eV
zigzag: metallic[49~52]
ultrasonication in solution[57] <200 nm single/few
epitaxy[58] hundreds of nm single
Phosphorus Nanoribbon lithography[64,65] <10 nm few >1.5 eV[59]
ultrasonication in solution[66,67] 4~50 nm single/few


MoS2 Nanoribbon
nanotube zipping[73] ~90 nm 20~30 armchair: >0.56 eV[69]
confined synthesis[74] 1.5~4 nm single
CVD[75~77] tens to hundreds of nm single/few
lithography[78] 157~465 nm 5
organic synthesis[79] 50~800 nm several

MoSe2 Nanoribbon
lithography[83] 300±50 nm single <1.5 eV[80]
CVD[80] ~150 nm single
molecular beam epitaxy[84~85] 10~30 nm single/few
template assisted growth[86] ~0.7 nm single

WS2 Nanoribbon
nanotube zipping[73,90] ~100 nm several armchair: semiconducting
zigzag: metallic[88]
lithography[91] ~20 nm several
confined synthesis[92] 1~3 nm single

WSe2 Nanoribbon
lithography[96] <10 nm single armchair: semiconducting
zigzag: metallic[93]
CVD[97] tens to thousands of nm single
epitaxy[98] tens to hundreds of nm single

WTe2 Nanoribbon
CVD[102~104] 100~200 nm single/few armchair: semiconducting
zigzag: metallic[100]
confined synthesis[105] ~1 nm single
transformation from nanowire[106] ~10 nm several
ReS2 Nanoribbon CVD[109] ~50 nm few 0.9~1.6 eV[108]
confined synthesis[110] ~1.3 nm single
[1]
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A. ACS Nano, 2015, 9(12): 11509.

doi: 10.1021/acsnano.5b05556     pmid: 26544756
[2]
Ruffieux P, Wang S Y, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K, Fasel R. Nature, 2016, 531(7595): 489.

doi: 10.1038/nature17151     URL    
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896     pmid: 15499015
[4]
Iijima S. Nature, 1991, 354(6348): 56.

doi: 10.1038/354056a0     URL    
[5]
Jin G, Lin Z, Shi L. Prog. Chem., 2021, 33: 188.
[6]
Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer J C, Peterlik H, Wanko M, Cahangirov S, Rubio A, Lapin Z J, Novotny L, Ayala P, Pichler T. Nat. Mater., 2016, 15(6): 634.

doi: 10.1038/nmat4617     URL    
[7]
Ruffieux P, Cai J M, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X L, Müllen K, Pignedoli C A, Fasel R. ACS Nano, 2012, 6(8): 6930.

doi: 10.1021/nn3021376     pmid: 22853456
[8]
Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2007, 98(8): 089901.

doi: 10.1103/PhysRevLett.98.089901     URL    
[9]
Yang L, Park C H, Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2007, 99(18): 186801.

doi: 10.1103/PhysRevLett.99.186801     URL    
[10]
Lawrence J, Brandimarte P, Berdonces-Layunta A, Mohammed M S G, Grewal A, Leon C C, Sánchez-Portal D, de Oteyza D G. ACS Nano, 2020, 14(4): 4499.

doi: 10.1021/acsnano.9b10191     pmid: 32101402
[11]
Son Y W, Cohen M L, Louie S G. Nature, 2006, 444: 347.

doi: 10.1038/nature05180     URL    
[12]
Han M Y, Özyilmaz B, Zhang Y B, Kim P. Phys. Rev. Lett., 2007, 98(20): 206805.

doi: 10.1103/PhysRevLett.98.206805     URL    
[13]
Bai J W, Duan X F, Huang Y. Nano Lett., 2009, 9(5): 2083.

doi: 10.1021/nl900531n     URL    
[14]
Shin Y S, Son J Y, Jo M H, Shin Y H, Jang H M. J. Am. Chem. Soc., 2011, 133(15): 5623.

doi: 10.1021/ja108464s     URL    
[15]
Li X L, Wang X R, Zhang L, Lee S, Dai H J. Science, 2008, 319(5867): 1229.

doi: 10.1126/science.1150878     URL    
[16]
Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458(7240): 877.

doi: 10.1038/nature07919     URL    
[17]
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872.

