English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 51-72 DOI: 10.7536/PC170704 前一篇   后一篇

• 综述 •

金属锂枝晶生长机制及抑制方法

程新兵, 张强*   

  1. 清华大学化学工程系 北京 100084
  • 收稿日期:2017-07-07 修回日期:2017-09-04 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 张强,e-mail:zhang-qiang@mails.tsinghua.edu.cn E-mail:zhang-qiang@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21422604,21676160,21276141)和国家重点研发计划(No.2016YFA0202500)资助

Growth Mechanisms and Suppression Strategies of Lithium Metal Dendrites

Xinbing Cheng, Qiang Zhang*   

  1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2017-07-07 Revised:2017-09-04 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21422604, 21676160, 21276141) and the National Key Research and Development Program (No. 2016YFA0202500).
金属锂负极以极高的容量(3860 mAh ·g-1)和最负的电势(-3.040 V vs标准氢电极)而被称为二次锂电池"圣杯"电极。以金属锂为负极的金属锂电池是极具前景的下一代高比能电池(比如锂硫和锂氧电池等)。然而,在锂离子反复沉积和析出过程中,金属锂负极表面容易生长出锂枝晶,并发生粉化,大大降低了电池的利用率,造成安全隐患,缩短电池使用寿命。本综述针对金属锂的枝晶问题开展评述。首先介绍金属锂负极的工作原理和存在的挑战;其次,评述金属锂负极的枝晶生长模型;再次,总结近年来针对抑制金属锂负极枝晶生长的研究进展。最后,总结全文并对金属锂负极的研究进行了展望。该综述尝试总结金属锂负极近些年在理论和技术上的进步,并为金属锂电池的实用化研究提供借鉴。
With the ultra-high capacity (3860 mAh ·g-1) and the most negative electrochemical potential (-3.040 V vs the standard hydrogen electrode), lithium metal is regarded as a "Holy Grail" electrode and has received extensive attentions. Therefore, lithium metal based batteries (such as lithium-sulfur and Li-oxygen batteries) are strongly considered as one of the most promising candidates for the next-generation high-energy-density energy storage devices. However, uncontrolled dendritic-lithium growth results in poor cycling efficiency, severe safety concerns, and poor lifespan, which severely prevents the practical applications of Li metal based batteries. This contribution presents a comprehensive overview on the dendrite issues of lithium metal anode. Firstly, the general working principles and technical challenges of lithium metal anode are introduced. Specific attentions are also paid to the mechanistic understandings and quantitative models for the nucleation and growth of dendritic lithium. Based on these theoretical understanding and analysis, the recently proposed methods to suppress dendrite growth of lithium metal anode are summarized. The perspective on the current limitations and future research directions of LMB are presented. The review is with an attempt at summarizing the theoretical and experimental achievements in lithium metal anode and endeavors to realize the practical applications of lithium metal based batteries.
Contents
1 Introduction
2 Intrinsic property of Li metal anode
2.1 Thermodynamic nature of Li metal anode
2.2 Role of dendrite growth on Li metal anode
3 Models for dendrite growth
3.1 Surface nucleation and diffusion model
3.2 Heterogeneous nucleation model
3.3 Space charge model
3.4 SEI-induced-growth model
3.5 Sand's time model
4 Strategies to suppress dendrite growth
4.1 Liquid electrolyte modification
4.2 Highly concentrated electrolyte
4.3 Nanostructured electrolyte
4.4 Solid-state electrolyte
4.5 Structured electrolyte
5 Conclusion and outlook

中图分类号: 

()
[1] Goodenough J B. Energy Storage Mater., 2015, 1:158.
[2] Tarascon J M, Armand M. Nature, 2001, 414:359.
[3] Evarts E C. Nature, 2015, 526:S93.
[4] Grande L, Paillard E, Hassoun J, Park J B, Lee Y J, Sun Y K, Passerini S, Scrosati B. Adv. Mater., 2015, 27:784.
[5] Ye H, Xin S, Yin Y X, Li J Y, Guo Y G, Wan L J. J. Am. Chem. Soc., 2017, 139:5916.
[6] Palacin M R, de Guibert A. Science, 2016, 351:574.
[7] He P, Zhang T, Jiang J, Zhou H. J. Phys. Chem. Lett., 2016, 7:1267.
[8] Janek J, Zeier W G. Nat. Energy, 2016, 1:16141.
[9] Zhang Z, Peng Z, Zheng J, Wang S, Liu Z, Bi Y, Chen Y, Wu G, Li H, Cui P, Wen Z, Wang D. J. Mater. Chem. A, 2017, 5:9339.
[10] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G. Energy Environ. Sci., 2014, 7:513.
