English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 589-606 DOI: 10.7536/PC150601 前一篇   

• 综述与评论 •

阳极氧化法制备阀金属氧化物纳米管的机理及影响因素

李力成1, 方东1*, 李广忠2, 刘瑞娜1, 刘素琴3, 徐卫林1   

  1. 1. 武汉纺织大学材料科学与工程学院 武汉 430200;
    2. 西北有色金属研究院 金属多孔材料国家重点实验室 西安 710016;
    3. 中南大学化学化工学院 长沙 410083
  • 收稿日期:2015-06-01 修回日期:2015-07-01 出版日期:2016-04-15 发布日期:2015-09-17
  • 通讯作者: 方东 E-mail:csufangdong@gmail.com,82250926@qq.com
  • 基金资助:
    湖北省教育厅重点项目(No. 144004)资助

Mechanism and Influence Factors of Valve-Metal Oxide Nanotube Arrays Prepared by Anodization Process

Li Licheng1, Fang Dong1*, Li Guangzhong2, Liu Ruina1, Liu Suqin3, Xu Weilin1   

  1. 1. College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China;
    2. State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China;
    3. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2015-06-01 Revised:2015-07-01 Online:2016-04-15 Published:2015-09-17
  • Supported by:
    The work was supported by the Educational Commission of Hubei Province of China(No. 144004).
阳极氧化法不仅能够简便地制备出阀金属氧化物纳米管,而且通过调节各种参数可以调控所制备纳米管的形貌.阳极氧化法制备的纳米管具有优异的化学/物理性能,在众多领域都得到了广泛应用.本文综述了阳极氧化法制备纳米管膜的基本过程以及三种常见的模型,并以三种具有代表性的阀金属(Al、Ti、Zr)为例,分别介绍了它们形成多孔膜反应过程和常用的制备过程,同时也介绍了其他阀金属及其合金的制备方案.最后,结合对Al、Ti、Zr的实验过程,讨论、分析了电压大小、电解液种类、电解液浓度、反应时间等控制因素对阳极氧化法制备纳米管膜形貌的影响,对制备形貌规整的多孔膜,提高多孔膜在实际应用中的性能具有一定的意义.
The electrochemical anodization method is a simple and versatile process for fabricating well aligned valve-metal oxide nanotube arrays, and the morphology of the nanotube arrays can also be controlled via adjusting the parameters during electrochemical anodization process. Due to their chemical/physical functionality, nanotubes fabricated via electrochemical anodization method have been applied in various fields. The basic formation process of oxide nanotube arrays and three classical models for porous anodic oxide formation are reviewed here. Through the Al, Ti, Zr, which are typical valve-metals, the aim is to illustrate their key processes responsible for the formation of porous anodic oxide film and their general anodic oxidation preparation process. The fabrication methods of other valve-metals even their alloys are reviewed in this paper as well. Furthermore, in combination with the results of the research on Al, Ti, Zr, anodic voltage, electrolyte type, electrolyte concentration, reaction time and so on, which could affect the morphology of the final products, are presented and discussed in detail. The present views may be helpful to adjust the anodization conditions to fabricate well aligned valve-metal oxide nanotube arrays for their extensive applications.

Contents
1 Introduction
2 The basic principle and the common methods of the electrochemical anodization
2.1 The basic principle of the electrochemical anodization
2.2 Preparation of anodic aluminum oxide (AAO)
2.3 Preparation of anodic titanium oxide (ATO)
2.4 Preparation of anodic zirconium oxide (AZO)
3 The essential parameter of electrochemical anodization
3.1 Anodic voltage
3.2 Electrolyte type
3.3 Concentration of the electrolyte
3.4 Reaction time
3.5 Times of anodization
3.6 The metal shape
4 Conclusions

中图分类号: 

()
[1] Iijima S. Nature, 1991, 354: 56.
[2] Thompson G E, Furneaux R C. Corros. Sci., 1978, 18: 481.
[3] Thompson G E, Wood G C. Nature, 1981, 290: 230.
[4] Chen C C, Chen C L, Lai Y S. Mater. Chem. Phys., 2011, 131: 250.
[5] Miao J Y, Cai Y, Chan Y F, Sheng P, Wang N. J. Phys. Chem. B, 2006, 110: 2080.