doi: 10.1038/nature07872     URL    
[18]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211     URL    
[19]
Langlais V, Schneider K, Tang H. J. Phys.: Condens. Matter, 2022, 34(5): 055001.
[20]
Zhou X H, Yu G. Adv. Mater., 2020, 32(6): 1905957.

doi: 10.1002/adma.201905957     URL    
[21]
Vo T H, Shekhirev M, Kunkel D A, Morton M D, Berglund E, Kong L M, Wilson P M, Dowben P A, Enders A, Sinitskii A. Nat. Commun., 2014, 5: 3189.

doi: 10.1038/ncomms4189     URL    
[22]
Yoon K Y, Dong G B. Mater. Chem. Front., 2020, 4(1): 29.

doi: 10.1039/C9QM00519F     URL    
[23]
Narita A, Feng X L, Hernandez Y, Jensen S A, Bonn M, Yang H F, Verzhbitskiy I A, Casiraghi C, Hansen M R, Koch A H R, Fytas G, Ivasenko O, Li B, Mali K S, Balandina T, Mahesh S, de Feyter S, Müllen K. Nat. Chem., 2014, 6(2): 126.

doi: 10.1038/nchem.1819     URL    
[24]
Celis A, Nair M N, Taleb-Ibrahimi A, Conrad E H, Berger C, de Heer W A, Tejeda A. J. Phys. D: Appl. Phys., 2016, 49(14): 143001.

doi: 10.1088/0022-3727/49/14/143001     URL    
[25]
Kato T, Hatakeyama R. Nat. Nanotechnol., 2012, 7(10): 651.

doi: 10.1038/nnano.2012.145     URL    
[26]
Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T. Adv. Mater., 2014, 26(24): 4134.

doi: 10.1002/adma.201305034     URL    
[27]
Chen Z P, Zhang W, Palma C A, Lodi Rizzini A, Liu B L, Abbas A, Richter N, Martini L, Wang X Y, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C W, de Renzi V, del Pennino U, Barth J V, Räder H J, Narita A, Feng X L, Müllen K. J. Am. Chem. Soc., 2016, 138(47): 15488.

doi: 10.1021/jacs.6b10374     URL    
[28]
Fedotov P V, Rybkovskiy D V, Novikov I V, Obraztsova E D. Phys. Status Solidi B, 2022, 259(4): 2100501.

doi: 10.1002/pssb.202100501     URL    
[29]
Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A. Nat. Nanotechnol., 2010, 5(10): 727.

doi: 10.1038/nnano.2010.192     pmid: 20890273
[30]
Wang H S, Chen L X, Elibol K, He L, Wang H M, Chen C, Jiang C X, Li C, Wu T R, Cong C X, Pennycook T J, Argentero G, Zhang D L, Watanabe K, Taniguchi T, Wei W Y, Yuan Q H, Meyer J C, Xie X M. Nat. Mater., 2021, 20(2): 202.

doi: 10.1038/s41563-020-00806-2     URL    
[31]
Talyzin A V, Anoshkin I V, Krasheninnikov A V, Nieminen R M, Nasibulin A G, Jiang H, Kauppinen E I. Nano Lett., 2011, 11(10): 4352.

doi: 10.1021/nl2024678     URL    
[32]
Kuzmany H, Shi L, Martinati M, CambrÉ S, Wenseleers W, Kürti J, Koltai J, Kukucska G, Cao K C, Kaiser U, Saito T, Pichler T. Carbon, 2021, 171: 221.

doi: 10.1016/j.carbon.2020.08.065     URL    
[33]
Zhang Y F, Cao K C, Saito T, Kataura H, Kuzmany H, Pichler T, Kaiser U, Yang G W, Shi L. Nano Res., 2022, 15(3): 1709.

doi: 10.1007/s12274-021-3819-8     URL    
[34]
Chuvilin A, Bichoutskaia E, Gimenez-Lopez M C, Chamberlain T W, Rance G A, Kuganathan N, Biskupek J, Kaiser U, Khlobystov A N. Nat. Mater., 2011, 10(9): 687.

doi: 10.1038/nmat3082     pmid: 21822259
[35]
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46(19): 3256.

doi: 10.1039/b922733d     URL    
[36]
Bai H C, Zhu Y, Qiao W Y, Huang Y H. RSC Adv., 2011, 1(5): 768.

doi: 10.1039/c1ra00481f     URL    
[37]
Chen C, Li J, Sheng X L. Phys. Lett. A, 2017, 381(38): 3337.

