English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1947-1956 DOI: 10.7536/PC211125 前一篇   后一篇

• 综述 •

盐包合材料在高温熔盐体系中的合成及其潜在应用

张旭1,2, 张蕾1, 黄善恩1,3, 柴之芳1, 石伟群4,*()   

  1. 1 中国科学院宁波材料技术与工程研究所先进能源材料工程实验室 宁波 315201
    2 哈尔滨工程大学核科学与技术学院 哈尔滨 150001
    3 西安交通大学能源与动力工程学院 西安 710049
    4 中国科学院高能物理研究所 北京 100049
  • 收稿日期:2021-11-30 修回日期:2022-01-13 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家杰出青年科学基金项目(21925603); ,国家自然科学基金重大项目(21790373); 国家自然科学基金项目(U20B2020)

Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application

Xu Zhang1,2, Lei Zhang1, Shanen Huang1,3, Zhifang Chai1, Weiqun Shi4()   

  1. 1 Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,Ningbo 315201, China
    2 College of Nuclear Science and Technology, Harbin Engineering University,Harbin 150001, China
    3 School of Energy and Power Engineering, Xi’an Jiaotong University,Xi’an 710049, China
    4 Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049, China
  • Received:2021-11-30 Revised:2022-01-13 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: shiwq@ihep.ac.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    National Science Foundation for Distinguished Young Scholars(21925603); Major Program of the National Natural Science Foundation of China(21790373); National Natural Science Foundation of China(U20B2020)

盐包合材料 (Salt-Inclusion Materials, SIMs) 是一类具有独特的主体结构和客体盐组合的新型无机晶体材料,其具有特定的多孔结构、可填充性和灵活多变的拓扑结构而引起了研究者们的兴趣。SIMs的合成具有很大的挑战性,大部分都是偶然生长所得,为将其发展为可应用的材料,理解其合成规律、晶体化学及其相关性能非常重要。本文综述了近年来文献报道的高温熔盐法合成得到的典型SIMs,从晶体框架结构对其分类,针对一些结构独特的SIMs进行了重点讨论并总结其特点。最后,本文介绍了SIMs在环境、光电、热电和荧光领域的潜在应用。对于其未来发展,仍需进一步研究SIMs晶体化学以探索其性能及应用。

Salt-inclusion materials (SIMs), novel crystal materials with a unique host structure and guest salt inclusion, are of great interest to researchers due to their excellent porous, packable and flexible structure. The synthesis of SIMs is very challenging, as most of them are obtained serendipitously. To develop these materials for further application, it is important to understand their crystal chemistry, synthesis mechanism and relevant properties. In this work, we review typical SIMs synthesized in high-temperature molten salt system in recent years, classify them by their crystal frameworks, discuss some SIMs with unique structures and summarize their characteristics. This paper also introduces the potential application of SIMs in the environmental, photoelectric, thermoelectric and fluorescence fields. For the future development of SIMs, further investigation of their crystal chemistry is still needed to explore their applications