[6] Kovtyukhov N I, Martin B R, Mbindyo J K N, Mallouk T E, Cabassi M, Mayer T S. Mater. Sci. Engin. C, 2002, 19: 255.
[7] Zhang Z, Ying J Y, Dresselhaus M S. J. Mater. Res., 1998, 13: 1745.
[8] Johansson A, Torndahl T, Ottosson L M, Boman M, Carlsson J O. Mater. Sci. Eng. C, 2003, 23: 823.
[9] Sui Y C, Acosta D R, Gonzalez-Leon J A, Bermudez A,Feuchtwanger J,Cui B Z,Flores J O,Saniger J M. J. Phys. Chem. B, 2000, 105: 1523.
[10] Luo Z, Fang Y. J. Comb. Chem., 2008, 10: 611.
[11] Choi M K, Yoon H, Lee K, Shin K. Langmuir, 2011, 27: 2132.
[12] Liu L, Yoo S H, Lee S A, Park S. Nano Lett., 2011, 11: 3979.
[13] Zhao X, Lee U J, Lee K H. J. Phys.Chem. C, 2008, 112: 9539.
[14] Papandrew A B, Atkinson R W, Goenaga G A, Kocha S S, Zack J W. J. Electrochem. Soc., 2013, 160: F848.
[15] Santamaria M, Asaro L, Bocchetta P, Megna B, Quarto F D. ECS Electrochem. Lett., 2013, 2: D29.
[16] Kondo T, Miyazaki H, Nishio K, Masuda H. J. Photochem. Photobiol. A, 2011, 221: 199.
[17] Shukla S, Kim K T, Baev A, Yoon Y K, Litchinitser N M, Prasad P N. ACS Nano, 2010, 4: 2249.
[18] Yanagishita T, Nishio K, Masuda H. Appl. Phys. Express, 2008, 1: 067004.
[19] Yanagishita T, Masui M, Ikegawa N, Masuda H. J. Vac. Sci. Technol. B, 2014, 32: 021809.
[20] Yanagishita T, Nishio K, Masuda H. Appl. Phys. Express, 2009, 2: 022001.
[21] Kondo T, Tanji M, Nishio K, Masuda H. Electrochem. Solid-State Lett., 2006, 9: C189.
[22] Lin Q, Hua B, Leung S, Duan X, Fan Z. ACS Nano, 2013, 7: 2725.
[23] Yanagishita T, Nishio K, Masuda H. J. Vac.Sci. Technol. B, 2010, 28: 398.
[24] Yasui K, Morikawa T, Nishio K, Masuda H. Jpn. J. Appl. Phys., 2005, 44: L469.
[25] Liu D, Zhang C, Wang G, Shao Z, Zhu X, Wang N, Cheng H. J. Phys. D: Appl. Phys., 2014, 47: 085108.
[26] Leonardi S, Bassi A L, Russo V, Fonzo F D, Paschos O, Murray T M, Efstathiadis H, Kunze J. J. Phys. Chem. C, 2012, 116: 384.
[27] Vijh A K. Electrodepos. Sur. Treat., 1973, 2: 461.
[28] Mathieu J B, Mathieu H J, Landolt D. J. Electrochem. Soc., 1978, 125: 1039.
[29] Masuda H, Yotsuya M, Asano M, Nishio K, Nakao M, Yokoo A, Tamamura T. Appl. Phys. Lett., 2001, 78: 826.
[30] Spooner R C. J. Electrochem. Soc., 1955, 102: 156.
[31] Sul Y T, Johansson C B, Jeong Y, Albrektsson T. Med. Eng. Phys., 2001, 23: 329.
[32] Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Asami K, Skeldon P, Thompson G E. Electrochem. Acta, 2002, 47: 3837.
[33] Schlotting F, Schreckenbach J, Dietrich D, Hofmann A, Marx G. Appl. Surf. Sci., 1995, 90: 129.
[34] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431.
[35] Gratzel M. Nature, 2001, 409: 575.
[36] Chen Q, Peng L M. Inter. J. Nanotechnol., 2007, 4: 44.
[37] Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J. Chem. Sus. Chem., 2008, 1: 676.
[38] Ohtsuka T, Otsuki T. J. Electroanal. Chem., 1999, 473: 272.
[39] Fang D, Huang K L, Liu S Q, Luo Z P, Qing X X,Zhang Q G. J. Alloy. Compd., 2010, 498: 37.