doi: 10.1016/j.physleta.2017.08.034     URL    
[38]
Lin Z Z, Wei Q, Zhu X M. Carbon, 2014, 66: 504.

doi: 10.1016/j.carbon.2013.09.027     URL    
[39]
Serafini P, Milani A, Tommasini M, Castiglioni C, Casari C S. Phys. Rev. Materials, 2020, 4: 014001.

doi: 10.1103/PhysRevMaterials.4.014001     URL    
[40]
Kang J, Wu F M, Li J B. J. Phys.: Condens. Matter, 2012, 24(16): 165301.
[41]
Zhou W X, Shen H, Zeng Y, Yi Y P, Zuo Z C, Li Y J, Li Y L. Angew. Chem. Int. Ed., 2020, 59(12): 4908.

doi: 10.1002/anie.201916518     URL    
[42]
Wang X Q, Li H D, Wang J T. Phys. Chem. Chem. Phys., 2013, 15(6): 2024.

doi: 10.1039/C2CP43070C     URL    
[43]
Denis P A. J. Phys. Chem. C, 2014, 118(43): 24976.

doi: 10.1021/jp5069895     URL    
[44]
Fan Q, Yan L, Tripp M W, Krej? í O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P, Gottfried J M. Science, 2021, 372: 852.

doi: 10.1126/science.abg4509     URL    
[45]
Shen H, Yang R Y, Xie K, Yu Z Y, Zheng Y X, Zhang R J, Chen L Y, Wu B R, Su W S, Wang S Y. Phys. Chem. Chem. Phys., 2022, 24(1): 357.

doi: 10.1039/D1CP04481H     URL    
[46]
Ge H Y, Wang G, Liao Y. Chem. Phys. Lett., 2016, 648: 97.

doi: 10.1016/j.cplett.2016.02.011     URL    
[47]
Karaush N N, Bondarchuk S V, Baryshnikov G V, Minaeva V A, Sun W H, Minaev B F. RSC Adv., 2016, 6(55): 49505.

doi: 10.1039/C6RA06832D     URL    
[48]
Schlütter F, Nishiuchi T, Enkelmann V, Müllen K. Angew. Chem. Int. Ed., 2014, 53(6): 1538.

doi: 10.1002/anie.201309324     pmid: 24492971
[49]
Zhang Z H, Guo W L. Phys. Rev. B, 2008, 77: 439.

doi: 10.1103/PhysRev.77.439     URL    
[50]
Lai L, Lu J, Wang L, Luo G F, Zhou J, Qin R, Gao Z X, Mei W N. J. Phys. Chem. C, 2009, 113(6): 2273.

doi: 10.1021/jp8079827     URL    
[51]
Chen W, Li Y F, Yu G T, Li C Z, Zhang S B, Zhou Z, Chen Z F. J. Am. Chem. Soc., 2010, 132(5): 1699.

doi: 10.1021/ja908475v     pmid: 20085366
[52]
Ding Y, Wang Y L, Ni J. Appl. Phys. Lett., 2009, 94(7): 073111.

doi: 10.1063/1.3085967     URL    
[53]
Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y, Golberg D. Nano Lett., 2010, 10(12): 5049.

doi: 10.1021/nl103251m     URL    
[54]
Erickson K J, Gibb A L, Sinitskii A, Rousseas M, Alem N, Tour J M, Zettl A K. Nano Lett., 2011, 11(8): 3221.

doi: 10.1021/nl2014857     pmid: 21608991
[55]
Li L, Li L H, Chen Y, Dai X J, Lamb P R, Cheng B M, Lin M Y, Liu X W. Angew. Chem. Int. Ed., 2013, 52(15): 4212.

doi: 10.1002/anie.201209597     URL    
[56]
Liao Y L, Chen Z F, Connell J W, Fay C C, Park C, Kim J W, Lin Y. Adv. Funct. Mater., 2014, 24(28): 4497.

doi: 10.1002/adfm.201400599     URL    
[57]
Lin Y, Williams T V, Xu T B, Cao W, Elsayed-Ali H E, Connell J W. J. Phys. Chem. C, 2011, 115(6): 2679.

