English
新闻公告
More
化学进展 2021, Vol. 33 Issue (11): 2150-2162 DOI: 10.7536/PC210420 前一篇   

• 综述 •

生物质水热液化水相产物形成机理及资源回收

徐永洞, 刘志丹*()   

  1. 中国农业大学水利与土木工程学院环境增值能源实验室 农业农村部设施农业工程重点实验室 北京 100083
  • 收稿日期:2021-04-15 修回日期:2021-06-07 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 刘志丹
  • 基金资助:
    国家自然科学基金项目(U1562107); 国家自然科学基金项目(51861125103)

Formation Mechanism and Resource Recovery Perspectives of Aqueous Phase from Hydrothermal Liquefaction of Biomass

Yongdong Xu, Zhidan Liu()   

  1. Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
  • Received:2021-04-15 Revised:2021-06-07 Online:2021-07-29 Published:2021-07-29
  • Contact: Zhidan Liu
  • Supported by:
    National Natural Science Foundation of China(U1562107); National Natural Science Foundation of China(51861125103)

生物质水热液化转化为生物原油是极具潜力的可再生液体燃料制备途径。但水热液化水相产物产量大、成分复杂,具有较高的环境风险,限制了水热液化的绿色发展。论文以本课题组近10年(2012—2021)的研究积累为核心,综述了水热液化水相产物的形成机理、理化特性和资源回收路径。本文介绍了水相副产物形成的影响因素,总结了不同反应变量下水热转化和元素迁移途径;综述了水相生物转化的途径和研究进展,包括好氧微生物降解、微藻养殖、厌氧处理和微生物电化学等,介绍了膜分离和吸附等物理方法用于水相物质分离、获得高价值组分的研究,论述了利用水相制备农业杀菌剂的潜力。最后对水相的处理原则和研究方向进行展望,以期为水热液化水相的处理和资源回收提供参考。

The conversion of biomass into biocrude oil by hydrothermal liquefaction (HTL) is a potential way to produce renewable liquid fuels. However, the aqueous phase (HTL-AP) by-products have high yields, complex compositions and high environmental risk which limit the green development of hydrothermal liquefaction technology. Based on the relevant research of our research group in recent 10 years (2012-2021), this paper summarizes the formation mechanism, characteristics and resource recovery path of HTL-AP. The factors affecting the formation of HTL-AP were introduced, and the ways of compound transformation and element migration in different hydrothermal reaction variables were summarized. The approaches and research progress of aqueous biotransformation, including aerobic microbial degradation, microalgae culture, anaerobic treatment and microbial electrochemistry, were reviewed. The physical methods such as membrane separation and adsorption were introduced to separate aqueous substances and obtain high-value components. The potential of using HTL-AP to prepare agricultural fungicides was discussed. Finally, the treatment principle and research direction are prospected in order to provide reference for the treatment and resource recovery of HTL-AP.