[40] Fang D, Huang K L, Liu S Q, Qin D Y. Electrochem. Comm., 2009, 11: 901.
[41] Fang D, Huang K L, Liu S Q, Li Z J. J. Alloy. Compd., 2008, 464: L5.
[42] Fang D, Huang K L, Liu S Q, Huang J H. J. Braz. Chem. Soc., 2008, 19(6): 1059.
[43] Fang D, Huang K L, Luo Z P, Wang Y, Liu S Q, Zhang Q G. J. Mater. Chem., 2011, 21: 4989.
[44] Zhao J L, Wang X X, Xu R Q, Meng F B, Guo L M, Li Y X. Mater. Lett., 2008, 62: 4428.
[45] Shin Y, Lee S. Nanotechnology, 2009, 20: 105301.
[46] Guo L, Zhao J, Wang X, Xu R, Li Y. J. Solid State Electrochem., 2009, 13: 1321.
[47] Cao W, Tan O K, Zhu W, Jiang B, Reddy C V G. Sensor Actuat. B, 2001, 77: 421.
[48] Cho H J, Choi G M. J. Power Sources, 2008, 176: 96.
[49] Tsai P C, Lee J H, Chang C L. Surf. Coat. Technol., 2007, 202: 719.
[50] Fogaing E Y, Huger M, Gault C. J. Eur. Ceram. Soc., 2007, 27: 1843.
[51] Jin G, Lu G, Guo Y, Guo Y, Wang J, Kong W, Liu X. J. Mol. Catal. A: Chem., 2005, 232: 165.
[52] Bao J, Tie C, Xu Z, Ma Q, Hong J, Sang H, Sheng D. Adv. Mater., 2002, 14: 44.
[53] Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Adv. Mater., 2004, 16: 1197.
[54] Tsuchiya H, Macak J M, Ghicov A, Taveira L, Schmuki P. Corros. Sci., 2005, 47: 3324.
[55] Thormann A, Teuscher N, Pfannmcller M, Rothe U, Heilmann A. Small, 2007, 3 (6): 1032.
[56] Matsumotoa F, Nishioa K, Masuda H, Electrochem. Soc. Inc., 2004: 204.
[57] Mor G K, Shankar K, Paulose M K, Varghese O A, Grimes C. Nano Lett., 2006, 6: 215.
[58] Bauer S, Prak J, Faltenbacher S, Berger K P, Schmuki V. Integr. Biol., 2009, 1: 525.
[59] Bavykin D V, Friedrich J M, Walsh F C. Adv. Mater., 2006, 18: 2807.
[60] Su Z X, Zhou W Z. J. Mater. Chem., 2011, 21: 8955.
[61] Poinern G E J, Ali N, Fawcett D. Materials, 2011, 4: 487.
[62] Ghicov A, Schmuki P. Chem. Comm., 2009, 20: 2791.
[63] Pang Y L, Lim S, Ong H C, Chong W T. Appl. Catalysis A: General, 2014, 481: 127.
[64] Zhou X M, Nguyen N T, Ozkan S, Schmuki P. Electrochem. Comm., 2014, 46: 157.
[65] Jarosz M, Pawlik A, Kapusta-Koodziej J, Jaskua M, Sulka G D. Electrochem. Acta, 2014, 136: 412.
[66] Zhuang H F, Lin C J, Lai Y K. Environ. Sci. Technol., 2007, 41: 4735.
[67] Shankar K, Basham J, Allam N K, Varghese O K, Mor G K, Feng X J, Paulose M, Seabold J A, Choi K S, Grimes C A. J. Phys. Chem. C, 2009, 113(16): 6327.
[68] Chen C C, Fang D, Luo Z P. Rev. Nanosci. Nanotechnol., 2012, 1: 229.
[69] 黄奇松(Huang Q S). 铝的阳极氧化和染色(Anodic Qxidation and Staining of Aluminum). 香港:香港万里出版社(Hongkong:Hongkong Wan Li Press), 1985.
[70] Mor G K, Varghese O K, Paulose M, Shankar K, Grimes C A, Sol. Energy Mater. Sol. Cells, 2006, 90: 2011.
[71] Taveira L V, Macak J M, Tsuchiya H, Dick L F P, Schmuki A P, J. Electrochem. Soc., 2005, 152: B405.
[72] Daskf C, Caterry H. Corros. Sci., 1987, 27(1): 83.