[11] Sun Y, Liu N, Cui Y. Nat. Energy, 2016, 1:16071.
[12] Cheng X B, Zhang Q. J. Mater. Chem. A, 2015, 3:7207.
[13] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Chem. Rev., 2017, 117:10403.
[14] Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1:16013.
[15] Choudhury S, Wan C T C, Al Sadat W I, Tu Z, Lau S, Zachman M J, Kourkoutis L F, Archer L A. Sci. Adv., 2017, 3:e1602809.
[16] Liu K, Pei A, Lee H R, Kong B, Liu N, Lin D, Liu Y, Liu C, Hsu P C, Bao Z, Cui Y. J. Am. Chem. Soc., 2017, 139:4815.
[17] Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G. Angew. Chem. Int. Ed., 2011, 50:8609.
[18] Zhang G, Zhang Z W, Peng H J, Huang J Q, Zhang Q. Small Methods, 2017, 1:1700134.
[19] Tao T, Lu S, Fan Y, Lei W, Huang S, Chen Y. Adv. Mater., 2017, 29:1700542.
[20] Cao R, Xu W, Lv D, Xiao J, Zhang J G. Adv. Energy Mater., 2015, 5:1402273.
[21] Xu J J, Liu Q C, Yu Y, Wang J, Yan J M, Zhang X B. Adv. Mater., 2017, 29:1606552.
[22] Peng H J, Huang J Q, Cheng X B, Zhang Q. Adv. Energy Mater., 2017, 7:1700260.
[23] 程新兵(Cheng X B). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2017.
[24] Satter R. Science, 1976, 192:1226.
[25] Zhu Y, He X, Mo Y. Adv. Sci., 2017, 4:1600517.
[26] Sun Y, Zheng G, Seh Zhi W, Liu N, Wang S, Sun J, Lee Hye R, Cui Y. Chem., 2016, 1:287.
[27] Zhang X, Cheng X, Zhang Q. J. Energy Chem., 2016, 25:967.
[28] Tikekar M D, Choudhury S, Tu Z, Archer L A. Nat. Energy, 2016, 1:16114.
[29] Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q. Adv. Sci., 2016, 3:1500213.
[30] Zhang K, Lee G H, Park M, Li W, Kang Y M. Adv. Energy Mater., 2016, 6:1600811.
[31] Wang D, Zhang W, Zheng W, Cui X, Rojo T, Zhang Q. Adv. Sci., 2016, 3:1600168.
[32] Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Adv. Sci., 2017, 4:1600445.
[33] Guo Y, Li H, Zhai T. Adv. Mater., 2017, 29:1700007.
[34] Rao B M L, Francis R W, Christopher H A. J. Electrochem. Soc., 1977, 124:1490.
[35] Murphy D W, Di Salvo F J, Carides J N, Waszczak J V. Mater. Res. Bull., 1978, 13:1395.
[36] Lazzari M, Scrosati B. J. Electrochem. Soc., 1980, 127:773.
[37] Xu K. Chem. Rev., 2014, 114:11503.
[38] Peled E. J. Electrochem. Soc., 1979, 126:2047.
[39] Zhang X Q, Chen X, Xu R, Cheng X B, Peng H J, Zhang R, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2017, 56:14207.
[40] Cheng X B, Zhao M Q, Chen C, Pentecost A, Maleski K, Mathis T, Zhang X Q, Zhang Q, Jiang J, Gogotsi Y. Nat. Commun., 2017, 8:336.
[41] Lang J, Qi L, Luo Y, Wu H. Energy Storage Mater., 2017, 7:115.
[42] Hou T Z, Chen X, Peng H J, Huang J Q, Li B Q, Zhang Q, Li B. Small, 2016, 12:3283.
[43] Hou T Z, Xu W T, Chen X, Peng H J, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2017, 56:8178.
[44] Kong L, Peng H J, Huang J Q, Zhu W, Zhang G, Zhang Z-W, Zhai P Y, Sun P, Xie J, Zhang Q. Energy Storage Mater., 2017, 8:153.
[45] 黄佳琦(Huang J Q),孙滢智(Sun Y Z),王云飞(Wang Y F),张强(Zhang Q). 化学学报(Acta Chimica Sinica), 2017, 75:173.
[46] Peng H J, Wang D W, Huang J Q, Cheng X B, Yuan Z, Wei F, Zhang Q. Adv. Sci., 2016, 3:1500268.
[47] Liang J, Sun Z H, Li F, Cheng H M. Energy Storage Mater., 2016, 2:76.
[48] Mi K, Chen S, Xi B, Kai S, Jiang Y, Feng J, Qian Y, Xiong S. Adv. Funct. Mater., 2017, 27:1604265.