doi: 10.1021/jp110985w     URL    
[58]
Han G H, Rodríguez-Manzo J A, Lee C W, Kybert N J, Lerner M B, Qi Z J, Dattoli E N, Rappe A M, Drndic M, Johnson A T C. ACS Nano, 2013, 7(11): 10129.

doi: 10.1021/nn404331f     URL    
[59]
Vy T, Yang L. Phys. Rev. B, 2014, 89: 106.

doi: 10.1103/PhysRev.89.106     URL    
[60]
de Sousa D J P, de Castro L V, da Costa D R, Pereira J M. Phys. Rev. B, 2016, 94(23): 235415.

doi: 10.1103/PhysRevB.94.235415     URL    
[61]
Wu Q Y, Shen L, Yang M, Cai Y Q, Huang Z G, Feng Y P. Phys. Rev. B, 2015, 92(3): 035436.

doi: 10.1103/PhysRevB.92.035436     URL    
[62]
Taghizadeh Sisakht E, Zare M H, Fazileh F. Phys. Rev. B, 2015, 91(8): 085409.

doi: 10.1103/PhysRevB.91.085409     URL    
[63]
Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J. 2D Mater., 2014, 1(2): 025001.
[64]
Masih Das P, Danda G, Cupo A, Parkin W M, Liang L B, Kharche N, Ling X, Huang S X, Dresselhaus M S, Meunier V, Drndić M. ACS Nano, 2016, 10(6): 5687.

doi: 10.1021/acsnano.6b02435     pmid: 27192448
[65]
Feng X W, Huang X, Chen L, Tan W C, Wang L, Ang K W. Adv. Funct. Mater., 2018, 28(28): 1801524.

doi: 10.1002/adfm.201801524     URL    
[66]
Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartu? S P, Payton O D, Skipper N T, Tileli V, Howard C A. Nature, 2019, 568(7751): 216.

doi: 10.1038/s41586-019-1074-x     URL    
[67]
Liu Q, Zhang X, Wang J H, Zhang Y L, Bian S, Cheng Z Q, Kang N, Huang H, Gu S, Wang Y, Liu D N, Chu P K, Yu X F. Angew. Chem. Int. Ed., 2020, 59(34): 14383.

doi: 10.1002/anie.202006679     URL    
[68]
Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Adv. Mater., 2012, 24(17): 2320.

doi: 10.1002/adma.201104798     URL    
[69]
Li Y F, Zhou Z, Zhang S B, Chen Z F. J. Am. Chem. Soc., 2008, 130(49): 16739.

doi: 10.1021/ja805545x     URL    
[70]
Wang R, Zhou X Y, Xu X Y, Hu J G, Pan J. J. Phys. D: Appl. Phys., 2017, 50(9): 095102.

doi: 10.1088/1361-6463/aa4f37     URL    
[71]
Pan H, Zhang Y W. J. Mater. Chem., 2012, 22(15): 7280.

doi: 10.1039/c2jm15906f     URL    
[72]
Ma C R, Yan J H, Huang Y C, Zheng Z Q, Yang G W. Nanotechnology, 2020, 31(6): 065204.

doi: 10.1088/1361-6528/ab50d2     URL    
[73]
Vasu K, Yamijala S S R K C, Zak A, Gopalakrishnan K, Pati S K, Rao C N R. Small, 2015, 11(32): 3916.

doi: 10.1002/smll.201500350     URL    
[74]
Wang Z Y, Li H, Liu Z, Shi Z J, Lu J, Suenaga K, Joung S K, Okazaki T, Gu Z N, Zhou J, Gao Z X, Li G P, Sanvito S, Wang E G, Iijima S. J. Am. Chem. Soc., 2010, 132(39): 13840.

doi: 10.1021/ja1058026     URL    
[75]
Li S S, Lin Y C, Zhao W, Wu J, Wang Z, Hu Z H, Shen Y D, Tang D M, Wang J Y, Zhang Q, Zhu H, Chu L Q, Zhao W J, Liu C, Sun Z P, Taniguchi T, Osada M, Chen W, Xu Q H, Wee A T S, Suenaga K, Ding F, Eda G. Nat. Mater., 2018, 17(6): 535.

doi: 10.1038/s41563-018-0055-z     URL    
[76]
Yang C X, Wang B, Xie Y N, Zheng Y F, Jin C H. Nanotechnology, 2019, 30(25): 255602.

