English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 519-525 DOI: 10.7536/PC221001 前一篇   后一篇

• 综述 •

透明质酸基微纳米凝胶的制备及生物医学应用

钱雪丹*(), 余伟江, 付濬哲, 王幽香*, 计剑   

  1. 教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027
  • 收稿日期:2022-10-09 修回日期:2023-01-11 出版日期:2023-04-24 发布日期:2023-02-20
  • 基金资助:
    国家重点研发计划项目(2020YFE0204400); 国家自然科学基金项目(51873186)

Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels

Xuedan Qian(), Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University,Hangzhou 310027, China
  • Received:2022-10-09 Revised:2023-01-11 Online:2023-04-24 Published:2023-02-20
  • Contact: *e-mail:yx_wang@zju.edu.cn
  • Supported by:
    National Key Research and Development Project(2020YFE0204400); National Natural Science Foundation of China(51873186)

透明质酸是天然细胞外基质成分之一,具有良好的生物相容性、生物可降解性以及强大的保水能力。基于透明质酸的微纳米凝胶具有尺寸可调、易于修饰、柔软可变形且能保持结构完整的特点,不仅能满足大多数本体凝胶的应用需求,且因其小尺寸的特征又拥有独特的优势,因此在生物医用领域得到广泛应用。本文综述了透明质酸基微纳米凝胶的制备方式及其在生物医用领域的应用,并对其未来发展做出了展望。

Hyaluronic acid is one of the primary components of the natural extracellular matrix, which has outstanding biocompatibility, biodegradability and excellent water retention capacity. Hyaluronic acid based micro- and nanogels have many desirable features of size adjustability, easy modification, deformability and structural integrity. They can not only meet most application requirements of bulk hydrogels, but also possess unique advantages due to small dimension, thus have been widely researched and used in biomedical field. This paper reviews the preparation methods and biomedical applications of hyaluronic acid based micro- and nanogels, and the future development of it is prospected.

()
图1 顺铂/阿霉素共负载的HA交联纳米凝胶示意图[27]
Fig.1 Schematic illustration of cisplatin/doxorubicin co-loaded crosslinked HA nanogels[27]
图2 集成像、化疗、光动力治疗于一体的HA纳米凝胶制备示意图[38]
Fig.2 Representative scheme of preparation of HA nanogels for image-guided combined chemo and photodynamic therapy[38]
图3 微凝胶/本体凝胶复合制备示意图[43]
Fig.3 Schematics of preparation of microgel/hydrogel composites[43]
图4 微凝胶组装生物墨水[48]
Fig.4 Bioink assembled by microgels[48]
[1]
Snetkov P P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Polymers, 2020, 12: 1800.

doi: 10.3390/polym12081800     URL    
[2]
Tiwari S, Bahadur P. Int. J. Biol. Macromol., 2019, 121: 556.

doi: 10.1016/j.ijbiomac.2018.10.049     URL    
[3]
Wu L, He Y, Mao H, Gu Z. J Mater Chem B., 2022, 10(37):7148.

doi: 10.1039/D2TB00591C     URL    
[4]
Knopf-Marques H, Pravda M, Wolfova L, Velebny V, Schaaf P, Vrana N E, Lavalle P. Adv. Healthcare Mater., 2016, 5(22): 2841.

doi: 10.1002/adhm.v5.22     URL    
[5]
Highley C B, Prestwich G D, Burdick J A. Curr. Opin. Biotechnol., 2016, 40: 35.

doi: 10.1016/j.copbio.2016.02.008     URL    
[6]
Daly A C, Riley L, Segura T, Burdick J. Nat. Rev. Mater., 2019, 5: 20.

doi: 10.1038/s41578-019-0148-6    
[7]
Lee S, Lee Y, Kim E M, Nam K, Choi I. ACS Appl. Polym. Mater. 2020, 2, 2, 342.
[8]
Zhang X J, Malhotra S, Molina M, Haag R. Chem. Soc. Rev., 2015, 44(7): 1948.

doi: 10.1039/C4CS00341A     URL    
[9]
Neam瘙塅u I, Rusu A, Diaconu A, Nita L, Chiriac A, Drug Deliv., 2017, 24: 539.

