English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 284-295 DOI: 10.7536/PC150813 前一篇   后一篇

• 综述与评论 •

钛的阳极氧化过程与TiO2纳米管的形成机理

王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华*   

  1. 南京理工大学化工学院 南京 210094
  • 收稿日期:2015-08-01 修回日期:2015-10-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 马卫华 E-mail:maweihuacn@l63.com
  • 基金资助:
    国家自然科学基金项目(No.21276127)资助

Anodizing Process of Titanium and Formation Mechanism of Anodic TiO2 Nanotubes

Wang Jing, Fan Haowen, Zhang He, Chen Qun, Liu Yi, Ma Weihua*   

  1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2015-08-01 Revised:2015-10-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21276127).
阳极氧化法制备的TiO2纳米管因其独特的结构和优异的性能在多个领域获得广泛应用。阳极氧化TiO2的生长机理也成为本领域的研究热点,最近几年有关生长机理的文章屡见报端。本文从两种阳极氧化钛膜对比的角度,综述了阳极氧化钛纳米管生长机理的最新研究进展和研究意义。首先介绍了Ti的阳极氧化过程,综述了两种阳极氧化钛膜(致密膜和多孔膜)的区别和联系。随后阐述了TiO2纳米管的形成过程,重点综述了TiO2纳米管的几种生长机理。分析表明,传统的"场致溶解"理论在解释纳米管结构和形成过程时存在很多局限性,而黏性流动模型和两电流模型相结合能较全面地解释TiO2纳米管的形成过程,但电子电流的产生机制和纳米孔道中的氧气气泡还有待进一步的实验验证。
Anodic TiO2 nanotubes fabricated by anodization have a wide range of applications in a variety of fields because of their unique structure and excellent performance. Also, the formation mechanisms of anodic TiO2 nanotubes have gradually become a hotspot of research in the field of the porous anodic oxides. A series of papers about formation mechanisms of anodic TiO2 nanotubes have been published in many famous journals in recent years. The present article has reviewed the latest progress and significance of the research on formation mechanisms of anodic TiO2 nanotubes in the contrast of two kinds of anodic oxide films. Here, we firstly introduce the anodizing process of Ti, and then analyze the difference and connections of two kinds of anodic oxide films,that are compact anodic oxide film and porous anodic oxide film. Then we introduce the growth process of TiO2 nanotubes, focusing on different kinds of formation mechanisms of TiO2 nanotubes. The results show that there are a lot of limitations for the traditional field-assisted dissolution theory in explaining the growth process and the porous structure of TiO2 nanotubes, but the combination of viscous flow model and growth model of two currents can give a comprehensive explanation to the growth process of TiO2 nanotubes. However, the validity of oxygen evolution resulting from electronic current has yet to be further investigation.

Contents
1 Introduction
2 Electrochemical anodization of Ti
2.1 Compact anodic titanium oxide films
2.2 Porous anodic titanium oxide films or TiO2 nanotubes
3 Formation mechanism and growth process of TiO2 nanotubes
3.1 Field-assisted dissolution theory and growth process of TiO2 nanotubes
3.2 Viscous flow model
3.3 Growth model of two currents and growth process of TiO2 nanotubes
4 Conclusion

中图分类号: 