Contents

1 Introduction

2 Characteristics of molten salt method

3 The structure of salt-inclusion materials

3.1 Silicates-based SIMs

3.2 Germanates-based SIMs

3.3 Phosphates-based SIMs

3.4 Vanadates-based SIMs

3.5 Borates-based SIMs

3.6 Salt-inclusion chalcogenide

4 Potential applications of the SIMs

5 Conclusion and outlook

()
表1 SIMs的结构及其合成条件
Table 1 Structures and synthesis conditions of some SIMs
Number Compounds Flux Reagents Reaction temperature and time Cooling rate Space group Vcell3 ) ref
1 Ba6Mn4Si12O34Cl3 BaCl2/NaCl BaO, BaCl2, MnO, SiO2 1000℃, 6 days N/A Pmc21 864.4(3) 45
2 Ba6Fe5Si11O34Cl3 BaCl2/NaCl BaO, BaCl2, Fe2O3, SiO2 1000℃, 6 days N/A Pmc21 870.6(3) 45
3 Ba2Mn(Si2O7)Cl BaCl2/NaCl BaO, BaCl2, Mn2O3, SiO2 900℃, 6 days 6℃/h (300℃) P4bm 389.8(1) 46
4 Ba4(BO3)3(SiO4)·Ba3Cl Na2O/H3BO3 BaCl2, SiO2 850℃, 20 h 2℃/h (630℃) P63mc 788.3(8) 47
5 Ba4(BO3)3(SiO4)·Ba3Br NaBr/H3BO3 BaCO3, SiO2 900℃, 20 h 2℃/h (735℃) P63mc 806.9(5) 47
6 [Cs8Cs8Cl1.4F0.6][(TiO)4(Ti6Si14O51)] CsCl/CsF UF4, SiO2, TiO2 900℃, 12 h 6℃/h (400℃) Cmmm 3577.69(12) 48
7 [NaK6F][(UO2)3(Si2O7)2] KF/NaF U3O8, SiO2 900℃, 24 h 6℃/h (600℃) Pnnm 1139.71(9) 49
8 [KK6Cl][(UO2)3(Si2O7)2] KF/KCl U3O8, SiO2 900℃, 24 h 6℃/h (600℃) Pnnm 1184.82(11) 49
9 [Cs3F][(UO2)(Si4O10)] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) Imma 1542.68(7) 50
10 [Cs2Cs5F][(UO2)3(Si2O7)2] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) P21/n 1382.41(17) 50
11 [Cs2Cs5F][(UO2)2(Si6O17)] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) P21212 1436.05(8) 50
12 [Cs9Cs6Cl][(UO2)7(Si6O17)2(Si4O12)] CsCl/CsF UF4, SiO2 800℃, 12 h 6℃/h (400℃) P-1 1890.08(10) 50
13 [KK6Cl][(UO2)3(Ge2O7)2] KF/KCl UF4, GeO2 875℃, 12 h 6℃/h (400℃) Pnnm 1257.44(10) 26
14 [Cs6Cs0.71Cl0.71][(UO2)3O3(Ge2O7)] CsCl UF4, GeO2 875℃, 12 h 6℃/h (400℃) P63/m 1294.4(2) 26
15 K2Cs3Cu3(P2O7)2Cl3 CsCl KMnO4, CuO, P2O5 650℃, 48 h
800℃, 12 h
3℃/h (500℃) P4/nbm 4197.8(9) 51
16 Na2Cs2Cu3(P2O7)2Cl2 CsCl Na2O, CuO, P2O5 750℃, 5 days 6℃/h (400℃) P42/mnm 3333.1(8) 52
17 Na2Mn3(P2O7)2·RbCl RbCl/NaCl MnO, P4O10 750℃, 12 h 6℃/h (350℃) C2/c 1337.2(6) 35