[49] Mi K, Jiang Y, Feng J, Qian Y, Xiong S. Adv. Funct. Mater., 2016, 26:1571.
[50] Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28:9551.
[51] Zhai P Y, Peng H J, Cheng X B, Zhu L, Huang J Q, Zhu W, Zhang Q. Energy Storage Mater., 2017, 7:56.
[52] Stark J K, Ding Y, Kohl P A. J. Electrochem. Soc., 2013, 160:D337.
[53] Liu X H, Zhong L, Zhang L Q, Kushima A, Mao S X, Li J, Ye Z Z, Sullivan J P, Huang J Y. Appl. Phys. Lett., 2011, 98:183107.
[54] Porthault H, Decaux C. Electrochim. Acta, 2016, 194:330.
[55] Steiger J, Kramer D, Mönig R. J. Power Sources, 2014, 261:112.
[56] Sano H, Kitta M, Matsumoto H. J. Electrochem. Soc., 2016, 163:D3076.
[57] Tang C Y, Dillon S J. J. Electrochem. Soc., 2016, 163:A1660.
[58] Steiger J, Kramer D, Moenig R. Electrochim. Acta, 2014, 136:529.
[59] Sun F, Moroni R, Dong K, Markötter H, Zhou D, Hilger A, Zielke L, Zengerle R, Thiele S, Banhart J. ACS Energy Lett., 2017, 2:94.
[60] Aryanfar A, Brooks D J, Colussi A J, Hoffmann M R. Phys. Chem. Chem. Phys., 2014, 16:24965.
[61] Park M S, Ma S B, Lee D J, Im D, Doo S G, Yamamoto O. Sci. Rep., 2014, 4:3815.
[62] Brissot C, Rosso M, Chazalviel J N, Baudry P, Lascaud S. Electrochim. Acta, 1998, 43:1569.
[63] Bai P, Li J, Brushett F R, Bazant M Z. Energy Environ. Sci., 2016, 9:3221.
[64] Orsini F, du Pasquier A, Beaudouin B, Tarascon J M, Trentin M, Langenhuizen N, de Beer E, Notten P. J. Power Sources, 1999, 81/82:918.
[65] 沈馨(Shen X),张睿(Zhang R),程新兵(Cheng X B),管超(Guan C),黄佳琦(Huang J Q),张强(Zhang Q). 储能科学与技术(Energy Storage Sci. Technol.), 2017, 6:418.
[66] 高鹏(Gao P),韩家军(Han J J),朱永明(Zhu Y M),张翠芬(Zhang C F),李宁(Li N). 化学进展(Prog. Chem.), 2009, 21:1678.
[67] Becking J, Gröbmeyer A, Kolek M, Rodehorst U, Schulze S, Winter M, Bieker P, Stan M C. Adv. Mater. Interfaces, 2017, 4:1700166.
[68] Cheng X B, Yan C, Huang J Q, Li P, Zhu L, Zhao L, Zhang Y, Zhu W, Yang S T, Zhang Q. Energy Storage Mater., 2017, 6:18.
[69] Dornbusch D A, Hilton R, Lohman S D, Suppes G J. J. Electrochem. Soc., 2015, 162:A262.
[70] Liu K, Zhuo D, Lee H W, Liu W, Lin D, Lu Y, Cui Y. Adv. Mater., 2017, 29:1603987.
[71] Park J, Jeong J, Lee Y, Oh M, Ryou M H, Lee Y M. Adv. Mater. Interfaces, 2016, 3:1600140.
[72] Liu S, Li G R, Gao X P. ACS Appl. Mater. Interfaces, 2016, 8:7783.
[73] Tao R, Bi X, Li S, Yao Y, Wu F, Wang Q, Zhang C, Lu J. ACS Appl. Mater. Interfaces, 2017, 9:7003.
[74] Fan L, Zhuang H, Gao L, Lu Y, Archer L. J. Mater. Chem. A, 2017, 5:3483.
[75] Leung K, Soto F, Hankins K, Balbuena P B, Harrison K L. J. Phys. Chem. C, 2016, 120:6302.
[76] Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q. J. Electrochem. Soc., 2016, 163:A592.
[77] Na W, Lee A S, Lee J H, Hwang S S, Kim E, Hong S M, Koo C M. ACS Appl. Mater. Interfaces, 2016, 8:12852.
[78] Liu W, Li W, Zhuo D, Zheng G, Lu Z, Liu K, Cui Y. ACS Cent. Sci., 2017, 3:135.
[79] Wood K N, Kazyak E, Chadwick A F, Chen K H, Zhang J G, Thornton K, Dasgupta N P. ACS Cent. Sci., 2016, 2:790.
[80] López C M, Vaughey J T, Dees D W. J. Electrochem. Soc., 2009, 156:A726.