doi: 10.1080/10717544.2016.1276232     URL    
[10]
Sung B, Kim M H, Abelmann L. Bioeng. Transl. Med., 2021, 6(1): e10190.
[11]
Junzhe Lou, Ryan Stowers, Sungmin Nam, Yan Xia, Ovijit Chaudhuri. Biomaterials, 2018, 154: 213.

doi: S0142-9612(17)30725-1     pmid: 29132046
[12]
Seong Y J, Lin G, Kim B J, Kim H E, Kim S, Jeong S H. ACS omega, 2019, 4: 13834.

doi: 10.1021/acsomega.9b01475     URL    
[13]
Ki Y C, Hwa S H, Eun S L, Jung M S, Benjamin D. A, Doo S L, Jae H P. Advanced Materials, 2019, 31: 1803549.

doi: 10.1002/adma.v31.34     URL    
[14]
Darling N J, Sideris E, Hamada N, Carmichael S T, Segura T. Adv. Sci., 2018, 5(11): 1801046.

doi: 10.1002/advs.v5.11     URL    
[15]
Yin Y L, Hu B, Yuan X, Cai L, Gao H L, Yang Q. Pharmaceutics, 2020, 12: 290.

doi: 10.3390/pharmaceutics12030290     URL    
[16]
Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J, Langer R, Burdick J A. J. Biomed. Mater. Res., 2006, 79A(3): 522.

doi: 10.1002/(ISSN)1552-4965     URL    
[17]
Ma W, Chen Q L, Xu W G, Yu M, Yang Y Y, Zou B H, Zhang Y S, Ding J X, Yu Z Q. Nano Res., 2020, 14: 846.

doi: 10.1007/s12274-020-3124-y    
[18]
Zhang C H, Li Q H, Wu C H, Wang J L, Su M, Deng J J. Nanotechnology, 2021, 32: 095107.

doi: 10.1088/1361-6528/abcdcc    
[19]
Sideris E, Griffin D R, Ding Y C, Li S R, Weaver W M, Di Carlo D, Hsiai T, Segura T. ACS Biomater. Sci. Eng., 2016, 2(11): 2034.

doi: 10.1021/acsbiomaterials.6b00444     URL    
[20]
Kupper S, Kłosowska-Chomiczewska I, Szumała P. Carbohydr. Polym., 2017, 175: 347.

doi: 10.1016/j.carbpol.2017.08.010     URL    
[21]
He S, Zhou Z H, Peng C, Huang H, Xiang L, Cao D, Zhou H, Chen J, Ou B, Liu Q, Zeng W, Liu L H. Mater. Technol., 2016, 31: 145.
[22]
Donald R. G, Westbrook M. W, Philip O. S, Dino D C, Tatiana S. Nature Materials, 2015, 14: 737.

doi: 10.1038/nmat4294    
[23]
Wang H M, Deng H, Gao M H, Zhang W Q. Front. Bioeng. Biotechnol., 2021, 9: 703559.

doi: 10.3389/fbioe.2021.703559     URL    
[24]
Kabanov Alexander V, Vinogradov Serguei V. Angewandte Chemie, 2009, 48: 5418.
[25]
Wang K, Wang Z Y, Hu H J, Gao C Y. Supramol. Mater., 2022, 1: 100006.
[26]
Santos Pedrosa S, Gonçalves C, David L, Gama M. Macromol. Biosci., 2014, 14(11): 1556.

doi: 10.1002/mabi.201400135     pmid: 25088667
[27]
Zhang Y, Wang F, Li M Q, Yu Z Q, Qi R G, Ding J X, Zhang Z Y, Chen X S. Advanced science, 2018, 5: 1700821.

doi: 10.1002/advs.v5.5     URL    
[28]
Gansau J, Kelly L, Buckley C. Biofabrication, 2018, 10: 035011.

doi: 10.1088/1758-5090/aacb95     URL    
[29]
Lee B B, Bhandari B, Howes T. Chem. Eng. & Technol., 2016, 39: 2355.
[30]
Babo P S, Reis R L, Gomes M E. J. Biomater. Appl., 2016, 31(5): 693.

