English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 478-486 DOI: 10.7536/PC130755 前一篇   

• 综述与评论 •

共无定形药物——新型单相无定形二元体系

郭慧慧1, 苗娜娜1, 李腾飞2, 郝君1, 高缘2, 张建军*1   

  1. 1. 中国药科大学药学院 南京 210009;
    2. 中国药科大学中药学院 南京 210009
  • 收稿日期:2013-07-01 修回日期:2013-09-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 张建军,e-mail:amicute@163.com E-mail:amicute@163.com
  • 基金资助:

    国家“重大新药创制”科技重大专项项目(No. 2011ZX09201-101-02)和“中央高校基本科研业务费专项资金”(No.JKP2011006)资助

Pharmaceutical Coamorphous——A Newly Defined Single-Phase Amorphous Binary System

Guo Huihui1, Miao Nana1, Li Tengfei2, Hao Jun1, Gao Yuan2, Zhang Jianjun*1   

  1. 1. School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
    2. School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
  • Received:2013-07-01 Revised:2013-09-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the Important National Science & Technology Specific Projects (No. 2011ZX09201-101-02) and Fundamental Research Funds for the Central Universities (No. JKP2011006)

共无定形药物是活性药物成分与其他小分子固体物质(药物或辅料)结合形成的具有单一玻璃化转变温度的单相无定形二元体系。它作为一种新的药物固体形态,可能改善药物的溶解度、溶出速率、稳定性及生物利用度等理化性质,已成为药物研发的一种新途径。本文主要对共无定形药物的定义、形成机理、制备方法、分析鉴别方法、物理化学稳定性以及溶解度和溶出速率进行综述,并对共无定形与固体分散体和共晶的比较进行了概述。

Pharmaceutical coamorphous, a kind of single-phase amorphous binary system, is formed between an active pharmaceutical ingredient (API1) and another solid small molecular compound (API2 or excipient). As a newly defined solid form, pharmaceutical coamorphous has been one new approach for drug research and development, due to its great potential in the improvement of solubility, dissolution, stability or even bioavailability. Several methods can be used for the preparation of coamorphous drugs, including quench-cooling, solvent evaporation and milling/cryo-milling. In this paper, the definition, preparation, physicochemical characterization and formation mechanism of pharmaceutical coamorphous are addressed. The comparison between coamorphous and solid dispersion or cocrystals is also presented.

Contents
1 Introduction
2 Overview of pharmaceutical coamorphous
2.1 Definition and classification of coamorphous
2.2 Comparison between coamorphous and solid dispersion
2.3 Relationship and differences of coamorphous and cocrystal
3 Formation mechanisms
3.1 Type of interaction
3.2 Flory-Huggins theory
4 Preparation of pharmaceutical coamorphous
4.1 Preparation methods
4.2 Factors affecting the formation of pharmaceutical coamorphous
5 Properties of pharmaceutical coamorphous
5.1 Identification
5.2 Stability
5.3 Solubility and dissolution
6 Outlooks

中图分类号: 

()

[1] Radtke M. New Drugs, 2001, 3: 62.
[2] Hu J, Johnston K P, Williams R O. Int. J. Pharm., 2004, 271: 145.
[3] 马坤(Ma K), 高静(Gao J), 马磊(Ma L). 中国药科大学学报(Journal of China Pharmaceutical University), 2012, 43(5): 475.
[4] 高缘(Gao Y), 祖卉(Zu H), 张建军(Zhang J J). 化学进展(Progress in Chemistry), 2010, 22(5): 829.
[5] Lara-ochoa F, Espinosa-pérez G. Supramol. Chem., 2007, 19: 553.
[6] Morissette S L, Almarsson O, Peterson M L, Remenar J F, Read M J, Lemmo A V, Ellis S, Cima M J, Gardner C R. Adv. Drug Deliver. Rev., 2004, 56: 275.
[7] Lu Q, Zografi G. Pharm. Res., 1998, 15: 1202.
[8] Löbmann K, Laitinen R, Grohganz H, Gordon K C, Strachan C, Rades T. Mol. Pharm., 2011, 8: 1919.
[9] Descamps M, Willart J F, Dudognon E, Caron V. Journal of Pharmaceutical Science, 2007, 96: 1398.
[10] Hoppu P, Jouppila K, Rantanen J, Schantz S, Juppo A M. J. Pharm. Pharmacol., 2007, 59: 373.
[11] Schilling S U, Bruce C D, Shah N H, Malick A W, McGinity J W. Int. J. Pharm., 2008, 361: 158.
[12] Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Int. J. Pharm., 2012, 422: 160.
[13] Gao Y, Liao J, Qi X, Zhang J. Int. J. Pharm., 2013, 450: 290.
[14] Ahuja N, Katare O P, Singh B. Eur. J. Pharm. Biopharm., 2007, 65: 26.
[15] Löbnmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Eur. J. Pharm. Biopharm., 2013, 85: 873.
[16] Alles M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. J. Control. Release, 2009, 136: 45.
[17] Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Eur. J. Pharm. Biopharm., 2012, 81: 159.
[18] Leuner C, Dressman J. Eur. J. Pharm. Biopharm., 2000, 50: 47.
[19] Serajuddin A T M. J. Pharm. Sci., 1999, 88: 1058.
[20] Zheng W, Jain A, Papoutsakis D, Dannenfelser R M, Panicucci R, Garad S. Drug Dev. Ind. Pharm., 2012, 38: 235.
[21] Vasconcelos T, Sarmento B, Costa P. Drug Discov. Today, 2007, 12: 1068.
[22] Janssens S, Mooter G V. J. Pharm. Pharmacol., 2009, 61: 1571.
[23] Qian F, Huang J, Hussain M A. J. Pharm. Sci., 2010, 99: 2941.
[24] Löbmann K, Laitinen R, Grohganz H, Strachan C, Rades T, Gordon K C. Int. J. Pharm., 2013, 453: 80.
[25] Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Eur. J. Pharm. Biopharm., 2000, 49: 259.
[26] Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Int. J. Pharm., 2002, 241: 213.
[27] Dudognon E, Willart J F, Caron V, Capet F, Larsson T, Descamps M. Solid State Commun., 2006, 138: 68.
[28] Chieng N, Aaltonen J, Saville D, Rades T. Eur. J. Pharm. Biopharm., 2009, 71: 47.
[29] Forster A, Hempenstall J, Tucker, Rades T. Drug Dev. Ind. Pharm., 2001, 27: 549.
[30] Schneider H A. Macromol. Chem. Phys., 1988, 189: 1941.
[31] Nair R, Nyamweya N, Gönen S, Martínez-Miranda L J, Hoag S W. Int. J. Pharm., 2001, 225: 83.
[32] Gupta P, Thilagavathi R, Chakraborti A K, Bansal A K. Mol. Pharm., 2005, 2: 384.
[33] Shamblin S L, Huang E Y, Zografi G. J. Therm. Anal. Calorim., 1996, 47: 1567.
[34] Taylor L S, Zografi G. J. Pharm. Sci., 1998, 87: 1615.
[35] Duer M J. Solid-State NMR Spectroscopy Principles and Applications. Blackwell Science, 2002. 391.
[36] Schantz S, Hoppu P, Juppo A M. J. Pharm. Sci., 2009, 98: 1862.
[37] Yu L. Adv. Drug Deliver. Rev., 2001, 48: 27.

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[15] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.