Contents

1 Introduction

2 Formation mechanism of HTL-AP

2.1 Hydrothermal reaction conditions

2.2 Raw material conversion path

2.3 Element migration path

3 Physical and chemical methods

3.1 Separation of organic elements

3.2 Separation of inorganic elements

3.3 Mixed component utilization

4 Biological treatment method

4.1 Cytotoxicity

4.2 Aerobic biological treatment

4.3 Microalgae treatment

4.4 Anaerobic fermentation

4.5 Microbial electrochemistry

5 Challenges and prospects of HTL-AP resource recovery

5.1 Challenges of HTL-AP resource recovery

5.2 Prospects of HTL-AP resource recovery

6 Conclusion

()
图1 水热液化反应过程及两条产物分离路径
Fig. 1 Hydrothermal liquefaction reaction process and two product separation paths
图2 不同温度条件下模型化合物混合原料水热液化水相产物主要物质
Fig. 2 Main components of HTL-AP of mixed feedstocks of model compounds at different temperatures
表1 不同原料来源的水热液化水相性质[22,33,34]
Table 1 Typical characteristics of HTL-AP from HTL of various feedstock[22,33,34]
图3 C和N元素在水热液化产物中的分布[32]
Fig.3 Carbon and nitrogen distribution during HTL of manures[32]. (a) Carbon and nitrogen balance during HTL of manures; (b) Organic groups in the aqueous phase from HTL of livestock manures identified by GC-MS analysis. Copyright 2018, ACS Society
表2 微藻在不同原料来源的水热液化水相中的生长性能[33]
Table 2 Microalgae cultivation of HTL-AP from HTL of diverse biomass[33]
图4 HTL-AP吸附处理后厌氧发酵
Fig.4 Anaerobic fermentation of HTL-AP after adsorption[76]. (a) zeolite adsorption and anaerobic digestion; (b) Gas chromatography-mass spectrometer (GC-MS) chromatograms for zeolite-adsorbed and raw HTL-AP. Copyright 2018, Elsevier
图5 利用HTL-AP产生生物氢烷系统中微生物分布[80]
Fig.5 Taxonomic classification of microbial community in biohythane and biomethane systems for HTL-AP treatment[80]. At the phylum (A, C) and family (B, D) levels through Illumina Miseq sequencing. Copyright 2016, Springer
图6 MEC用于HTL-AP处理[84]
Fig.6 MEC system used for HTL-AP treatment[84]. Copyright 2018, Elsevier
表3 HTL-AP处理技术现状对比
Table 3 Comparison of the state of technology of different HTL-AP treatment approaches.
Technology Category Approaches Advantages Challenges
Biotechnology Algae Cultivation Nutrients are reused
Biomass generation
Mild treatment conditions
Low COD removal efficiency
Needs economic evaluation
Large dilution ratio demand
Risk of heavy meatal accumulation
Aerobic Biodegradation Biomass generation
Mild treatment conditions
Large dilution ratio demand
High aeration energy consumption
Anaerobic Fermentation Energettically positive
Low operating cost
Large capacity
Long processing cycle
Large dilution ratio requirement
Microbial Electrochemical Technology Energettically positive
High removal rate of
toxic substances
Low sludge production
Long processing cycle
Small capacity
Physicochemical Technology Chemical Sedimentation High separation efficiency of
inorganic substances
Needs additional chemicals
High sludge production
Low removal rate of organic substances
Membrane Separation Concentrate the aqueous phase
Separation of organic and
inorganic substances
Difficult to obtain specific substances
Limited efficiency of small molecule organic substances
Adsorption-desorption Obtain specific substances Low treatment efficiency
Needs economic evaluatio
Complex process
Gasification Efficient removal of
organic substances
Fast conversion process
High energy demand
High pressure and temperature
Limited removal rate of inorganic substances
Recycle for HTL Water conservation
Concentrate the aqueous phase
No additional treatment
technology required
May restrain the oil production rate
High energy requirement
Prominent Pathway Bactericidal Insecticide High value-added utilization Needs evaluation of biosafety, economy and effectiveness
Unstable bactericidal properties
[1]
Zhou Y J, Kerkhoven E J, Nielsen J. Nat. Energy, 2018, 3(11): 925.

doi: 10.1038/s41560-018-0197-x     URL    
[2]
Li L Y, Sun W M, Hu W, Sun Y K. J. Build. Eng., 2021, 37: 102136.
[3]
Zafar M W, Sinha A, Ahmed Z, Qin Q D, Zaidi S A H. Renew. Sustain. Energy Rev., 2021, 142: 110868.
[4]
Tian C Y, Li B M, Liu Z D, Zhang Y H, Lu H F. Renew. Sustain. Energy Rev., 2014, 38: 933.

doi: 10.1016/j.rser.2014.07.030     URL    
[5]
Huang H J, Yuan X Z. Bioresour. Technol., 2016, 200: 991.

doi: 10.1016/j.biortech.2015.10.099     URL    
[6]
Pham M, Schideman L, Scott J, Rajagopalan N, Plewa M J. Environ. Sci. Technol., 2013, 47(4): 2131.

doi: 10.1021/es304532c     pmid: 23305492
[7]
Chen W T, Zhang Y H, Lee T H, Wu Z W, Si B C, Lee C F F, Lin A, Sharma B K. Nat. Sustain., 2018, 1(11): 702.

doi: 10.1038/s41893-018-0172-3     URL    
[8]
Elliott D C, Hart T R, Schmidt A J, Neuenschwander G G, Rotness L J, Olarte M V, Zacher A H, Albrecht K O, Hallen R T, Holladay J E. Algal Res., 2013, 2(4): 445.

doi: 10.1016/j.algal.2013.08.005     URL    
[9]
Elliott D C, Schmidt A J, Hart T R, Billing J M. Biomass Convers. Biorefinery, 2017, 7(4): 455.

