English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 530-538 DOI: 10.7536/PC170118 前一篇   后一篇

• 综述 •

PM2.5中的有机硫酸酯类化合物

韩德文1, 王鑫彤2, 鞠法帅1, 王杨君1, 冯加良1, 汪午1*   

  1. 1. 上海大学环境与化学工程学院环境污染与健康研究所 上海 200444;
    2. 康恒卫生检测技术有限公司 铁岭 112008
  • 收稿日期:2017-01-17 修回日期:2017-03-23 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 汪午 E-mail:wangwu@staff.shu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21377078,41675123),金华市科技局项目(No.2013-3-001)和金华市环保局项目(No.YG2014-FW673-ZFCG046)资助

Organosulfates in PM2.5

Dewen Han1, Xintong Wang2, Fashuai Ju1, Yangjun Wang1, Jialiang Feng1, Wu Wang1*   

  1. 1. Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
    2. KangHeng Health Testing Technology CO., LTD, Tieling 112008, China
  • Received:2017-01-17 Revised:2017-03-23 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21377078,41675123),the Jinhua Technology Bureau's Funds (No.2013-3-001) and the Jinhua EPB's Funds (No.YG2014-FW673-ZFCG046).
有机硫酸酯是近年来新发现的二次有机气溶胶化合物,是大气PM2.5的重要组分,是人为活动和生物排放的产物,不仅危害人体健康,还对全球气候产生影响。本文综述在不同大气环境下有机硫酸酯的种类结构,即:森林(清洁地区)以植被排放的异戊二烯和α-/β-蒎烯为前体物、城市(污染地区)以多环芳烃为前体物、受植被和人类活动共同影响的地区则以羰基化合物为前体物,与不同大气氧化剂在SO2/H2SO4作用下形成有机硫酸酯的大气光化学过程;总结了到目前为止,有机硫酸酯类化合物在世界各地大气PM2.5中的浓度水平;以及各技术手段在分析、检测有机硫酸酯类化合物时的优势和缺陷;讨论了影响有机硫酸酯形成的因素;提出了有机硫酸酯研究亟待解决的问题,并对未来研究方向进行了展望。
Organosulfates which have been discovered in secondary organic aerosols are important constituents of PM2.5 in the atmosphere. Formed through anthropogenic activities and biogenic emissions, they have negative impacts on not only human health but also global climate change. Based on major precursors in different atmospheric environments, i.e., biogenic volatile organic compounds isoprene and α-/β-pinene in forest (clean area), anthropogenic polycyclic aromatic hydrocarbons in urban (polluted area), and biogenic and anthropogenic mixed sources carbonyls in areas affected by both vegetation and human activities, we elaborated systematically the categories and structures of organosulfates and their photooxidation formation pathway under various atmospheric conditions with different atmospheric oxidants in the presence of SO2/H2SO4. Then, relevant literatures have been reviewed as much as possible and the concentration levels in PM2.5 in reported areas worldwide aresummarized. Moreover, up-to-date analytical techniques are described, as well as their benefits and drawbacks. Finally, impact factors of organosulfates formation are discussed. At the end of context, several issues are proposed which need to be addressed urgently, and future research directions in organosulfates are also prospected.
Contents
1 Introduction
2 The categories and formation mechanisms of OS
2.1 Forest (clean area)
2.2 Urban (polluted area)
2.3 Mixture areas affected by both vegetation and human activities
3 The concentration levels of OS
4 Analytical techniques
5 Impact factors
6 Conclusion

中图分类号: 