[73] Jessensky O, Muller F, Gosele U. Appl. Phys. Lett., 1998, 72(10): 1173.
[74] Xu Y, Thompson G E, Wood G C, Trans. Inst. Met. Finish., 1985, 63: 98.
[75] Chen S H, Chen C C, Luo Z P, Chao C G. Mater. Lett., 2009, 63: 1665.
[76] Say W C, Chen C C. Jpn. J. Ceramic Soc., 2008, 116: 288.
[77] Say W C, Chen C C. Jpn. J. Appl. Phys., 2007, 46: 7577.
[78] Chen C C, Bisrat Y, Luo Z P, Schaak R E, Chao C G, Lagoudas D C. Nanotechnolo., 2006, 17: 367.
[79] Chen C C, Chen J H, Chao C G. Jpn. J. Appl. Phys., 2005, 44: 1529.
[80] Chen C C, Kuo C G, Chen J H, Chao C G. Jpn. J. Appl. Phys., 2004, 43: 8354.
[81] Zwilling V, Aucouturier M, Ceretti E D, Electrochim. Acta, 1999, 45: 921.
[82] Cai Q, Paulose M, Varghese O K, Grimes C A. J. Mater. Res., 2005, 20: 230.
[83] Grimes C A. J. Mater. Chem., 2007, 17: 1451.
[84] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A, Grimes C. A. J. Phys. Chem. B, 2006, 110: 16179.
[85] Yetim A F. Surf. Coat. Tech., 2010, 205: 1757.
[86] Lim J H, Choi J. Small, 2007, 3: 1504.
[87] Tao J, Zhao J, Wang X, Kang Y, Li Y. Electrochem. Comm., 2008, 10: 1161.
[88] Kim D, Stein F S, Hahn R, Schmuki P. Electrochem. Comm., 2008, 10: 1082.
[89] Pouporte T, Finne J. J. Appl. Electrochem., 2006, 36: 33.
[90] Khalil N, Leach J S. J. Appl. Electrochem., 1996, 26: 231.
[91] Tsuchiya H, Schmuki P. Electrochem. Comm., 005, 7: 249.
[92] Maeng S, Axe L, Tyson T. J. Electrochem. Soc., 2005, 152: B60.
[93] Tsuchiya H, Macak J M, Sieber I, Taveira L, Ghicov A, Sirotna K, Schmuki P. Electrochem. Comm., 2005, 7: 295.
[94] Yoo J E, Park J Y, Cha G, Choi J. Thin Solid Films, 2013, 531: 583.
[95] Yu L G, Zhang G M, Zhao X Y, Guo D Z. Mater. Res. Bull., 2009, 44: 589.
[96] Jeun J H, Ryu H S, Hong S H. J. Electrochem. Soc., 2009, 156(9): J263.
[97] Albu S P, Ghicov A, Schmuki P. Phys. Status Sol. RRL 3, 2009, 2(3): 64.
[98] Yang Y, Albu S P, Kim D, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 9071.
[99] Lee C Y, Lee K Y, Schmuki P. Angew. Chem. Int. Ed., 2013, 52: 2077.
[100] Semboshi S, Bando K I, Ohtsu N, Shim Y, Konno T J. Thin Solid Films, 2008, 516: 8613.
[101] Lewandowska M, Pisarek M, Rozniatowski K, Gradzka-Dahlke M, Janik-Czachor M, Kurzydiowski K J. Thin Solid Films, 2007, 515(16): 6460.
[102] Li M F, Zhao G H, Liu M C, Lei Y Z, Jin Y N, Li D M. Electrochem. Comm., 2011, 13: 942.
[103] Simka W. Electrochim. Acta, 2011, 56: 9831.
[104] Ohtsua N, Masahashib N, Mizukoshi Y. Appl. Surf. Sci., 2012, 258: 6052.
[105] Oliveira N T C, Guastaldi A C. Corros. Sci., 2008, 50: 938.
[106] Paez M A, Skeldon R, Thompson G E, Saez M, Bustos O, Monsalve A. Rev. Metal. MadridVol. Extr., 2003, 243: 243.
[107] Kikuchi T, Haraa Y, Sakairi M, Yonezawa T, Yamauchi A,Takahashi H. Corros. Sci., 2010, 52: 2525.
[108] Regone N N, Freire C M A, Ballester M. J. Mater. Pro. Tech., 2006, 72: 146.