doi: 10.1007/s13399-017-0264-8     URL    
[10]
Li H, Liu Z D, Zhang Y H, Li B M, Lu H F, Duan N, Liu M S, Zhu Z B, Si B C. Bioresour. Technol., 2014, 154: 322.

doi: 10.1016/j.biortech.2013.12.074     URL    
[11]
Zhu Z B, Liu Z D, Zhang Y H, Xing X H, Li B M, Duan N, Lu H F, Li H, Si B C, He Y H. J. Bioprocess Eng. Biorefinery, 2014, 3(3): 219.

doi: 10.1166/jbeb.2014.1097     URL    
[12]
Leng L J, Leng S Q, Chen J, Yuan X Z, Li J, Li K, Wang Y P, Zhou W G. Bioresour. Technol., 2018, 259: 156.

doi: 10.1016/j.biortech.2018.03.019     URL    
[13]
Leng L J, Li J, Wen Z Y, Zhou W G. Bioresour. Technol., 2018, 256: 529.

doi: 10.1016/j.biortech.2018.01.121     URL    
[14]
Neyens E, Baeyens J. J. Hazard. Mater., 2003, 981-3: 51.
[15]
Lu J W, Zhang J R, Zhu Z B, Zhang Y H, Zhao Y, Li R R, Watson J, Li B M, Liu Z D. Energy Convers. Manag., 2017, 134: 340.

doi: 10.1016/j.enconman.2016.12.052     URL    
[16]
RemÓn J, Santomauro F, Chuck C J, Matharu A S, Clark J H. Green Chem., 2018, 20(19): 4507.

doi: 10.1039/C8GC02182A     URL    
[17]
Toor S S, Rosendahl L, Rudolf A. Energy, 2011, 36(5): 2328.

doi: 10.1016/j.energy.2011.03.013     URL    
[18]
Anastasakis K, Ross A B. Bioresour. Technol., 2011, 102(7): 4876.

doi: 10.1016/j.biortech.2011.01.031     URL    
[19]
Zhu Z B, Liu Z D, Zhang Y H, Li B M, Lu H F, Duan N, Si B C, Shen R X, Lu J W. Bioresour. Technol., 2016, 199: 220.

doi: 10.1016/j.biortech.2015.08.043     URL    
[20]
Zhu Z B, Si B C, Lu J W, Watson J, Zhang Y H, Liu Z D. Bioresour. Technol., 2017, 243: 9.

doi: 10.1016/j.biortech.2017.06.085     URL    
[21]
Xu Y D, Lu J W, Wang Y Y, Yuan C B, Liu Z D. J. Hazard. Mater., 2022, 423: 12761.
[22]
Usman M, Chen H H, Chen K F, Ren S, Clark J H, Fan J J, Luo G, Zhang S C. Green Chem., 2019, 21(7): 1553.

doi: 10.1039/C8GC03957G     URL    
[23]
Tian C, Liu Z, Zhang Y, Li B, Cao W, Lu H, Duan N, Zhang L, Zhang T. Bioresource Technology, 2015, 184: 336.

doi: 10.1016/j.biortech.2014.10.093     URL    
[24]
Ching T W, Haritos V, Tanksale A. Carbohydr. Polym., 2017, 157: 1794.

doi: 10.1016/j.carbpol.2016.11.066     URL    
[25]
Nakasu P Y S, Ienczak L J, Costa A C, Rabelo S C. Fuel, 2016, 185: 73.

doi: 10.1016/j.fuel.2016.07.069     URL    
[26]
Kang S M, Li X L, Fan J, Chang J. Renew. Sustain. Energy Rev., 2013, 27: 546.

doi: 10.1016/j.rser.2013.07.013     URL    
[27]
Lu J W, Liu Z D, Zhang Y H, Savage P E. ACS Sustainable Chem. Eng., 2018, 6(11): 14501.

doi: 10.1021/acssuschemeng.8b03156     URL    
[28]
Zhang C, Tang X H, Sheng L L, Yang X Y. Green Chem., 2016, 18(8): 2542.

doi: 10.1039/C5GC02953H     URL    
[29]
Yang W, Li X, Li Z, Tong C, Feng L. Bioresource Technology, 2015, 196: 99.

doi: 10.1016/j.biortech.2015.07.020     URL    
[30]
Madsen R B, Biller P, Jensen M M, Becker J, Iversen B B, Glasius M. Energy Fuels, 2016, 30(12): 10470.