()
[1] Surratt J D, Gomez-Gonzalez Y, Chan A W H, Vermeylen R, Shahgholi M, Kleindienst T E, Edney E O, Offenberg J H, Lewandowski M, Jaoui M, Maenhaut W, Claeys M, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2008, 112:8345.
[2] Stone E A, Yang L, Yu L E, Rupakheti M. Atmos. Environ., 2012, 47:323.
[3] Zhou S, Wenger J C. Atmos. Environ., 2013, 75:103.
[4] Yan P, Zhang R J, Huan N, Zhou X J, Zhang Y M, Zhou H G, Zhang L M. Atmos. Environ., 2012, 60:121.
[5] Yang L, Zhou X, Wang Z, Zhou Y, Cheng S, Xu P, Gao X, Nie W, Wang X, Wang W. Atmos. Environ., 2012, 55:506.
[6] Shang J, Passananti M, Dupart Y, Ciuraru R, Tinel L, Rossignol S, Perrier S, Zhu T, George C. Environ. Sci. Technol. Lett., 2016, 3:67.
[7] Passananti M, Kong L D, Shang J, Dupart Y, Perrier S, Chen J, Donaldson D J, George C. Angew. Chem. Int. Ed., 2016, 55:1.
[8] Lukács H, Gelencsér A, Hoffer A, Kiss G, Horváth K, Hartyáni Z. Atmos. Chem. Phys., 2009, 9:231.
[9] Guenther A B, Jiang X, Heald C L, Sakulyanontvittaya T, Duhl T, Emmons L K, Wang X. Geosci. Model Dev., 2012, 5:1471.
[10] Wang X K, Rossignol S, Ma Y, Yao L, Wang M Y, Chen J M, George C, Wang L. Atmos. Chem. Phys., 2016, 16:2285.
[11] Kramer A J, Rattanavaraha W, Zhang Z F, Gold A, Surratt J D, Lin Y H. Atmos. Environ., 2016, 130:211.
[12] Lin Y H, Zhang H, Pye H O T, Zhang Z, Marth W J, Park S, Arashiro M, Cui T, Budisulistiorini S H, Sexton K G, Vizuete W, Xie Y, Luecken D J, Piletic I R, Edney E O, Bartolotti L J, Gold A, Surratt J D. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:6718.
[13] Darer A I, Filipiak N C C, O'Connor A E, Elrod M J. Environ. Sci. Technol., 2011, 45:1895.
[14] Leng C B, Duncan Kish J, Kelley J, Mach M, Hiltner J, Zhang Y H, Liu Y. J. Phys. Chem. A, 2013, 117:10359.
[15] Whalley L K, Stone D, George I J, Mertes S, van Pinxteren D, Tilgner A, Herrmann H, Evans M J, Heard D E. Atmos. Chem. Phys., 2015, 15:3289.
[16] Nozière B, Ekström S, Alsberg T, Holmström S. Geophys. Res. Lett., 2010, 37(5):1944.
[17] Kuznietsova I. Doctoral Dissertation of Technical University of Warsaw, 2012.
[18] Barnes I, Rudzinski K J. Nato Science for Peace & Security, 2012.
[19] Szmigielski R. Atmos. Environ., 2016, 130:14.
[20] Wang W, Wu M H, Li L, Zhang T, Liu X D, Feng J L, Li H J, Wang Y J, Sheng G Y, Claeys Ma, Fu J. Atmospheric Chemistry and Physics, 2008, 8:7507.
[21] He Q F, Ding X, Wang X M, Yu J Z, Fu X X, Liu T Y, Zhang Z, Xue J, Chen D H, Zhong L J, Donahue N M. Environ. Sci. Technol., 2014, 48:9236.
[22] Iinuma Y, Müller C, Berndt T, B ge O, Claeys M, Herrmann H. Environ. Sci. Technol., 2007, 41:6678.
[23] Iinuma Y, B ge O, Kahnt A, Herrmann H. Phys. Chem. Chem. Phys., 2009, 11:7985.
[24] Kautzman K E, Surratt J D, Chan M N, Chan A W H, Hersey S P, Chhabra P S, Dalleska N F, Wennberg P O, Flagan R C, Seinfeld J H. J. Phys. Chem. A, 2010, 114:913.