[109] Nagai A, Suzuki Y, Tsutsμmi Y, Nozaki K, Wada N, Katayama K, Hanawa T, Yamashita K. Mater. Res. Part B, 2014, 102: 659.
[110] Moon S M, Nam Yunk Y. Corros. Sci., 2012, 65: 494.
[111] Keller F, Hunter M S, Robinson D L. J. Electrochem. Soc., 1953, 100(9): 411.
[112] O'Sullivan J P, Wood G C. Proc. R. Soc. London A, 1970, 317: 511.
[113] Heber K V. Electrochem. Acta, 1978, 23(2): 135.
[114] Thompson G E, Wood G C. Corrososion: Aqueous Processed and Passive Films, 1983, 23: 205.
[115] Young L. Anodic Oxide Films. New York:Academic Press, 1961: 116.
[116] 方东(Fang D). 中南大学博士论文(Doctoral Dissertation of Central South University). 2011.
[117] Fang D, Luo Z P, Liu S Q, Zeng T F, Liu L, Xu J, Bai Z K, Xu W L. Opt. Mater., 2013, 35: 1461.
[118] Fang D, Liu S Q, Luo Z P, Xiong C X, Xu W L. Appl. Surf. Sci., 2012, 258: 6217.
[119] Parkhutik V P, Shershulsky V I. J. Phys. D:Appl. Phys., 1992, 25: 1258.
[120] Diggle J W, Downie T C, Goulding C W. Chem. Rev., 1969, 69: 365.
[121] Chen W, Wang F B, Ruan M H. Sci. Adv. Mater., 2009, 1: 25.
[122] Su Z X, Hahner G, Zhou W Z. J. Mater. Chem., 2008, 18: 5787.
[123] Yuan J H, Chen W, Hui R J, Hu Y L, Xia X H. Electrochim. Acta, 2006, 51: 4589.
[124] Jo Y, Jung I, Lee I, Choi J, Tak Y. Electrochem. Comm., 2010, 12: 616.
[125] Furneaux R C, Rigby W R, Davidson A P. Nature, 1989, 337: 147.
[126] Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. Solid State Mater. Sci., 2007, 11: 3.
[127] Yin A J, Guico R S, Xu J. Nanotechnolo., 2007, 18: 35304.
[128] Thompson G E. Thin Solid Films, 1997, 297: 192.
[129] Parkhutik V P, Despic A. Springer US: Modern Aspects of Electrochemistry, 1989, 20: 401.
[130] Shingubara S. J. Nanoparticle Res., 2003, 5: 17.
[131] Ono S, Masuko N. J. Surf. Coat Tech., 2003, 169/170: 139.
[132] Jagminience A, Valincius G, Riaukaite A, Jagminas A. J. Cryst. Growth Des., 2005, 274: 622.
[133] Wood G C, O'Sullivan J P, Vaszko B. J. Electrochem. Soc., 1968, 115: 618.
[134] Li A P, Muller F, Birner A, Gosele U. J. Appl. Phys., 1998, 84: 6023.
[135] Vrublevsky I, Parkoun V, Schreckenbach J. Appl. Surf. Sci., 2005, 242(3/4): 333.
[136] Azevedo W M, Carvalho D D, Khoury H J, Vasconcelos E A, Silva E F. Mater. Sci. Eng. B, 2004, 112: 171.
[137] Suh J S, Lee J S. Appl. Phys. Lett., 1999, 75: 2047.
[138] Sulka G D, Parkola K. Thin Solid Films, 2006, 515: 338.
[139] Prasad S, Quijano. Bioelectronics, 2006, 7: 1219.
[140] Domanska M M, Norek M, Stepniowski W J, Budner B. Electrochim. Acta, 2013, 105: 424.
[141] Zhou X, Thompson G E, Potts G. Trans. Inst. Met. Finish, 2000, 78: 210.
[142] Sadasivan V, Richter C P, Menon L, Williams P F. AIChE J., 2005, 51: 649.
[143] Stepniowski W J, Domanska M, Norek M, Czujko T. Mater. Lett., 2014, 117: 69.
[144] Stepniowski W J, Norek M, Michalska-Domanska M, Bombalska A, Nowak-Stepniowska A, Kwasny M, Bojar Z. Appl. Surf. Sci., 2012, 259: 324.