[81] Lu D, Shao Y, Lozano T, Bennett W D, Graff G L, Polzin B, Zhang J, Engelhard M H, Saenz N T, Henderson W A, Bhattacharya P, Liu J, Xiao J. Adv. Energy Mater., 2015, 5:1400993.
[82] Bucur C B, Lita A, Osada N, Muldoon J. Energy Environ. Sci., 2016, 9:112.
[83] Liu K, Bai P, Bazant M Z, Wang C A, Li J. J. Mater. Chem. A, 2017, 5:4300.
[84] Peng Z, Wang S, Zhou J, Jin Y, Liu Y, Qin Y, Shen C, Han W, Wang D. J. Mater. Chem. A, 2016, 4:2427.
[85] Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Nat. Commun., 2016, 7:10992.
[86] Gregory T D, Hoffman R J, Winterton R C. J. Electrochem. Soc., 1990, 137:775.
[87] Guo Y, Yang J, NuLi Y, Wang J. Electrochem. Commun., 2010, 12:1671.
[88] Matsui M. J. Power Sources, 2011, 196:7048.
[89] Ling C, Banerjee D, Matsui M. Electrochim. Acta, 2012, 76:270.
[90] Jäckle M, Groß A. J. Chem. Phys., 2014, 141:174710.
[91] Ozhabes Y, Gunceler D, Arias T A. arXiv Preprint arXiv:1504.05799.[2017-09-01].https://arxiv.org/abs/1504.05799
[92] Ely D R, García R E. J. Electrochem. Soc., 2013, 160:A662.
[93] Yan K, Lu Z, Lee H W, Xiong F, Hsu P C, Li Y, Zhao J, Chu S, Cui Y. Nat. Energy, 2016, 1:16010.
[94] Chazalviel J N. Phys. Rev. A, 1990, 42:7355.
[95] Fleury V, Chazalviel J N, Rosso M, Sapoval B. J. Electroanal. Chem., 1990, 290:249.
[96] Soto F A, Ma Y, Martinez de la Hoz J M, Seminario J M, Balbuena P B. Chem. Mater., 2015, 27:7990.
[97] Pinson M B, Bazant M Z. J. Electrochem. Soc., 2013, 160:A243.
[98] Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J. Solid State Ionics, 2015, 278:98.
[99] Zhu B, Jin Y, Hu X, Zheng Q, Zhang S, Wang Q, Zhu J. Adv. Mater., 2017, 29:1603755.
[100] Zahn R, Lagadec M F, Hess M, Wood V. ACS Appl. Mater. Interfaces, 2016, 8:32637.
[101] Liu Y, Lin D, Yuen P Y, Liu K, Xie J, Dauskardt R H, Cui Y. Adv. Mater., 2017, 29:1605531.
[102] Lin D, Liu W, Liu Y, Lee H R, Hsu P C, Liu K, Cui Y. Nano Lett., 2016, 16:459.
[103] Kushima A, So K P, Su C, Bai P, Kuriyama N, Maebashi T, Fujiwara Y, Bazant M Z, Li J. Nano Energy, 2017, 32:271.
[104] Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, Shao-Horn Y. J. Phys. Chem. Lett., 2015, 6:4653.
[105] Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B. J. Am. Chem. Soc., 2016, 138:9385.
[106] Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon J M, Bouchet R, Lascaud S. Electrochim. Acta, 2006, 51:5334.
[107] Rosso M, Gobron T, Brissot C, Chazalviel J N, Lascaud S. J. Power Sources, 2001, 97/98:804.
[108] Chen X, Hou T Z, Li B, Yan C, Zhu L, Guan C, Cheng X B, Peng H J, Huang J Q, Zhang Q. Energy Storage Mater., 2017, 8:194.
[109] Xu K. Chem. Rev., 2004, 104:4303.
[110] Kuwata H, Sonoki H, Matsui M, Matsuda Y, Imanishi N. Electrochemistry, 2016, 84:854.
[111] Heine J, Hilbig P, Qi X, Niehoff P, Winter M, Bieker P. J. Electrochem. Soc., 2015, 162:A1094.
[112] Guo J, Wen Z, Wu M, Jin J, Liu Y. Electrochem. Commun., 2015, 51:59.
[113] Sano H, Sakaebe H, Matsumoto H. J. Power Sources, 2011, 196:6663.
[114] Markevich E, Salitra G, Chesneau F, Schmidt M, Aurbach D. ACS Energy Lett., 2017, 2:1321.
[115] Zhang X Q, Cheng X B, Chen X, Yan C, Zhang Q. Adv. Funct. Mater., 2017, 27:1605989.
[116] Jung R, Metzger M, Haering D, Solchenbach S, Marino C, Tsiouvaras N, Stinner C, Gasteiger H A. J. Electrochem. Soc., 2016, 163:A1705.