[25] Staudt S, Kundu S, Lehmler H J, He X R, Cui T Q, Lin Y H, Kristensen K, Glasius M, Zhang X L, Weber R J, Surratt J D, Stone E A. Atmos. Environ., 2014, 94:366.
[26] Calvert J G, Atkinson R, Becker K H, Kamens R M, Seinfeld J H, Wallington T J, Yarwood G. The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons. NY:Oxford University Press, 2002.
[27] Riva M, Tomaz S, Cui T Q, Lin Y H, Perraudin E, Gold A, Stone E A, Villenave E, Surratt J D. Environ. Sci. Technol., 2015, 49:6654.
[28] Lee J Y, Lane D A. Atmos. Environ., 2009, 43 (32):4886.
[29] Kleindienst T E, Jaoui M, Lewandowski M, Offenberg J H, Docherty K S. Atmos. Chem. Phys., 2012, 12 (18):8711.
[30] Kuang B Y, Lin P, Hu M, Yu J Z. Atmos. Environ., 2016, 130:23.
[31] Fu T M, Jacob D J, Wittrock F, Burrows J P, Vrekoussis M, Henze D K. J. Geophys. Res., 2008, 113(D15):2156.
[32] Galloway M M, Chhabra P S, Chan A W H, Surratt J D, Flagan R C, Seinfeld J H, Keutsch F N. Atmos. Chem. Phys., 2009, 9:3331.
[33] Perri M J, Lim Y B, Seitzinger S P, Turpin B J. Atmos. Environ., 2010, 44:2658.
[34] Stone E A, Hedman C J, Sheesley R J, Shafer M M, Schauer J J. Atmos. Environ., 2009, 43:4205.
[35] Hawkins L N, Russell L M, Covert D S, Quinn P K, Bates T S. J. Geophys. Res., 2010, 115(D13):2156.
[36] Ma Y, Xu X K, Song W H, Geng F H, Wang L. Atmos. Environ., 2014, 85:152.
[37] Chan M N, Surratt J D, Claeys M, Edgerton E S, Tanner R L, Shaw S L, Zheng M, Knipping E M, Eddingsaas N C, Wennberg P O, Seinfeld J H. Environ. Sci. Technol., 2010, 44:4590.
[38] Rattanavaraha W, Chu K, Budisulistiorini S H, Riva M, Lin Y H, Edgerton E S, Baumann K, Shaw S L, Guo H Y, King L, Weber R J, Neff M E, Stone E A, Offenberg J H, Zhang Z F, Gold A, Surratt J D. Atmos. Chem. Phys., 2016, 16:4897.
[39] Kristensen K, Glasius M. Atmos. Environ., 2011, 45:4546.
[40] Hansen A M K, Kristensen K, Nguyen Q T, Zare1 A, Cozzi F, Nøjgaard J K, Skov H, Brandt J, Christensen J H, Ström J, Tunved P, Krejci R, Glasius M. Atmos. Chem. Phys., 2014, 14:7807.
[41] Olson C N, Galloway M M, Yu G, Hedman C J, Lockett M R, Yoon T, Stone E A, Smith L M, Keutsch F N. Environ. Sci. Technol., 2011, 45:6468.
[42] Hettiyadura A P S, Jayarathne T, Baumann K, Stone E A. Atmos. Chem. Phys. Discuss., 2016, 17:1343.
[43] Surratt J D, Kroll J H, Kleindienst T E, Edney E O, Claeys M, Sorooshian A, Ng N L, Offenberg J H, Lewandowski M, Jaoui M, Flagan R C, Seinfeld J H. Environ. Sci. Technol., 2007, 41:517.
[44] Gómez-González Y, Surratt J D, Cuyckens F, Szmigielski R, Vermeylen R, Jaoui M, Lewandowski M, Offenberg J H, Kleindienst T E, Edney E O, Blockhuys F, Van Alsenoy C, Maenhaut W, Claeys M. Mass Spectrom., 2008, 43:371.
[45] Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi X G, Farhat Y, Surratt J D, Gómez-González Y, Sciare J, Maenhaut W. Aerosol Sci., 2010, 41:13.