()
[1] Liu L, Chen X B. Chem. Rev., 2014, 114:9890.
[2] Xia X H, Zeng Z Y, Li X L, Zhang Y Q, Tu J P, Fan N C, Zhang H, Fan H J. Nanoscale, 2013, 5:6040.
[3] Bai J, Zhou B X. Chem. Rev., 2014, 114:10131.
[4] Gao A, Huang R Q, Huang X B, Zhao L, Zhang X, Wang L, Tang B, Ma S, Chu P K. Biomater., 2014, 35:4223.
[5] Xu C, Song Y, Lu L F, Cheng C W, Liu D F, Fang X H, Chen X Y, Zhu X F, Li D D. Nanoscale Res. Lett., 2013, 8:391.
[6] Cheng C W, Ren W N, Zhang H F. Nano Energy, 2014, 5:132.
[7] Gui Q F, Xu Z, Zhang H F, Cheng C W, Zhu X F, Yin M, Song Y, Lu L F, Chen X Y, Li D D. ACS Appl. Mater. Interfaces, 2014, 6:17053.
[8] Wu H, Li D D, Zhu X, Yang C Y, Liu D, Chen X Y, Song Y, Lu L F. Electrochim. Acta, 2014, 116:129.
[9] Li Z, Ding Y T, Kang W J, Li C, Lin D, Wang X Y, Chen Z W, Wu M H, Pan D Y. Electrochim. Acta, 2015, 161:40.
[10] Wu H, Xu C, Xu J, Lu L F, Fan Z Y, Chen X Y, Song Y, Li D D. Nanotechnology, 2013, 24:455401.
[11] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡伟民(Cai W M), 廖俊生(Liao J S). 化学进展(Prog. Chem.), 2007, 19:117.
[12] 杨旭一(Yang X Y), 黄其煜(Huang Q Y). 化学进展(Prog. Chem.), 2009, 21:116.
[13] 王道爱(Wang D A), 刘盈(Liu Y), 王成伟(Wang C W), 周峰(Zhou F). 化学进展(Prog. Chem.), 2010, 22:1035.
[14] Liu H, Tao L, Shen W Z. Electrochim. Acta, 2011, 56:3905.
[15] Yu D L, Song Y, Zhu X F, Yang R Q, Han A J. Appl. Surf. Sci., 2013, 276:711.
[16] Lee K, Mazare A, Schmuki P. Chem. Rev., 2014, 114:9385.
[17] Sun M W, Yu D L, Lu L F, Ma W H, Song Y, Zhu X F. Appl. Surf. Sci., 2015, 346:172.
[18] Xue Y J, Sun Y, Wang G X, Yan K P, Zhao J Y. Electrochim. Acta, 2015, 155:312.
[19] Su Z X, Zhou W Z. J. Mater. Chem., 2011, 21:8955.
[20] Su Z X, Bühl M, Zhou W Z. J. Am. Chem. Soc., 2009, 131:8697.
[21] Berger S, Kunze J, Schmuki P, LeClere D, Valota A T, Skeldon P, Thompson G E. Electrochim. Acta, 2009, 54:5942.
[22] Cao C B, Li J L, Wang X, Song X P, Sun Z Q. J. Mater. Res., 2011, 26:437.
[23] Guan D S, Hymel P J, Wang Y. Electrochim. Acta, 2012, 83:420.
[24] Hu F, Lin X, Zhu S L, Yang X J, Cui Z D. Appl. Surf. Sci., 2012, 258:3260.
[25] Wang K Y, Liu G H, Hoivik N, Johannessen E, Jakobsen H. Chem. Soc. Rev., 2014, 43:1476.
[26] Jarosz M, Pawlik A, Kapusta-Ko?odziej J, Jasku?a M, Sulka G D. Electrochim. Acta, 2014, 136:412.
[27] Apolinário A, Quitério P, Sousa C T, Ventura J, Sousa J B, Andrade L, Mendes A M, Araújo J P. J. Phys. Chem. Lett., 2015, 6:845.
[28] Apolinário A, Sousa C T, Ventura J, Costa J D, Leitão D C, Moreira J M, Sousa J B, Andrade L, Mendes A M, Araújo J P. J. Mater. Chem. A, 2014, 2:9067.
[29] Chen C Y, Ozasa K, Kitamura F, Katsumata K, Maeda M, Okada K, Matsushita N. Electrochim. Acta, 2015, 153:409.
[30] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 段文强(Duan W Q).物理化学学报(Acta Phys.-Chim. Sin.), 2012, 28:1291.
[31] 朱绪飞(Zhu X F), 韩华(Han H), 戚卫星(Qi W X), 路超(Lu C), 蒋龙飞(Jiang L F), 段文强(Duan W Q).化学进展(Prog. Chem.), 2012, 24:2073.
[32] Keller F, Hunter M S, Robinson D L. J. Electrochem. Soc., 1953, 100:411.
[33] Masuda H, Fukuda K. Science, 1995, 268:1466.
[34] Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U. Nano Lett., 2002, 2:677.
[35] Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U. ACS Nano, 2008, 2:302.
[36] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 马宏图(Ma H T), 戚卫星(Qi W X), 路超(Lu C), 徐辰(Xu C). 物理学报(Acta Physica Sinica), 2012, 61:228202.
[37] Çapraz Ö Ö, Shrotriya P, Skeldon P, Thompson G E, Hebert K R. Electrochim. Acta, 2015, 167:404.
[38] Tsuchiya H, Schmuki P. Electrochem. Commun., 2004, 6:1131.
[39] Tsuchiya H, Macak J M, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P. Electrochem. Commun., 2005, 7:295.