18 K2Mn3(P2O7)2·CsCl CsCl/KCl MnO, P4O10 750℃, 12 h 6℃/h (350℃) P2/c 764.1(3) 35
19 K2Fe3(P2O7)2·CsCl CsCl/KCl FeO, P4O10 750℃, 12 h 6℃/h (350℃) P-1 372.76(13) 35
20 (CsCl)Mn(V2O7) CsCl/NaCl MnO, V2O5 650℃, 4 days 6℃/h (450℃) Pma2 38.8(2) 31
21 Cs5FeV5O13Cl6 CsCl/NaCl Fe2O3, V2O5 650℃, 3 h
600℃, 48 h
6℃/h (480℃) P4/nmm 1261.5(8) 30
22 Cs11Na3(V15O36)Cl6 CsCl/NaCl MnO, V2O5 650℃, 4 days 6℃/h (450℃) P-1m2 1388.3(7) 31
23 [Li3Ca9(BO3)7]·2[LiF] LiF Li2CO3, CaO, H3BO3 850℃, 20 h
600℃, 48 h
2℃/h (650℃),10℃/min to room temperature P1 511.69(16) 38
24 (Cs6Cl)6Cs3[Ga53Se96] CsCl Mn, Ga, Se 1000℃, 4 days 3℃/h (300℃) I-4 1042.04(2) 40
25 [Ba4Cl2][ZnGa4S10] Ba2Cl Ba, Ga, S, ZnS 1050℃, 60 h 2.5℃/h (300℃) R-3m 6226.5(6) 42
26 Li[LiCs2Cl][Ga3S6] CsCl Li, Ba, Ga, S 950℃, 96 h 5.7℃/h (400℃) Pna21 1333.1(1) 2
27 Ba7B3SiO13Br H3BO3 SiO2, Dy2O3, NH4Br 1200℃, 96 h natural cooling to
room temperature
P63mc 806.9(5) 53
图1 [Ba6Cl3][M4+xSi12-xO34] (M=Fe, Mn) 混合金属网格的透视图。深灰:Ba, 绿:Cl[45]
Fig. 1 Perspective view of the mixed-metal network structure showing pseudo-one-dimensional channels. Dark gray: Ba, green: Cl[45]. Copyright 2005, American Chemical Society
图2 [Cs8Cs8Cl1.4F0.6][(TiO)4(Ti6Si14O51)] 的结构示意图 (a) 沿a轴方向;(b) 沿b轴方向:14元环通道;(c) 沿b轴方向:离子盐[48]
Fig. 2 The schematic structure of [Cs8Cs8Cl1.4F0.6][(TiO)4(Ti6Si14O51)] (a) along the a-axis direction; (b) along the b-axis direction: 14 member ring; (c) along the b-axis direction: ionic salt[48]. Copyright 2020, American Chemical Society
图3 (a) [NaK6F][(UO2)3(Si2O7)2]; (b) [Cs3F][(UO2)(Si4O10)]; (c) [Cs2Cs5F][(UO2)3(Si2O7)2]; (d) [Cs2Cs5F][(UO2)2(Si6O17)]; (e) [Cs9Cs6Cl][(UO2)7(Si6O17)2(Si4O12)] 的结构示意图[49,50]
Fig. 3 Crystal structure of (a) [NaK6F][(UO2)3(Si2O7)2]; (b) [Cs3F][(UO2)(Si4O10)]; (c) [Cs2Cs5F][(UO2)3(Si2O7)2]; (d) [Cs2Cs5F][(UO2)2(Si6O17)]; (e) [Cs9Cs6Cl][(UO2)7(Si6O17)2(Si4O12)][49,50]. Copyright 2020, American Chemical Society
图4 (a) [KK6Cl][(UO2)3(Ge2O7)2] 的晶体结构, (b) [Cs6Cs0.71Cl0.71][(UO2)3O3(Ge2O7)] 的晶体结构. 黄色和橘色:U,灰色:Ge,红色:O,绿色:Cl,深蓝色:Cs[26]
Fig. 4 The structure of (a) [KK6Cl][(UO2)3(Ge2O7)2], (b) [Cs6Cs0.71Cl0.71][(UO2)3O3(Ge2O7)]. yellow and orange: U, gray : Ge, red : O, green : Cl, dark blue : Cs[26]. Copyright 2018, American Chemical Society