[46] Huang D D, Li Y J, Lee B P, Chan C K. Environ. Sci. Technol., 2015, 49:3672.
[47] Altieri K E, Turpin B J, Seitzinger S P. Atmos. Chem. Phys., 2009, 9:2533.
[48] Mazzoleni L R, Ehrmann B M, Shen X H, Marshall A G, Collett J L. Environ. Sci. Technol., 2010, 44:3690.
[49] 郭润泽(Guo R Z), 曹罡(Cao G). 哈尔滨工业大学硕士论文(Master Dissertation of Harbin Institute of Technology). 2013.
[50] Jayne J T, Leard D C, Zhang X F, Davidovits P, Smith K A, Kolb C E, Worsnop D R. Aerosol Sci. Technol., 2000, 33:49.
[51] Gard E, Mayer J E, Morrical B D, Dienes T, Fergenson D P, Prather K A. Anal. Chem., 1997, 69:4083.
[52] Ehn M, Junninen H, Petäjä T, Kurtén T, Kerminen V M, Schobesberger S, Manninen H E, Ortega I K, Vehkamäki H, Kulmala M, Worsnop D R. Atmos. Chem. Phys., 2010, 10:8513.
[53] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y, Prather K A. Environ. Sci. Technol., 2011, 45:5105.
[54] Hatch L E, Creamean J M, Ault A P, Surratt J D, Chan M N, Seinfeld J H, Edgerton E S, Su Y X, Prather K A. Environ. Sci. Technol., 2011, 45:8648.
[55] Eddingsaas N C, VanderVelde D G, Wennberg P O. J. Phys. Chem. A, 2010, 114:8106.
[56] Gaston C J, Riedel T P, Zhang Z, Gold A, Surratt J D, Thornton J A. Environ. Sci. Technol., 2014, 48:11178.
[57] Zhang H, Surratt J D, Lin Y H, Bapat J, Kamens R M. Atmos. Chem. Phys., 2011, 11:6411.
[58] Zhang H, Lin Y H, Zhang Z, Zhang X, Shaw S L, Knipping E M, Weber R J, Gold A, Richard K, Surratt J D. Environmental Chemistry, 2012, 9(3):247.
[59] Duporté G, Flaud P M, Geneste E, Augagneur S, Pangui E, Lamkaddam H, Gratien A, Doussin J F, Budzinski H, Villenave E, Perraudin E. J. Phys. Chem. A, 2016, 120:7909.
[60] Estillore A D, Hettiyadura A P S, Qin Z, Leckrone E, Wombacher B, Humphry T, Stone E A, Grassian V H. Environ. Sci. Technol., 2016, 50:4259.
[61] Carlton A G, Turpin B J. Atmos. Chem. Phys., 2013, 13:10203.
[1] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[2] 楚碧武, 马庆鑫, 段凤魁, 马金珠, 蒋靖坤, 贺克斌, 贺泓. 大气“霾化学”:概念提出和研究展望[J]. 化学进展, 2020, 32(1): 1-4.
[3] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[4] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[5] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[6] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[7] 郭慧慧, 苗娜娜, 李腾飞, 郝君, 高缘, 张建军. 共无定形药物——新型单相无定形二元体系[J]. 化学进展, 2014, 26(0203): 478-486.
[8] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[9] 李祥子, 魏先文. 磁性金属纳米管的制备、形成机理及潜在应用[J]. 化学进展, 2012, 24(11): 2143-2157.
[10] 张治磊, 王志宁, 高学理, 高从堦*. 支撑磷脂双层膜的研究进展[J]. 化学进展, 2012, 24(05): 852-862.
[11] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[12] 王聪,刘秀凤,崔瑞利,张宝泉. 沸石分子筛膜缺陷的形成及修复*[J]. 化学进展, 2008, 20(12): 1860-1867.
[13] 武海顺,贾建峰. 氮化硼纳米管的研究进展*[J]. 化学进展, 2004, 16(01): 6-.
阅读次数
全文


摘要

PM2.5中的有机硫酸酯类化合物