doi: 10.1088/1361-6528/ab0a1d     URL    
[77]
Wu D, Shi J, Zheng X M, Liu J X, Dou W D, Gao Y L, Yuan X M, Ouyang F P, Huang H. Phys. Status Solidi RRL, 2019, 13(7): 1900063.

doi: 10.1002/pssr.201900063     URL    
[78]
Hung Y H, Lu A Y, Chang Y H, Huang J K, Chang J K, Li L J, Su C Y. ACS Appl. Mater. Interfaces, 2016, 8(32): 20993.

doi: 10.1021/acsami.6b05827     URL    
[79]
Li Q, Walter E C, van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M. J. Phys. Chem. B, 2005, 109(8): 3169.

doi: 10.1021/jp045032d     URL    
[80]
Chen T, Hao G L, Wang G, Li B, Kou L Z, Yang H, Zheng X M, Zhong J X.2D Mater., 2019, 6(2): 025002.
[81]
Zhang H M, Li Z Y. J. Phys.: Condens. Matter, 2020, 32(36): 365303.
[82]
Chen H J, Xie Y A, Cui H L, Zhao W, Zhu X L, Wang Y M, Lü X, Huang F Q. Chem. Commun., 2014, 50(34): 4475.

doi: 10.1039/C3CC49600G     URL    
[83]
Wang Z X, Zhang X, Hachtel J A, Apte A, Tiwary C S, Vajtai R, Idrobo J C, Ozturk R, Ajayan P. Nanoscale Horiz., 2019, 4(3): 689.

doi: 10.1039/C8NH00364E     URL    
[84]
Chen Y X, Cui P, Ren X B, Zhang C D, Jin C H, Zhang Z Y, Shih C K. Nat. Commun., 2017, 8: 15135.

doi: 10.1038/ncomms15135     URL    
[85]
Poh S M, Tan S J R, Zhao X X, Chen Z X, Abdelwahab I, Fu D Y, Xu H, Bao Y, Zhou W, Loh K P. Adv. Mater., 2017, 29(12): 1605641.

doi: 10.1002/adma.201605641     URL    
[86]
Cheng F, Xu H, Xu W T, Zhou P J, Martin J, Loh K P. Nano Lett., 2017, 17(2): 1116.

doi: 10.1021/acs.nanolett.6b04715     pmid: 28090772
[87]
Zhang H, Li X B, Liu L M. J. Appl. Phys., 2013, 114(9): 093710.

doi: 10.1063/1.4820470     URL    
[88]
Lopez-Urias F, Elias A L, Perea-Lopez N, Gutierrez H R, Terrones M, Terrones H.2D Mater., 2015, 2: 015002.
[89]
Han D, Wang M, Yang X H, Du M, Cheng L, Wang X Y. J. Alloys Compd., 2022, 903: 163850.

doi: 10.1016/j.jallcom.2022.163850     URL    
[90]
Nethravathi C, Jeffery A A, Rajamathi M, Kawamoto N, Tenne R, Golberg D, Bando Y. ACS Nano, 2013, 7(8): 7311.

doi: 10.1021/nn4029635     pmid: 23883418
[91]
Heyne M H, de Marneffe J F, Delabie A, Caymax M, Neyts E C, Radu I, Huyghebaert C, de Gendt S. Nanotechnology, 2017, 28(4): 04LT01.

doi: 10.1088/1361-6528/aa510c     URL    
[92]
Wang Z Y, Zhao K K, Li H, Liu Z, Shi Z J, Lu J, Suenaga K, Joung S K, Okazaki T, Jin Z X, Gu Z N, Gao Z X, Iijima S. J. Mater. Chem., 2011, 21(1): 171.

doi: 10.1039/C0JM02821E     URL    
[93]
Chen K X, Luo Z Y, Mo D C, Lyu S S. Phys. Chem. Chem. Phys., 2016, 18(24): 16337.

doi: 10.1039/C6CP02456D     URL    
[94]
Shahbazi M. Phys. B Condens. Matter, 2018, 545: 159.

doi: 10.1016/j.physb.2018.06.004     URL    
[95]
Wang J, Xie F, Cao X H, An S C, Zhou W X, Tang L M, Chen K Q. Sci. Rep., 2017, 7: 41418.

doi: 10.1038/srep41418     pmid: 28120912
[96]
Stanford M G, Pudasaini P R, Cross N, Mahady K, Hoffman A N, Mandrus D G, Duscher G, Chisholm M F, Rack P D. Small Methods, 2017, 1(4): 1600060.