图5 (a) CU-2和 (b) CU-4的微孔框架[52]
Fig. 5 Microporous structures of (a) CU-2 and (b) CU-4[52]. Copyright 2001, Wiley
图6 结构示意图 (a) Na2Mn3(P2O7)2·RbCl,(b) K2Mn3(P2O7)2·CsCl,(c) K2Fe3(P2O7)2·CsCl[35]
Fig. 6 The structure of (a) Na2Mn3(P2O7)2·RbCl, (b) K2Mn3(P2O7)2·CsCl, (c) K2Fe3(P2O7)2·CsCl[35]. Copyright 2015, American Chemical Society
图7 晶体结构 (a) (CsCl)2Mn(VO3)2, (b) (CsCl)2Cu(VO3)2, (c) (CsCl)Mn(V2O7)[31], (d) Cs5FeV5O13Cl6[30]
Fig. 7 The structure of (a) (CsCl)2Mn(VO3)2, (b) (CsCl)2Cu(VO3)2, (c) (CsCl)Mn(V2O7)[31], (d) Cs5FeV5O13Cl6[30]
图8 Cs11Na3(V15O36)Cl6团簇的示意图[32]
Fig. 8 Schematic representation of the Cs11Na3(V15O36)Cl6 clusters[32]. Copyright 2011, American Chemical Society
图9 [Li3Ca9(BO3)7]·2[LiF] 的结构示意图[38]
Fig. 9 The structure representation of [Li3Ca9(BO3)7]·2[LiF][38]. Copyright 2013, American Chemical Society
图10 (a)沿b方向 (Cs6Cl)6Cs3[Ga53Se96] 的示意图,(b) [Ga2Se6]6-二聚体的顺式和反式连接示意图[40]
Fig.10 (a) View of (Cs6Cl)6Cs3[Ga53Se96] along the b direction, (b) The cis-and trans-linking details of the Ga2Se6 dimer[40]. Copyright 2016, American Chemical Society
图11 [Ba4Cl2][ZnGa4S10] 的结构示意图. 粉色:Ga4S10,蓝色:ZnS4,红色:Cl,黑色:Ba[42]
Fig.11 The structure representation of [Ba4Cl2][ZnGa4S10], pink: Ga4S10, blue: ZnS4, red: Cl, black: Ba[42]. Copyright 2020, American Chemical Society
图12 (a) Ba4(BO3)3(SiO4)·Ba3X的结构示意图,(b)粒径与SHG强度的函数关系图[47]
Fig. 12 (a) The structure of Ba4(BO3)3(SiO4)·Ba3X, (b) Plot of particle size and SHG intensity[47]. Copyright 2014, the Royal Society of Chemistry
图13 (a) Li[LiCs2Cl][Ga3S6] 的晶体结构; (b) 紫外线-可见的-近红外吸收光谱[2]
Fig. 13 (a) The crystal structure of Li[LiCs2Cl][Ga3S6]; (b) The UV-Visible-NIR absorption spectrum[2]. Copyright 2019, Wiley
图14 Ba7B3SiO13Br的晶体结构[53]
Fig. 14 The crystal structure of Ba7B3SiO13Br[53]
图15 [Rb6Mn7Se44](RE=Ho-Yb)的导热系数随温度的变化[7]
Fig. 15 Thermal conductivity as a function of temperature for [Rb6Mn7Se44](RE=Ho-Yb)[7]. Copyright 2020, the Royal Society of Chemistry
[1]
Moore E E, Kocevski V, Juillerat C A, Morrison G, Zhao M Y, Brinkman K S, Loye H C Z, Besmann T M. Sci. Rep., 2018, 8: 15294.