doi: 10.1021/acs.energyfuels.6b02007     URL    
[31]
Yu G, Zhang Y H, Schideman L, Funk T, Wang Z C. Energy Environ. Sci., 2011, 4(11): 4587.

doi: 10.1039/c1ee01541a     URL    
[32]
Lu J W, Li H G, Zhang Y H, Liu Z D. ACS Sustainable Chem. Eng., 2018, 6(10): 13570.

doi: 10.1021/acssuschemeng.8b03810     URL    
[33]
Gu Y X, Zhang X S, Deal B, Han L J. Bioresour. Technol., 2019, 278: 329.

doi: 10.1016/j.biortech.2019.01.127     URL    
[34]
Gu Y X, Zhang X S, Deal B, Han L J, Zheng J L, Ben H X. Green Chem., 2019, 21(21): 6030.

doi: 10.1039/C9GC90097G     URL    
[35]
Xu D H, Lin G K, Liu L, Wang Y, Jing Z F, Wang S Z. Energy, 2018, 159: 686.

doi: 10.1016/j.energy.2018.06.191     URL    
[36]
Kobayashi Y, Tsuchiya T. Carbohydr. Res., 1997, 298(4): 261.

doi: 10.1016/S0008-6215(96)00318-7     URL    
[37]
Rao U, Posmanik R, Hatch L E, Tester J W, Walker S L, Barsanti K C, Jassby D. Bioresour. Technol., 2018, 267: 408.

doi: 10.1016/j.biortech.2018.07.064     URL    
[39]
Chen K F, Lyu H, Hao S L, Luo G, Zhang S C, Chen J M. Bioresour. Technol., 2015, 182: 160.

doi: 10.1016/j.biortech.2015.01.124     URL    
Lyu H, Chen K F, Yang X, Younas R, Zhu X D, Luo G, Zhang S C, Chen J M. Sep. Purif. Technol., 2015, 147: 276.

doi: 10.1016/j.seppur.2015.04.032     URL    
[40]
Zhang X S, Scott J, Sharma B K, Rajagopalan N. Environ. Sci.: Water Res. Technol., 2018, 4(4): 520.
[41]
Shanmugam S R, Adhikari S, Shakya R. Bioresour. Technol., 2017, 230: 43.

doi: 10.1016/j.biortech.2017.01.031     URL    
[42]
Li Y L, Tarpeh W A, Nelson K L, Strathmannand T J. Environ. Sci. Technol. 2018, 52(21): 12717.

doi: 10.1021/acs.est.8b04035     URL    
[43]
Biller P, Madsen R B, Klemmer M, Becker J, Iversen B B, Glasius M. Bioresour. Technol., 2016, 220: 190.

doi: 10.1016/j.biortech.2016.08.053     URL    
[44]
Klemmer M, Madsen R B, Houlberg K, Mørup A J, Christensen P S, Becker J, Glasius M, Iversen B B. Ind. Eng. Chem. Res., 2016, 55(48): 12317.

doi: 10.1021/acs.iecr.6b03414     URL    
[45]
Chen H, He Z, Zhang B, Feng H, Kandasamy S, Wang B. Energy, 2019.
[46]
Zhu Z, Rosendahl L, Toor S S, Yu D H, Chen G Y. Appl. Energy, 2015, 137: 183.

doi: 10.1016/j.apenergy.2014.10.005     URL    
[47]
Yu J Q, Guo Q H, Gong Y, Ding L, Wang J J, Yu G S. Fuel Process. Technol., 2021, 214: 106723.
[48]
Watson J, Si B C, Li H, Liu Z D, Zhang Y H. Int. J. Hydrog. Energy, 2017, 42(32): 20503.

doi: 10.1016/j.ijhydene.2017.05.083     URL    
[49]
Zhang L H, Champagne P, (Charles) Xu C. Bioresour. Technol., 2011, 102(17): 8279.

doi: 10.1016/j.biortech.2011.06.051     URL    
[50]
Awasthi A K, Tan Q Y, Li J H. Trends Biotechnol., 2020, 38(11): 1196.

doi: 10.1016/j.tibtech.2020.03.002     URL    
[51]
Blank L M, Narancic T, Mampel J, Tiso T, O’Connor K. Curr. Opin. Biotechnol., 2020, 62: 212.