[145] Nishinaga O, Kikuchi T, Natsui S, Suzuki R O. Sci. Rep., 2013, 3: 2748.
[146] Kikuchi T, Nishinaga O, Natsui S, Suzuki R O. Electrochim. Acta, 2014, 137: 728.
[147] Flamme K E, Popat K C, Leoni L, Markiewicz E, Tempa T J, Roman B B, Grimes C A, Desai T A. Biomaterials, 2007, 28: 2638.
[148] Kim Y, Jung B, Lee H, Kim H, Lee K, Park H. Actuator. B, 2009, 141: 441.
[149] Ng K Y, Lin Y, Ngan A H W. J. Mech. Phys. Solids, 2011, 59: 251.
[150] Zhao Y, Chen M, Zhang Y, Xu T, Liu W. Mater. Lett., 2005, 59: 40.
[151] Wang X, Han G. Microelectron Eng., 2003, 66: 166.
[152] Zhao N Q, Jiang X X, Shi C S, Li J J, Zhao Z G, Du X W. J. Mater. Sci., 2006, 42: 3878.
[153] Larsson C, Thomsaon P, Aronsson B O, Rodahl M, Lausmaa J, Kasemo B, Erison L E. Biomaterials, 1996, 17: 605.
[154] Chu S Z, Wada K, Inoue S, Isogai M, Katsuta Y, Yasumori A. J. Electrochem. Soc., 2006, 153: B384.
[155] Mozalev A, Mozaleva I, Sakairi M, Takahashi H. Electrochim. Acta, 2005, 50: 5065.
[156] Tajima S, Baba N, Shimizu K, Mizuki I. Electrocomp. Sci. Tech., 1976, 3: 91.
[157] Bellemare J, Sirois F, Menard D. J. Electrochem. Soc., 2014, 161: E75.
[158] Kikuchi T, Yamamoto T, Suzuki R O. Appl. Surf. Sci., 2013, 284: 907.
[159] Ono S, Saito M, Asoh H. Electrochim. Acta, 2005, 51: 827.
[160] Sun B, Li J, Jin X, Zhou C Q, Hao Q L, Gao X F, Electrochim. Acta, 2013, 112: 327.
[161] Vrublevsky I A, Chernyakova K V, Ispas A, Bund A, Zavadski S. Thin Solid Films, 2014, 556: 230.
[162] Pashchanka M, Schneider J. Phys. Chem., 2013, 15: 7070.
[163] Kikuchi T, Nishinaga O, Natsui S, Suzuki R O. ECS Electrochem. Lett., 2014, 3: C25.
[164] Kikuchi T, Yamamoto T, Natsui S, Suzuki R O. Electrochim. Acta, 2014, 123: 14.
[165] Kikuchi T, Nakajima D, Kawashima J, Natsui S, Suzuki R O. Appl. Surf. Sci., 2014, 313: 276.
[166] Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. J. Mater. Res., 2001, 16: 3331.
[167] Ruan C, Paulose M, Varghese O K, Grimes C A. Sol. Ener. Mater. Sol. Cells, 2006, 90: 1283.
[168] Lockman Z, Ismail S, Sreekantan S, Mende L S, Driscoll J L M. Nanotechnology, 2010, 21: 055601.
[169] Nakayama K, Kubo T, Tsubokura A, Nishikitani Y, Masuda H. ECS Meeting Abstracts, 2006, 502: 819.
[170] Richter C, Wu Z, Panaitescu E, Willey R J, Menon L. Adv. Mater., 2007, 19: 946.
[171] Richter C, Panaitescu E, Willey R J, Menon L. J. Mater. Res., 2007, 22: 1624.
[172] Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. B, 2005, 109: 15754.
[173] Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Angew. Chem., Int. Ed., 2005, 44: 7463.
[174] Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulose M, Varghese O K, Grimes C A. Nanotechnology, 2007, 18: 065707.
[175] Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Electrochem. Commun., 2005, 7: 505.
[176] Macak J M, Sirotna K, Schmuki P. Electrochim. Acta, 2005, 50: 3679.
[177] Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong L K, Mohamed A R. J.Alloys Compd., 2009, 485: 478.
[178] Tsuchiya H, Macak J M, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P. Electrochem. Commun., 2005, 7: 576.
[179] Liu Z, Liu H, Hashimoto T, Thompson G E, Skeldon P. Mater. Charact., 2014, 98: 102.