doi: 10.1038/s41598-018-32903-3     URL    
[2]
Liu B W, Jiang X M, Li B X, Zeng H Y, Guo G C. Angew. Chem. Int. Ed., 2020, 59(12): 4856.

doi: 10.1002/anie.201912416     URL    
[3]
Wang Y, Coordin Chemy Rev., 2016, 323: 15.
[4]
West J P, Hwu S J. J. Solid State Chem., 2012, 195: 101.

doi: 10.1016/j.jssc.2012.06.015     URL    
[5]
Usman M, Kocevski V, Smith M D, Morrison G, Zhang W G, Besmann T, Halasyamani P S, zur Loye H C. Inorg. Chem., 2020, 59(14): 9699.

doi: 10.1021/acs.inorgchem.0c00936     URL    
[6]
Liu B W, Jiang X M, Zeng H Y, Guo G C. J. Am. Chem. Soc., 2020, 142(24): 10641.

doi: 10.1021/jacs.0c04738     URL    
[7]
Chen H, Liu P F, Lin H, Wu X T. Chem. Commun., 2020, 56(96): 15149.

doi: 10.1039/D0CC06306A     URL    
[8]
Chang Y C, Chang W J, Boudin S, Lii K H. Inorg. Chem., 2013, 52(12): 7230.

doi: 10.1021/ic400854j     URL    
[9]
Sadakiyo M, Kasai H, Kato K, Takata M, Yamauchi M. J. Am. Chem. Soc., 2014, 136(5): 1702.

doi: 10.1021/ja410368j     pmid: 24422498
[10]
Morrison G, Tran T T, Halasyamani P S, zur Loye H C. Inorg. Chem., 2016, 55(7): 3215.

doi: 10.1021/acs.inorgchem.6b00242     pmid: 26974872
[11]
Charkin D O, Black C, Downie L J, Sklovsky D E, Berdonosov P S, Olenev A V, Zhou W Z, Lightfoot P, Dolgikh V A. J. Solid State Chem., 2015, 232: 56.

doi: 10.1016/j.jssc.2015.08.043     URL    
[12]
Tasi J M, Tu P T, Chan T S, Lii K H. Inorg. Chem., 2008, 47(23): 11223.

doi: 10.1021/ic801525d     URL    
[13]
Duan M H, Kong B, Yang X K, Li Y X, Ma P X, An X Y, Zeng T X, Qin D B, Fang Z. Inorg. Chem., 2021, 60(12): 8451.

doi: 10.1021/acs.inorgchem.1c01015     URL    
[14]
Levitas B, Liu Z Y, Piligian S, Kakinuma K, Gopalan S. Cryst. Growth Des., 2021, 21(5): 2581.

doi: 10.1021/acs.cgd.0c01249     URL    
[15]
Gilbert M R. Ceram. Int., 2016, 42(4): 5263.

doi: 10.1016/j.ceramint.2015.12.054     URL    
[16]
Huang Q, Hwu S J. Inorg. Chem., 2003, 42(3): 655.

pmid: 12562173
[17]
Queen W L, Hwu S J, Reighard S. Inorg. Chem., 2010, 49(4): 1316.

doi: 10.1021/ic902283g     URL    
[18]
Yoon K H, Cho Y S, Kang D H. J. Mater. Sci., 1998, 33(12): 2977.

doi: 10.1023/A:1004310931643     URL    
[19]
Willert M, Rothe R, Landfester K, Antonietti M. Chem. Mater., 2001, 13(12): 4681.

doi: 10.1021/cm011121g     URL    
[20]
Bugaris D E, Zur Loye H C. Angew. Chem. Int. Ed., 2012, 51(16): 3780.

doi: 10.1002/anie.201102676     pmid: 22287424
[21]
Lee C S, Wang S L, Chen Y H, Lii K H. Inorg. Chem., 2009, 48(17): 8357.

doi: 10.1021/ic901001n     URL    
[22]
Chang Y C, Chang W J, Boudin S, Lii K H. Inorg. Chem., 2013, 52(12): 7230.

doi: 10.1021/ic400854j     URL    
[23]
Tang M F, Chiang P Y, Su Y H, Jung Y C, Hou G Y, Chang B C, Lii K H. Inorg. Chem., 2008, 47(19): 8985.

doi: 10.1021/ic801007k     URL    
[24]
Dong L Y, Pan S L, Wang Y, Yu H W, Bian Q, Yang Z H, Wu H P, Zhang M. CrystEngComm, 2014, 16(27): 5993.

doi: 10.1039/C4CE00527A     URL    
[25]
Li H J, Langer E M, Kegler P, Modolo G, Alekseev E V. Inorg. Chem., 2018, 57(17): 11201.

doi: 10.1021/acs.inorgchem.8b01781     URL    
[26]
Juillerat C A, Moore E E, Morrison G, Smith M D, Besmann T, zur Loye H C. Inorg. Chem., 2018, 57(18): 11606.