[40] Sieber I, Hildebrand H, Friedrich A, Schmuki P. Electrochem. Commun., 2005, 7:97.
[41] El-Sayed H, Singh S, Greiner M T, Kruse P. Nano Lett., 2006, 6:2995.
[42] Pauric A D, Baig S A, Pantaleo A N, Wang Y, Kruse P J. Electrochem. Soc., 2013, 160:C12.
[43] Tsuchiya H, Schmuki P. Electrochem. Commun., 2005, 7:49.
[44] Yang Y, Albu S P, Kim D, Schmuki P. Angew. Chem. Int. Ed. Engl., 2011, 50:9071.
[45] Diggle J W, Downie T C, Goulding C W. Chem. Rev., 1969, 69:365.
[46] Zhong X M, Yu D L, Zhang S Y, Chen X, Song Y, Li D D, Zhu X F. J. Electrochem. Soc., 2013, 160:E125.
[47] van Overmeere Q, Proost J. Electrochim. Acta, 2011, 56:10507.
[48] Zhu X F, Song Y, Yu D L, Zhang C S, Yao W. Electrochem. Commun., 2013, 29:71.
[49] Houser J E, Hebert K R. Nat. Mater., 2009, 8:415.
[50] Lohrengel M M. Mater. Sci. Eng. R., 1993, 11:243.
[51] Guan D, Wang Y. Nanoscale, 2012, 4:2968.
[52] Deen K M, Farooq A, Raza M A, Haider W. Electrochim. Acta, 2014, 117:329.
[53] Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. Curr. Opin. Solid State Mater. Sci., 2007, 11:3.
[54] Regonini D, Bowen C R, Jaroenworaluck A, Stevens R. J. Mater. Res., 2008, 23:2116.
[55] Mazzarolo A, Curioni M, Vicenzo A, Skeldon P, Thompson G E. Electrochim. Acta, 2012, 75:288.
[56] Gong D, Grimes C G, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. J. Mater. Res. 2001, 16:3331.
[57] Jaroenworaluck A, Regonini D, Bowen C R, Stevens R, Allsopp D. J. Mater. Sci., 2007, 42:6729.
[58] Macak J M, Sirotna K, Schmuki P. Electrochim. Acta, 2005, 50:3679.
[59] Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. B, 2005, 109:15754.
[60] Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Angew. Chem. Int. Ed., 2005, 44:7463.
[61] Prakasam H E, Shankar K, Paulose M, Varghese O K, Grimes C A. J. Phys. Chem. C, 2007, 111:7235.
[62] Macak J M, Albu S P, Schmuki P. Phys. Status Solidi-R, 2007, 1:181.
[63] Shin Y, Lee S. Nano lett., 2008, 8:3171.
[64] Yasuda K, Macak J M, Berger S, Ghicov A, Schmuki P. J. Electrochem. Soc., 2007, 154:C472.
[65] Jha H, Hahn R, Schmuki P. Electrochim. Acta, 2010, 55:8883.
[66] Fahim N F, Sekino T. Chem. Mater., 2009, 21:1967.
[67] Ishibashi K I, Yamaguchi R T, Kimura Y, Niwano M. J. Electrochem. Soc. 2008, 155:K10.
[68] LeClere D J, Velota A, Skeldon P, Thompson G E, Berger S, Kunze J, Schmuki P, Habazaki H, Nagata S. J. Electrochem. Soc. 2008, 155:C487.
[69] Nguyen Q A, Bhargava Y V, Devine T M. Electrochem. Commun., 2008, 10:471.
[70] Richter C, Wu Z, Panaitescu E, Willey R J, Menon L. Adv. Mater., 2007, 19:946.
[71] Richter C, Panaitescu E, Willey R, Menon L. J. Mater. Res., 2007, 22:1624.
[72] Panaitescu E, Richter C, Menon L. J. Electrochem. Soc., 2008, 155:E7.
[73] Hahn R, Lee H, Kim D, Narayanan S, Berger S, Schmuki P. ECS Trans., 2008, 16:369.
[74] Fahim N F, Sekino T, Morks M F, Kusunose T. J. Nanosci. Nanotechnol., 2009, 9:1803.
[75] Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E. Electrochem. Solid. St., 2006, 9(1):B47.
[76] Garcia-Vergara S J, Skeldon P, Thompson G, Habazaki H. Electrochim. Acta, 2006, 52:681.
[77] Zhang S Y, Yu D L, Li D, Song Y, Che J, You S, Zhu X F. Electrochem. Soc., 2014, 161:E135.
[78] Thompson G E. Thin Solid Films, 1997, 297:192.
[79] Xing J H, Li H, Xia Z B, Chen J Q, Zhang Y H, Zhong L. Electrochim. Acta, 2014, 134:242.
[80] Ghicov A, Schmuki P. Chem. Commun., 2009, 20:2791.
[81] Krengvirat W, Sreekantan S, Noor A. Electrochim. Acta, 2013, 89:585.
[82] Regonini D. Doctoral Dissertation of University of Bath, 2008.