[180] Roman I, Trusca R D, Soare M L, Fratila C, Krasicka-Cydzik E, Stan M S, Dinischiotu A. Mater. Sci. Eng. C, 2014, 37: 374.
[181] Nischk M, Mazierski P, Gazda M, Zaleska A. Appl. Catal. B, 2014, 144: 674.
[182] Antony R P, Mathews T, Ramesh C, Murugesan N, Dasgupta A, Dhara S, Dash S, Tyagi A K. Int. J. Hydrogen Energy, 2012, 37: 8268.
[183] Jha H, Roy P, Hahn R, Paramasivam I, Schmuki P. Electrochem. Commun., 2011, 13: 302.
[184] Tsuchiya H, Macak J M, Sieber I, Schmuki P. Small, 2005, 1: 722.
[185] Wang L N, Shen C, Shinbine A, Luo J L. Thin Solid Films, 2013, 531: 277.
[186] Ali G, Park Y J, Kim H J, Sung O C. Nanoscale Res. Lett., 2014, 9(1): 553.
[187] Muratore F, Baron-Wieche? A, Gholinia A, HashimotoT, Skeldon P, Thompson G E. Electrochim. Acta, 2011, 58: 389.
[188] Wang L N, Luo J L. Mater. Sci. Eng. C, 2011, 31(4): 748.
[189] Belwalkar A, Grasing E, Geertruyden W V, Huang Z, Misiolek W Z. J. Memb. Sci., 2008, 319(1/2): 192.
[190] Chung C K, Liu T Y, Chang W T. Microsyst. Technol., 2010,16: 1451.
[191] Huang B, Guo Y F, Tian Y L, Wen Y W, Shan B, Chen R. ECS, 2013, 50: 279.
[192] Fang D, Chen S S, Jiang M, Li Q, Luo Z P, Liu L, Xiong C X. Mater. Sci. Semicon. Proc., 2014, 18: 105.
[193] Fang D, Yu J G, Luo Z P, Liu S Q, Huang K L, Xu W L. J. Solid State Electrochem., 2012, 16: 1219.
[194] Fang D, Li L C, Xu W L, Wang Y L, Jiang M, Guo X Q, Liu X, Cao G Y, Li G Z, Gang L B, Wang N F, Luo Z P. Mater. Sci. Eng. B, 2014, 179: 71.
[195] Masuda H, Yada K, Osaka A. Jpn. J. Appl. Phys., 1998, 37: L1340.
[196] Masuda H, Satoh M. Jpn. J. Appl. Phys., 1996, 35: L126.
[197] Bi Z H, Parans P M, Menchhofer P A, Dehoff R R, Bridges C A, Chi M F, Guo B K, Sun X G, Dai S. J. Power Sources, 2013, 222: 461.
[198] Yu J F, Wang D, Huang Y N, Fan X, Tang X, Gao C, Li J L, Zou D C, Wu K. Nanoscale Res. Lett., 2011, 6: 94.
[199] Chen T, Qiu L B, Yang Z B, Cai Z B, Ren J, Li H P, Lin H J, Sun X M, Peng H S. Angew. Chem. Int. Ed., 2012, 51: 11977.
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[3] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[4] 骆敏倩, 衡伟利, 代娟, 魏元锋, 高缘, 张建军. 药物无定形的转晶及其抑制策略[J]. 化学进展, 2021, 33(11): 2116-2127.
[5] 王红娟, 时蜜, 田璐, 赵亮, 张美芹. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666.
[6] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[7] 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华*. 铁基复合材料的制备及其对水中锑的去除[J]. 化学进展, 2017, 29(11): 1407-1421.
[8] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[9] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[10] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[11] 饶路, 姜艳霞, 张斌伟, 游乐星, 李崭虹, 孙世刚. 乙醇电催化氧化[J]. 化学进展, 2014, 26(05): 727-736.
[12] 李志果, 张玲玲. 金表面巯基化DNA单层性能的影响因素研究[J]. 化学进展, 2014, 26(05): 846-855.
[13] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[14] 程龙, 吕晓锋, 李铭, 张琳, 侯红卫. 功能配合物三阶非线性光学性能的研究[J]. 化学进展, 2013, 25(10): 1625-1630.
[15] 陶琴, 董健, 钱卫平*. 表面增强拉曼光谱在定量分析中的应用[J]. 化学进展, 2013, 25(06): 1031-1041.