doi: 10.1021/acs.inorgchem.8b01729     URL    
[27]
Spagnuolo N R, Morrison G, zur Loye H C. Solid State Sci., 2019, 97: 105973.

doi: 10.1016/j.solidstatesciences.2019.105973     URL    
[28]
Lin C H, Chiang R K, Lii K H. J. Am. Chem. Soc., 2009, 131(6): 2068.

doi: 10.1021/ja8084143     pmid: 19199624
[29]
Siidra O I, Nazarchuk E V, Agakhanov A A, Polekhovsky Y S. Mineral. Mag., 2019, 83(6): 847.

doi: 10.1180/mgm.2019.42    
[30]
Mahjoor P, Latturner S E. Inorg. Chem., 2010, 49(10): 4486.

doi: 10.1021/ic902211c     pmid: 20405835
[31]
Queen W, West J, Hwu S J, VanDerveer D, Zarzyczny M, Pavlick R. Angew. Chem. Int. Ed., 2008, 47(20): 3791.

doi: 10.1002/anie.200705113     URL    
[32]
Queen W L, West J P, Hudson J, Hwu S J. Inorg. Chem., 2011, 50(21): 11064.

doi: 10.1021/ic201605w     URL    
[33]
Winiarski M J, Tran T T, Chamorro J R, McQueen T M. Inorg. Chem., 2019, 58(7): 4328.

doi: 10.1021/acs.inorgchem.8b03464     pmid: 30855961
[34]
Juillerat C A, Klepov V V, Smith M D, zur Loye H C. CrystEngComm, 2020, 22(17): 3020.

doi: 10.1039/D0CE00343C     URL    
[35]
Gao J H, Li J, Sulejmanovic D, Hwu S J. Inorg. Chem., 2015, 54(3): 1136.

doi: 10.1021/ic5024696     URL    
[36]
Volkov S N, Charkin D O, Arsent’ev M Y, Povolotskiy A V, Stefanovich S Y, Ugolkov V L, Krzhizhanovskaya M G, Shilovskikh V V, Bubnova R S. Inorg. Chem., 2020, 59(5): 2655.

doi: 10.1021/acs.inorgchem.0c00306     URL    
[37]
Hu Z G, Yoshimura M, Mori Y, Sasaki T. J. Cryst. Growth, 2005, 275(1/2): 232.

doi: 10.1016/j.jcrysgro.2004.10.160     URL    
[38]
Yu H W, Wu H P, Pan S L, Wang Y, Yang Z H, Su X. Inorg. Chem., 2013, 52(9): 5359.

doi: 10.1021/ic4002779     URL    
[39]
Lin H, Li L H, Chen L. Inorg. Chem., 2012, 51(8): 4588.

doi: 10.1021/ic202494w     URL    
[40]
Lin H, Chen H, Lin Z X, Zhao H J, Liu P F, Yu J S, Chen L. Inorg. Chem., 2016, 55(3): 1014.

doi: 10.1021/acs.inorgchem.5b02846     URL    
[41]
Shi Y F, Li X F, Zhang Y X, Lin H, Ma Z J, Wu L M, Wu X T, Zhu Q L. Inorg. Chem., 2019, 58(10): 6588.

doi: 10.1021/acs.inorgchem.9b00653     URL    
[42]
Chen H, Li Y Y, Li B X, Liu P F, Lin H, Zhu Q L, Wu X T. Chem. Mater., 2020, 32(18): 8012.

doi: 10.1021/acs.chemmater.0c03008     URL    
[43]
Yue Q G, Wei W B, Chen H, Wu X T, Lin H, Zhu Q L. Dalton Trans., 2020, 49(41): 14338.

doi: 10.1039/D0DT02971H     URL    
[44]
Yu P, Zhou L J, Chen L. J. Am. Chem. Soc., 2012, 134(4): 2227.