doi: 10.1016/j.copbio.2019.11.011     URL    
[52]
Zheng M X, Schideman L C, Tommaso G, Chen W T, Zhou Y, Nair K, Qian W Y, Zhang Y H, Wang K J. Energ Convers Manage. 2017, 141: 420.

doi: 10.1016/j.enconman.2016.10.034     URL    
[53]
Holkar C R, Jadhav A J, Pinjari D V, Mahamuni N M, Pandit A B. J. Environ. Manag., 2016, 182: 351.

doi: 10.1016/j.jenvman.2016.07.090     URL    
[54]
Saidulu D, Gupta B, Gupta A K, Ghosal P S. J. Environ. Chem. Eng., 2021, 9(4): 105282.
[55]
Jayakody L N, Johnson C W, Whitham J M, Giannone R J, Black B A, Cleveland N S, Klingeman D M, Michener W E, Olstad J L, Vardon D R, Brown R C, Brown S D, Hettich R L, Guss A M, Beckham G T. Energy Environ. Sci., 2018, 11(6): 1625.

doi: 10.1039/C8EE00460A     URL    
[57]
He Y C, Li X L, Xue X Y, Swita M S, Schmidt A J, Yang B. Bioresour. Technol., 2017, 224: 457.

doi: 10.1016/j.biortech.2016.10.059     URL    
[58]
Lin M N A L. Bioresource Technology, 2013.
Zhang J Z, Chen Y C, Fu L H, Guo E P, Wang B, Dai L, Si T. Curr. Opin. Biotechnol., 2021, 67: 88.

doi: 10.1016/j.copbio.2021.01.010     URL    
[59]
Harmon V L, Wolfrum E, Knoshaug E P, Davis R, Laurens L M L, Pienkos P T, McGowen J. Algal Res., 2021, 55: 102249.
[60]
Li X D, Zhang Z Y, Xie Q, Wu D Y. Environ. Pollut., 2021, 276: 116713.
[61]
Zhou Y, Schideman L, Yu G, Zhang Y H. Energy Environ. Sci., 2013, 6(12): 3765.

doi: 10.1039/c3ee24241b     URL    
[62]
Li Z, Haifeng L, Zhang Y, Shanshan M, Baoming L, Zhidan L, Na D, Minsheng L, Buchun S, Jianwen L. Int. J. Agr. Biol. Eng., 2017, 10(2):194.
[63]
Zhang L, Lu H F, Zhang Y H, Li B M, Liu Z D, Duan N, Liu M S. J. Appl. Phycol., 2016, 28(2): 1031.

doi: 10.1007/s10811-015-0640-3     URL    
[64]
Jena U, Vaidyanathan N, Chinnasamy S, Das K C. Bioresour. Technol., 2011, 102(3): 3380.

doi: 10.1016/j.biortech.2010.09.111     URL    
[65]
Du Z Y, Hu B, Shi A M, Ma X C, Cheng Y L, Chen P, Liu Y H, Lin X Y, Ruan R. Bioresour. Technol., 2012, 126: 354.

doi: 10.1016/j.biortech.2012.09.062     URL    
[66]
Gardea-Torresdey J L, Becker-Hapak M K, Hosea J M, Darnall D W. Environ. Sci. Technol., 1990, 24(9): 1372.

doi: 10.1021/es00079a011     URL    
[67]
Leng L J, Zhang W J, Leng S Q, Chen J, Yang L H, Li H L, Jiang S J, Huang H J. Sci. Total Environ., 2020, 748: 142383.
[68]
Lim S J, Kim T H. J. Environ. Manag., 2018, 218: 148.

doi: 10.1016/j.jenvman.2018.04.054     URL    
[69]
Zhao Q X, Wang J T, OuYang S Y, Chen L G, Liu M, Li Y, Jiang F. J. Hazard. Mater., 2021, 415: 125691.
[70]
Wang X Y, Ding S X, Song W C, Li H W, Zhang Y H, Ren W N, Li M H, Lu J, Ding J C. Biochem. Eng. J., 2021, 169: 107983.
[71]
Godwin C M, Hietala D C, Lashaway A R, Narwani A, Savage P E, Cardinale B J. Bioresour. Technol., 2017, 224: 630.