[83] Oh J, Thompson C V. Electrochim. Acta, 2011, 56:4044.
[84] Chen B, Hou J, Lu K. Langmuir, 2013, 29:5911.
[85] Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J E. Corros. Sci., 1999, 41:1945.
[86] Zhou X S, Thompson G E, Habazaki H, Páez M, Shimizu K, Skeldon P. J. Electrochem. Soc., 2000, 147:1747.
[87] Regonini D, Bowen C R, Jaroenworaluck A, Stevens R. Mater. Sci. Eng. R, 2013, 74:377.
[88] Hebert K R, Albu S P, Paramasivam I, Schmuki P. Nat. Mater., 2012, 11:162.
[89] Yang J, Huang H T, Lin Q F, Lu L F, Chen X Y, Yang L Y, Zhu X F, Fan Z Y, Song Y, Li D D. ACS Appl. Mater. Interfaces, 2014, 6(4):2285.
[90] Albella J M, Montero I, Martinez-Duart J M. Electrochim. Acta, 1987, 32:255.
[91] Zhang Y L, Yu D L, Gao M, Li D, Song Y, Jin R, Ma W H, Zhu X F. Electrochim. Acta, 2015, 160:33.
[92] Zhu X F, Liu L, Song Y, Jia H B, Yu H D, Xiao X M, Yang X L. Monatsh. Chem., 2008, 139:999.
[93] Yang X L, Zhu X F, Jia H B, Han T. Monatsh. Chem., 2009, 140:595.
[94] Zhu X F, Song Y, Liu L, Wang C Y, Zheng J, Jia H B, Wang X L. Nanotechnology, 2009, 20:475303.
[95] Liu Z, Liu H, Hashimoto T, Thompson G E, Skeldon P. Mater. Charact., 2014, 98:102.
[96] Overmeere Q V, Proost J. Electrochim. Acta, 2010, 55:4653.
[97] Regonini D, Satka A, Jaroenworaluck A, Allsopp D W, Bowen C R, Stevens R. Electrochim. Acta, 2012, 74:244.
[98] Li D D, Zhao L A, Jiang C H, Lu J G. Nano Lett., 2010, 10:2766.
[99] Ispas A, Bund A, Vrublevsky I. J. Solid State Electrochem., 2010, 14:2121.
[100] Yang R Q, Jiang L F, Zhu X F, Song Y, Yu D L, Han A J. RSC Adv., 2012, 2:12474.
[101] Matykina E, Arrabal R, Skeldon P, Thompson G E, Habazaki H. Thin Solid Films, 2008, 516:2296.
[102] Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson G E. Corros. Sci., 2003, 45:2063.
[103] Bustelo M, Fernández B, Pisonero J, Pereiro R, Bordel N, Vega V, Prida V M, Sanz-Medel A. Anal. Chem., 2011, 83:329.
[104] Yu D L, Zhu X F, Xu Z, Zhong X M, Gui Q F, Song Y, Zhang S Y, Chen X Y, Li D D. ACS Appl. Mater. Interfaces, 2014, 6:8001.
[105] Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E. Electrochim.Acta, 2010, 55:3175.
[106] Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M. J. Electrochem. Soc., 1997, 144:866.
[107] Garcia-Vergara S J, El Khazmi K, Skeldon P, Thompson G E. Corros. Sci., 2006, 48:2937.
[108] Chong B, Yu D L, Gao M Q, Fan H W, Yang C Y, Ma W H, Zhang S Y, Zhu X F. J. Electrochem. Soc., 2015, 162:H244.
[109] Chong B, Yu D L, Jin R, Wang Y, Li D D, Song Y, Gao M Q, Zhu X F. Nanotechnology, 2015, 26:145603.
[110] Hoar T P, Yahalom J. J. Electrochem. Soc., 1963, 110:614.
[1] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[2] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[3] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[4] 韩德文, 王鑫彤, 鞠法帅, 王杨君, 冯加良, 汪午. PM2.5中的有机硫酸酯类化合物[J]. 化学进展, 2017, 29(5): 530-538.
[5] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[6] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[7] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[8] 郭慧慧, 苗娜娜, 李腾飞, 郝君, 高缘, 张建军. 共无定形药物——新型单相无定形二元体系[J]. 化学进展, 2014, 26(0203): 478-486.
[9] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[10] 李祥子, 魏先文. 磁性金属纳米管的制备、形成机理及潜在应用[J]. 化学进展, 2012, 24(11): 2143-2157.
[11] 张治磊, 王志宁, 高学理, 高从堦*. 支撑磷脂双层膜的研究进展[J]. 化学进展, 2012, 24(05): 852-862.
[12] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[13] 叶秋梅, 宋晔, 刘鹏, 胡隽隽. 特殊型纳米多孔阳极氧化铝模板的制备[J]. 化学进展, 2011, 23(12): 2617-2626.
[14] 王道爱 刘盈 王成伟 周峰. 阳极氧化法制备TiO2纳米管阵列膜及其应用[J]. 化学进展, 2010, 22(06): 1035-1043.
[15] 陈国华,赵峰鸣. 阳极氧化法制备TiO2多孔薄膜*[J]. 化学进展, 2009, 21(01): 121-127.