doi: 10.1002/smtd.201600060     URL    
[97]
Duan Z J, Chen T, Shi J W, Li J, Song K, Zhang C, Ding S J, Li B, Wang G, Hu S G, He X Y, He C Y, Xu H, Liu X F, Jin C H, Zhong J X, Hao G L. Sci. Bull., 2020, 65(12): 1013.

doi: 10.1016/j.scib.2020.03.002     URL    
[98]
Aljarb A, Fu J H, Hsu C C, Chuu C P, Wan Y, Hakami M, Naphade D R, Yengel E, Lee C J, Brems S, Chen T A, Li M Y, Bae S H, Hsu W T, Cao Z, Albaridy R, Lopatin S, Chang W H, Anthopoulos T D, Kim J, Li L J, Tung V. Nat. Mater., 2020, 19(12): 1300.

doi: 10.1038/s41563-020-0795-4     URL    
[99]
Wang J H, Yang W, Zhou M, Yang Y, Yan J Y, Zhang P. Phys. Lett. A, 2018, 382(38): 2754.

doi: 10.1016/j.physleta.2018.06.031     URL    
[100]
Ghosh B, Gupta A, Bishnoi B. J. Semicond., 2014, 35(11): 113002.

doi: 10.1088/1674-4926/35/11/113002     URL    
[101]
Kwak J, Jo Y, Song S, Kim J H, Kim S Y, Lee J U, Lee S, Park J, Kim K, Lee G D, Yoo J W, Kim S Y, Kong Y M, Lee G H, Lee wan-gyu, Park J, Xu X D, Cheong H, Yoon E, Lee Z, Kwon S Y. Adv. Mater., 2018, 30(30): 1707260.

doi: 10.1002/adma.201707260     URL    
[102]
Zhou Y, Jang H, Woods J M, Xie Y J, Kumaravadivel P, Pan G A, Liu J B, Liu Y H, Cahill D G, Cha J J. Adv. Funct. Mater., 2017, 27(8): 1605928.

doi: 10.1002/adfm.201605928     URL    
[103]
Zhou J D, Liu F C, Lin J H, Huang X W, Xia J, Zhang B W, Zeng Q S, Wang H, Zhu C, Niu L, Wang X W, Fu W, Yu P, Chang T R, Hsu C H, Wu D, Jeng H T, Huang Y Z, Lin H, Shen Z X, Yang C L, Lu L, Suenaga K, Zhou W, Pantelides S T, Liu G T, Liu Z. Adv. Mater., 2017, 29(3): 201770015.
[104]
Li J, Hong M L, Sun L J, Zhang W F, Shu H B, Chang H X. ACS Appl. Mater. Interfaces, 2018, 10(1): 458.

doi: 10.1021/acsami.7b13387     URL    
[105]
Kanda N, Nakanishi Y, Liu D, Liu Z, Inoue T, Miyata Y, Tománek D, Shinohara H. Nanoscale, 2020, 12(33): 17185.

doi: 10.1039/D0NR03129A     URL    
[106]
Lim H E, Liu Z, Kim J, Pu J, Shimizu H, Endo T, Nakanishi Y, Takenobu T, Miyata Y. ACS Appl. Nano Mater., 2022, 5(2): 1775.

doi: 10.1021/acsanm.1c03160     URL    
[107]
Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y S, Ho C H, Yan J. Nat. Commun., 2015, 5: 3252.

doi: 10.1038/ncomms4252     URL    
[108]
Yu Z G, Cai Y Q, Zhang Y W. Sci. Rep., 2015, 5: 13783.

doi: 10.1038/srep13783     URL    
[109]
He X X, Liu F C, Hu P, Fu W, Wang X L, Zeng Q S, Zhao W, Liu Z. Small, 2015, 11(40): 5423.

doi: 10.1002/smll.201501488     URL    
[110]
Norman L T, Biskupek J, Rance G A, Stoppiello C T, Kaiser U, Khlobystov A N. Nano Res., 2022, 15(2): 1282.

doi: 10.1007/s12274-021-3650-2     URL    
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[7] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[8] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[9] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[10] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[11] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[12] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[13] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[14] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[15] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
阅读次数
全文


摘要

二维材料的一维纳米带