doi: 10.1016/j.biortech.2016.11.105     URL    
[72]
Guo H Y, Zhao S F, Xia D P, Wang L, Lv J, Yu H F, Jiao X J. Bioresour. Technol., 2021, 332: 125072.
[73]
Pang H L, Wang L, He J G, Zhang P F, Yan Z S, Ma Y Q, Nan J. Bioresour. Technol., 2020, 318: 123953.
[74]
Tommaso G, Chen W T, Li P, Schideman L, Zhang Y H. Bioresour. Technol., 2015, 178: 139.

doi: 10.1016/j.biortech.2014.10.011     URL    
[75]
Chen H H, Wan J J, Chen K F, Luo G, Fan J J, Clark J, Zhang S C. Water Res., 2016, 106: 98.

doi: 10.1016/j.watres.2016.09.052     URL    
[76]
Li R R, Liu D L, Zhang Y F, Zhou P H, Tsang Y F, Liu Z D, Duan N, Zhang Y H. Sci. Total Environ., 2019, 651: 61.

doi: 10.1016/j.scitotenv.2018.09.175     URL    
[77]
Chen H H, Wan J J, Chen K F, Luo G, Fan J J, Clark J, Zhang S C. Water Res., 2016, 106: 98.

doi: 10.1016/j.watres.2016.09.052     URL    
[78]
Karki R, Chuenchart W, Surendra K C, Shrestha S de Raskin L, Sung S, Hashimoto A, Kumar Khanal S. Bioresour. Technol., 2021, 330: 125001.
[79]
Fernandez S, Srinivas K, Schmidt A J, Swita M S, Ahring B K. Bioresour. Technol., 2018, 247: 250.

doi: 10.1016/j.biortech.2017.09.030     URL    
[80]
Si B C, Li J M, Zhu Z B, Zhang Y H, Liu Z. Biotechnology for Biofuels, 2016, 9(1):254.

doi: 10.1186/s13068-016-0666-z     URL    
[81]
Chiranjeevi P, Patil S A. Biotechnol. Adv., 2020, 39: 107468.
[82]
He Y H, Liu Z D, Xing X H, Li B M, Zhang Y H, Shen R X, Zhu Z B, Duan N. Biochem. Eng. J., 2015, 94: 39.

doi: 10.1016/j.bej.2014.11.006     URL    
[83]
Shen R X, Liu Z D, He Y H, Zhang Y H, Lu J W, Zhu Z B, Si B C, Zhang C, Xing X H. Int. J. Hydrog. Energy, 2016, 41(7): 4132.

doi: 10.1016/j.ijhydene.2016.01.032     URL    
[84]
Shen R X, Jiang Y, Ge Z, Lu J W, Zhang Y H, Liu Z D, Ren Z J. Appl. Energy, 2018, 212: 509.

doi: 10.1016/j.apenergy.2017.12.065     URL    
[85]
Zhou Y, Schideman L, Yu G, Zhang Y H. Energy Environ. Sci., 2013, 6(12): 3765.

doi: 10.1039/c3ee24241b     URL    
[1] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[2] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[3] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[4] 韩德文, 王鑫彤, 鞠法帅, 王杨君, 冯加良, 汪午. PM2.5中的有机硫酸酯类化合物[J]. 化学进展, 2017, 29(5): 530-538.
[5] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[6] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[7] 郭慧慧, 苗娜娜, 李腾飞, 郝君, 高缘, 张建军. 共无定形药物——新型单相无定形二元体系[J]. 化学进展, 2014, 26(0203): 478-486.
[8] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[9] 李祥子, 魏先文. 磁性金属纳米管的制备、形成机理及潜在应用[J]. 化学进展, 2012, 24(11): 2143-2157.
[10] 张治磊, 王志宁, 高学理, 高从堦*. 支撑磷脂双层膜的研究进展[J]. 化学进展, 2012, 24(05): 852-862.
[11] 胡磊, 孙勇, 林鹿. 离子液体介导制备5-羟甲基糠醛[J]. 化学进展, 2012, 24(04): 483-491.
[12] 张昱,王振宇,杨,敏. 环境净化中的微生物生态学*[J]. 化学进展, 2009, 21(0203): 566-570.
[13] 王聪,刘秀凤,崔瑞利,张宝泉. 沸石分子筛膜缺陷的形成及修复*[J]. 化学进展, 2008, 20(12): 1860-1867.
[14] 武海顺,贾建峰. 氮化硼纳米管的研究进展*[J]. 化学进展, 2004, 16(01): 6-.