[117] Miao R, Yang J, Feng X, Jia H, Wang J, Nuli Y. J. Power Sources, 2014, 271:291.
[118] Jia W, Fan C, Wang L, Wang Q, Zhao M, Zhou A, Li J. ACS Appl. Mater. Interfaces, 2016, 8:15399.
[119] Han G B, Lee J N, Lee D J, Lee H, Song J, Lee H, Ryou M H, Park J K, Lee Y M. Electrochim. Acta, 2014, 115:525.
[120] Xiang H, Shi P, Bhattacharya P, Chen X, Mei D, Bowden M E, Zheng J, Zhang J G, Xu W. J. Power Sources, 2016, 318:170.
[121] Wu F, Qian J, Chen R, Lu J, Li L, Wu H, Chen J, Zhao T, Ye Y, Amine K. ACS Appl. Mater. Interfaces, 2014, 6:15542.
[122] Miao R, Yang J, Xu Z, Wang J, Nuli Y, Sun L. Sci. Rep., 2016, 6:21771.
[123] Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y M, Cui Y. Nat. Commun., 2015, 6:7436.
[124] Zhao C Z, Cheng X B, Zhang R, Peng H J, Huang J Q, Ran R, Huang Z H, Wei F, Zhang Q. Energy Storage Mater., 2016, 3:77.
[125] Yan C, Cheng X B, Zhao C Z, Huang J Q, Yang S T, Zhang Q. J. Power Sources, 2016, 327:212.
[126] Qian J, Xu W, Bhattacharya P, Engelhard M, Henderson W A, Zhang Y, Zhang J G. Nano Energy, 2015, 15:135.
[127] Mehdi B L, Stevens A, Qian J, Park C, Xu W, Henderson W A, Zhang J G, Mueller K T, Browning N D. Sci. Rep., 2016, 6:34267.
[128] Koshikawa H, Matsuda S, Kamiya K, Kubo Y, Uosaki K, Hashimoto K, Nakanishi S. J. Power Sources, 2017, 350:73.
[129] Zu C, Dolocan A, Xiao P, Stauffer S, Henkelman G, Manthiram A. Adv. Energy Mater., 2016, 6:1501933.
[130] Cheng X B, Yan C, Peng H J, Huang J Q, Yang S T, Zhang Q. Energy Storage Mater., 2018, 10:199.
[131] Wood S M, Pham C H, Rodriguez R, Nathan S S, Dolocan A D, Celio H, de Souza J P, Klavetter K C, Heller A, Mullins C B. ACS Energy Lett., 2016, 1:414.
[132] Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V, Liu J, Zhang J G. J. Am. Chem. Soc., 2013, 135:4450.
[133] Goodman J K S, Kohl P A. J. Electrochem. Soc., 2014, 161:D418.
[134] Ye H, Yin Y X, Zhang S F, Shi Y, Liu L, Zeng X X, Wen R, Guo Y G, Wan L J. Nano Energy, 2017, 36:411.
[135] Koch S L, Morgan B J, Passerini S, Teobaldi G. J. Power Sources, 2015, 296:150.
[136] Lin D, Liu Y, Chen W, Zhou G, Liu K, Dunn B, Cui Y. Nano Lett., 2017, 17:3731.
[137] Li N W, Yin Y X, Yang C P, Guo Y G. Adv. Mater., 2016, 28:1853.
[138] Basile A, Bhatt A I, O'Mullane A P. Nat. Commun., 2016, 7:11794.
[139] Li N W, Yin Y X, Li J Y, Zhang C H, Guo Y G. Adv. Sci., 2016, 3:1600400.
[140] Liu Q C, Xu J J, Yuan S, Chang Z W, Xu D, Yin Y B, Li L, Zhong H X, Jiang Y S, Yan J M, Zhang X B. Adv. Mater., 2015, 27:5241.
[141] Ma L, Kim M S, Archer L A. Chem. Mater., 2016, 29:4181.
[142] Wang H, Matsui M, Kuwata H, Sonoki H, Matsuda Y, Shang X, Takeda Y, Yamamoto O, Imanishi N. Nat. Commun., 2017, 8:15106.
[143] Cheng X B, Yan C, Chen X, Guan C, Huang J Q, Peng H J, Zhang R, Yang S T, Zhang Q. Chem, 2017, 2:258.
[144] Jing H K, Kong L L, Liu S, Li G R, Gao X P. J. Mater. Chem. A, 2015, 3:12213.
[145] Chen L, Connell J G, Nie A, Huang Z, Zavadil K R, Klavetter K C, Yuan Y, Sharifi-Asl S, Shahbazian-Yassar R, Libera J A, Mane A U, Elam J W. J. Mater. Chem. A, 2017, 5:12297.