doi: 10.1021/ja209711x     URL    
[45]
Mo X H, Ferguson E, Hwu S J. Inorg. Chem., 2005, 44(9): 3121.

doi: 10.1021/ic050228t     URL    
[46]
Mo X H, Hwu S J. Inorg. Chem., 2003, 42(13): 3978.

doi: 10.1021/ic0342245     URL    
[47]
Lin X X, Zhang F F, Pan S L, Yu H W, Zhang F Y, Dong X Y, Han S J, Dong L Y, Bai C Y, Wang Z. J. Mater. Chem. C, 2014, 2(21): 4257.

doi: 10.1039/c4tc00079j     URL    
[48]
Morrison G, zur Loye H C. Cryst. Growth Des., 2020, 20(12): 8071.

doi: 10.1021/acs.cgd.0c01317     URL    
[49]
Morrison G, zur Loye H C. Cryst. Growth Des., 2016, 16(3): 1294.

doi: 10.1021/acs.cgd.5b01408     URL    
[50]
Morrison G, Smith M D, zur Loye H C. J. Am. Chem. Soc., 2016, 138(22): 7121.

doi: 10.1021/jacs.6b03205     pmid: 27218856
[51]
Huang Q, Ulutagay M, Michener P A, Hwu S J. J. Am. Chem. Soc., 1999, 121(44): 10323.

doi: 10.1021/ja991768q     URL    
[52]
Huang Q, Hwu S J, Mo X H. Angew. Chem. Int. Ed., 2001, 40(9): 1690.

pmid: 11353481
[53]
Ju H D, Wang B L, Yang Q M. Key Eng. Mater., 2019, 803: 93.

doi: 10.4028/www.scientific.net/KEM.803.93     URL    
[54]
Zheng S T, Zhang J, Yang G Y. Angew. Chem. Int. Ed., 2008, 47(21): 3909.

doi: 10.1002/anie.200705709     URL    
[55]
Belokoneva E L, Dimitrova O V, Stefanovich S Y. Crystallogr. Rep., 2010, 55(4): 575.

doi: 10.1134/S1063774510040073     URL    
[56]
Wu H P, Pan S L, Poeppelmeier K R, Li H Y, Jia D Z, Chen Z H, Fan X Y, Yang Y, Rondinelli J M, Luo H S. J. Am. Chem. Soc., 2011, 133(20): 7786.

doi: 10.1021/ja111083x     URL    
[57]
Chen C, Lu J, Opt lett., 2002, 27: 637.

doi: 10.1364/OL.27.000637     URL    
[58]
Fan X, Pan S, Hou X, Tian X, Han J, Cryst Growth Des., 2009, 10: 252.

doi: 10.1021/cg900877h     URL    
[59]
Kang L, Zhou M L, Yao J Y, Lin Z S, Wu Y C, Chen C T. J. Am. Chem. Soc., 2015, 137(40): 13049.

doi: 10.1021/jacs.5b07920     pmid: 26397313
[60]
Wang S A, Alekseev E, Ling J, Skanthakumar S, Soderholm L, Depmeier W, Albrecht-Schmitt T. Angewandte Chemie Int. Ed., 2010, 49(7): 1263.

doi: 10.1002/anie.200906127     URL    
[61]
Shi W Q, Chai Z F, Liu Y L, J Inorg Mater., 2019, 35: 272.
[62]
Jennifer M. Jackson and Burns P C, Can Mineral., 2001, 39: 187.

doi: 10.2113/gscanmin.39.1.187     URL    
[63]
Wronkiewicz D J, Bates J K, Wolf S F, Buck E C. J. Nucl. Mater., 1996, 238(1): 78.

doi: 10.1016/S0022-3115(96)00383-2     URL    
[1] 潘自宇, 冀豪栋. 银纳米材料的可控合成及其环境应用[J]. 化学进展, 2023, 35(8): 1229-1257.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[12] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[13] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.