[146] Kozen A C, Lin C F, Pearse A J, Schroeder M A, Han X, Hu L, Lee S B, Rubloff G W, Noked M. ACS Nano, 2015, 9:5884.
[147] Kazyak E, Wood K N, Dasgupta N P. Chem. Mater., 2015, 27:6457.
[148] Zhang Y J, Liu X Y, Bai W Q, Tang H, Shi S J, Wang X L, Gu C D, Tu J P. J. Power Sources, 2014, 266:43.
[149] Wang L, Wang Q, Jia W, Chen S, Gao P, Li J. J. Power Sources, 2017, 342:175.
[150] Hu Z, Zhang S, Dong S, Li W, Li H, Cui G, Chen L. Chem. Mater., 2017, 29:4682.
[151] Shim J, Lee J W, Bae K Y, Kim H J, Yoon W Y, Lee J C. ChemSusChem, 2017, 10:2274.
[152] Hu J, Tian J, Li C. ACS Appl. Mater. Interfaces, 2017, 9:11615.
[153] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Energy Environ. Sci., 2014, 7:347.
[154] Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12:381.
[155] Huang J Q, Zhang Q, Wei F. Energy Storage Mater., 2015, 1:127.
[156] Song J, Lee H, Choo M J, Park J K, Kim H T. Sci. Rep., 2015, 5:14458.
[157] Zheng G, Wang C, Pei A, Lopez J, Shi F, Chen Z, Sendek A D, Lee H W, Lu Z, Schneider H, Safont-Sempere M M, Chu S, Bao Z, Cui Y. ACS Energy Lett., 2016, 1:1247.
[158] Liu W, Lin D, Pei A, Cui Y. J. Am. Chem. Soc., 2016, 138:15443.
[159] Yamada Y, Yamada A. J. Electrochem. Soc., 2015, 162:A2406.
[160] Jeong S K, Seo H Y, Kim D H, Han H K, Kim J G, Lee Y B, Iriyama Y, Abe T, Ogumi Z. Electrochem. Commun., 2008, 10:635.
[161] Suo L, Hu Y S, Li H, Armand M, Chen L. Nat. Commun., 2013, 4:1481.
[162] Camacho-Forero L E, Smith T W, Balbuena P B. J. Phys. Chem. C, 2017, 121:182.
[163] Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G. Nat. Commun., 2015, 6:6362.
[164] Tu Z, Nath P, Lu Y, Tikekar M D, Archer L A. Acc. Chem. Res., 2015, 48:2947.
[165] Tu Z, Zachman M J, Choudhury S, Wei S, Ma L, Yang Y, Kourkoutis L F, Archer L A. Adv. Energy Mater., 2017, 7:1602367.
[166] Tikekar M D, Archer L A, Koch D L. Sci. Adv., 2016, 2:e1600320.
[167] Tikekar M D, Archer L A, Koch D L. J. Electrochem. Soc., 2014, 161:A847.
[168] Lu Y, Das S K, Moganty S S, Archer L A. Adv. Mater., 2012, 24:4430.
[169] Lu Y, Tikekar M, Mohanty R, Hendrickson K, Ma L, Archer L A. Adv. Energy Mater., 2015, 5:1402073.
[170] Schaefer J L, Yanga D A, Archer L A. Chem. Mater., 2013, 25:834.
[171] Choudhury S, Mangal R, Agrawal A, Archer L A. Nat. Commun., 2015, 6:10101.
[172] Li Y, Wong K W, Dou Q, Ng K M. J. Mater. Chem. A, 2016, 4:18543.
[173] Zhou D, Liu R, He Y B, Li F, Liu M, Li B, Yang Q H, Cai Q, Kang F. Adv. Energy Mater., 2016, 6:1502214.
[174] Wan H, Peng G, Yao X, Yang J, Cui P, Xu X. Energy Storage Mater., 2016, 4:59.
[175] Xin S, You Y, Wang S, Gao H C, Yin Y X, Guo Y G. ACS Energy Lett., 2017, 2:1385.
[176] Richards W D, Miara L J, Wang Y, Kim J C, Ceder G. Chem. Mater., 2016, 28:266.
[177] Li Y, Xu B, Xu H, Duan H, Lü X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B. Angew. Chem. Int. Ed., 2017, 56:753.
[178] Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J. Nano Energy, 2017, 33:363.
[179] Chen N, Dai Y, Xing Y, Wang L, Guo C, Chen R, Guo S, Wu F. Energy Environ. Sci., 2017, 10:1660.
[180] Shim J, Kim H J, Kim B G, Kim Y S, Kim D G, Lee J C. Energy Environ. Sci., 2017, 10:1911.
[181] Liu W, Lee S W, Lin D, Shi F, Wang S, Sendek A D, Cui Y. Nat. Energy, 2017, 2:17035.
[182] Wu B, Wang S, Evans Iv W J, Deng D Z, Yang J, Xiao J. J. Mater. Chem. A, 2016, 4:15266.
[183] Tian Y, Shi T, Richards W D, Li J, Kim J C, Bo S H, Ceder G. Energy Environ. Sci., 2017, 10:1150.
[184] Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L. Adv. Mater., 2017, 29:1606042.
[185] Chinnam P R, Wunder S L. ACS Energy Lett., 2016, 1:134.
[186] Fu K, Gong Y, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman E, Hu L. Energy Environ. Sci., 2017, 10:1568.
[187] Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Sci. Adv., 2017, 3:e1601659.
[188] Han X, Gong Y, Fu K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L. Nat. Mater., 2017, 16:572.
[189] Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L. J. Am. Chem. Soc., 2016, 138:12258.
[190] Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L. Nano Lett., 2017, 17:565.
[191] Li Y, Zhou W, Chen X, Lü X, Cui Z, Xin S, Xue L, Jia Q, Goodenough J B. Proc. Natl. Acad. Sci. U.S.A., 2016, 113:13313.
[192] Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman E D, Hu L. Proc. Natl. Acad. Sci. U.S.A., 2016, 113:7094.
[193] Li Z, Huang J, Yann Liaw B, Metzler V, Zhang J. J. Power Sources, 2014, 254:168.
[194] Liu Q, Du C, Shen B, Zuo P, Cheng X, Ma Y, Yin G, Gao Y. RSC Adv., 2016, 6:88683.
[195] Matsuda S, Kubo Y, Uosaki K, Nakanishi S. ACS Energy Lett., 2017, 2:924.
[196] Ye H, Xin S, Yin Y X, Guo Y G. Adv. Energy Mater., 2017, 7:1700530.
[197] Zuo T T, Wu X W, Yang C P, Yin Y X, Ye H, Li N W, Guo Y G. Adv. Mater., 2017, 29:1700389.
[198] Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X. Nano Energy, 2017, 37:177.
[199] Cheng X B, Hou T Z, Zhang R, Peng H J, Zhao C Z, Huang J Q, Zhang Q. Adv. Mater., 2016, 28:2888.
[200] Chang C H, Chung S H, Manthiram A. Adv. Sust. Syst., 2017, 1:1600034.
[201] Liang Z, Zheng G, Liu C, Liu N, Li W, Yan K, Yao H, Hsu P C, Chu S, Cui Y. Nano Lett., 2015, 15:2910.
[202] Zhang R, Chen X R, Chen X, Cheng X B, Zhang X Q, Yan C, Zhang Q. Angew. Chem. Int. Ed., 2017, 56:1702099.
[203] Liu W, Mi Y, Weng Z, Zhong Y, Wu Z, Wang H. Chem. Sci., 2017, 8:4285.
[204] Liang Z, Lin D, Zhao J, Lu Z, Liu Y, Liu C, Lu Y, Wang H, Yan K, Tao X, Cui Y. Proc. Natl. Acad. Sci. U.S.A., 2016, 113:2862.
[205] Lin D, Liu Y, Liang Z, Lee H W, Sun J, Wang H, Yan K, Xie J, Cui Y. Nat. Nanotechnol., 2016, 11:626.
[206] Pei A, Zheng G, Shi F, Li Y, Cui Y. Nano Lett., 2017, 17:1132.
[207] Cheng X B, Peng H J, Huang J Q, Zhang R, Zhao C Z, Zhang Q. ACS Nano, 2015, 9:6373.
[208] Heine J, Rodehorst U, Qi X, Badillo J P, Hartnig C, Wietelmann U, Winter M, Bieker P. Electrochim. Acta, 2014, 138:288.
[209] Heine J, Krüger S, Hartnig C, Wietelmann U, Winter M, Bieker P. Adv. Energy Mater., 2014, 4:1300815.
[210] Kim J S, Yoon W Y. Electrochim. Acta, 2004, 50:531.
[211] Ryou M H, Lee Y M, Lee Y, Winter M, Bieker P. Adv. Funct. Mater., 2015, 25:834.
[212] Li Y, Jiao J, Bi J, Wang X, Wang Z, Chen L. Nano Energy, 2017, 32:241.
[213] Zhang R, Cheng X B, Zhao C Z, Peng H J, Shi J L, Huang J Q, Wang J, Wei F, Zhang Q. Adv. Mater., 2016, 28:2155.
[214] Cheng X B, Peng H J, Huang J Q, Wei F, Zhang Q. Small, 2014, 10:4257.
[215] Yang C P, Yin Y X, Zhang S F, Li N W, Guo Y G. Nat. Commun., 2015, 6:8058.
[216] Zhang X, Wang W, Wang A, Huang Y, Yuan K, Yu Z, Qiu J, Yang Y. J. Mater. Chem. A, 2014, 2:11660.
[217] Jin S, Xin S, Wang L, Du Z, Cao L, Chen J, Kong X, Gong M, Lu J, Zhu Y, Ji H, Ruoff R S. Adv. Mater., 2016, 28:9094.
[218] Zhang D, Zhou Y, Liu C, Fan S. Nanoscale, 2016, 8:11161.
[219] Zhang Y, Liu B, Hitz E, Luo W, Yao Y, Li Y, Dai J, Chen C, Wang Y, Yang C, Li H, Hu L. Nano Res., 2017, 10:1356.
[220] Matsuda S, Kubo Y, Uosaki K, Nakanishi S. Carbon, 2017, 119:119.
[221] Mukherjee R, Thomas A V, Datta D, Singh E, Li J, Eksik O, Shenoy V B, Koratkar N. Nat. Commun., 2014, 5:3710.
[222] Kang H K, Woo S G, Kim J H, Yu J S, Lee S R, Kim Y J. ACS Appl. Mater. Interfaces, 2016, 8:26895.
[223] Zhang Y J, Xia X H, Wang D H, Wang X L, Gu C D, Tu J P. RSC Adv., 2016, 6:11657.
[224] Raji A R O, Villegas Salvatierra R, Kim N D, Fan X, Li Y, Silva G A L, Sha J, Tour J M. ACS Nano, 2017, 11:6362.
[225] Zhang A, Fang X, Shen C, Liu Y, Zhou C. Nano Res., 2016, 9:3428.
[226] Ji X, Liu D Y, Prendiville D G, Zhang Y, Liu X, Stucky G D. Nano Today, 2012, 7:10.
[227] Kang H K, Woo S G, Kim J H, Lee S R, Kim Y J. Electrochim. Acta, 2015, 176:172.
[228] Xie K, Wei W, Yuan K, Lu W, Guo M, Li Z, Song Q, Liu X, Wang J G, Shen C. ACS Appl. Mater. Interfaces, 2016, 8:26091.
[229] Lu L L, Ge J, Yang J N, Chen S M, Yao H B, Zhou F, Yu S H. Nano Lett., 2016, 16:4431.
[230] Yun Q, He Y B, Lv W, Zhao Y, Li B, Kang F, Yang Q H. Adv. Mater., 2016, 28:6932.
[231] Zhang Z, Xu X, Wang S, Peng Z, Liu M, Zhou J, Shen C, Wang D. ACS Appl. Mater. Interfaces, 2016, 8:26801.
[232] Li Q, Zhu S, Lu Y. Adv. Funct. Mater., 2017, 27:1600517.
[233] Lee H, Song J, Kim Y J, Park J K, Kim H T. Sci. Rep., 2016, 6:30830.
[234] Lu L L, Zhang Y, Pan Z, Yao H B, Zhou F, Yu S H. Energy Storage Mater., 2017, 9:31.
[235] Chi S S, Liu Y, Song W L, Fan L Z, Zhang Q. Adv. Funct. Mater., 2017, 27:1700348.
[236] Peng H J, Huang J Q, Zhang Q. Chem. Soc. Rev., 2017, 46:5237.
[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[3] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[4] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[5] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[6] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[7] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[8] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[9] 韩德文, 王鑫彤, 鞠法帅, 王杨君, 冯加良, 汪午. PM2.5中的有机硫酸酯类化合物[J]. 化学进展, 2017, 29(5): 530-538.
[10] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[11] 詹昊, 张晓鸿, 阴秀丽, 吴创之. 生物质热化学转化过程含N污染物形成研究[J]. 化学进展, 2016, 28(12): 1880-1890.
[12] 张恒, 郑丽萍, 聂进, 黄学杰, 周志彬. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(06): 1005-1020.
[13] 郭慧慧, 苗娜娜, 李腾飞, 郝君, 高缘, 张建军. 共无定形药物——新型单相无定形二元体系[J]. 化学进展, 2014, 26(0203): 478-486.
[14] 朱绪飞, 韩华, 戚卫星, 路超, 蒋龙飞, 段文强 . 二次阳极氧化技术的理论依据及其局限性[J]. 化学进展, 2012, 24(11): 2073-2086.
[15] 李祥子, 魏先文. 磁性金属纳米管的制备、形成机理及潜在应用[J]. 化学进展, 2012, 24(11): 2143-2157.
阅读次数
全文


摘要

金属锂枝晶生长机制及抑制方法