doi: 10.1177/0885328216669475     URL    
[31]
Loebel C, Broguiere N, Alini M, Zenobi-Wong M, Eglin D. Biomacromolecules, 2015, 16(9): 2624.

doi: 10.1021/acs.biomac.5b00363     URL    
[32]
Qin X H, Gruber P, Markovic M, Plochberger B, Klotzsch E, Stampfl J, Ovsianikov A, Liska R. Polym. Chem., 2014, 5: 6523.

doi: 10.1039/C4PY00792A     URL    
[33]
Soni K S, Desale S S, Bronich T K. J. Control. Release, 2016, 240: 109.

doi: 10.1016/j.jconrel.2015.11.009     URL    
[34]
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin M R. Acta Biomater., 2019, 92: 1.

doi: 10.1016/j.actbio.2019.05.018     URL    
[35]
Raghupathi K, Skinner M, Chang G, Crawley C, Yoshida-Moriguchi T, Pipenhagen P, Zhu Y X, Avila L Z, Miller R J, Dhal P K. ACS Biomater. Sci. Eng., 2018, 4(2): 558.

doi: 10.1021/acsbiomaterials.7b00966     URL    
[36]
Zhang M, Asghar S, Tian C H, Hu Z Y, Ping Q N, Chen Z P, Shao F, Xiao Y Y. Carbohydr. Polym., 2021, 253: 117194.

doi: 10.1016/j.carbpol.2020.117194     URL    
[37]
Li B B, Xu Q N, Li X F, Zhang P, Zhao X, Wang Y X. Carbohydrate Polymers, 2019, 203: 378.

doi: 10.1016/j.carbpol.2018.09.076     URL    
[38]
Pan Y T, Ding Y F, Han Z H, Yuwen L H, Ye Z, Greta S.P. Mok, Li S K, Wang L H. Carbohydrate Polymers, 2021, 268: 118257.

doi: 10.1016/j.carbpol.2021.118257     URL    
[39]
Nakai T, Hirakura T, Sakurai Y, Shimoboji T, Ishigai M, Akiyoshi K. Macromol. Biosci., 2012, 12(4): 475.

doi: 10.1002/mabi.v12.4     URL    
[40]
Jooybar E, Abdekhodaie M J, Karperien M, Mousavi A, Alvi M, Dijkstra P J. Int. J. Biol. Macromol., 2020, 144: 837.

doi: S0141-8130(19)36477-3     pmid: 31715235
[41]
Jooybar E, Abdekhodaie M J, Mousavi A, Zoetebier B, Dijkstra P J. Eur. Polym. J., 2019, 115: 234.

doi: 10.1016/j.eurpolymj.2019.03.032    
[42]
Fasiku V O, Omolo C A, Kiruri L W, Devnarain N, Faya M, Mocktar C, Govender T. Int. J. Biol. Macromol., 2022, 206: 381.

doi: 10.1016/j.ijbiomac.2022.02.099     URL    
[43]
Chen M H, Chung J J, Mealy J E, Zaman S, Li E C, Arisi M F, Atluri P, Burdick J A. Macromol. Biosci., 2019, 19(1): 1800248.

doi: 10.1002/mabi.v19.1     URL    
[44]
Nguyen T P T, Li F Y, Shrestha S, Tuan R S, Thissen H, Forsythe J S, Frith J E. Biomaterials, 2021, 279: 121214.

doi: 10.1016/j.biomaterials.2021.121214     URL    
[45]
Feng Q, Li Q T, Wen H J, Chen J X, Liang M H, Huang H H, Lan D X, Dong H, Cao X D. Advanced Functional Materials, 2019, 29: 1906690.

doi: 10.1002/adfm.v29.50     URL    
[46]
Kurt E, Segura T. Adv. Healthc. Mater., 2022, 11(3): 2101867.

doi: 10.1002/adhm.v11.3     URL    
[47]
Highley C, Song K H, Daly A C, Burdick J. Advanced Science, 2019, 6(1): 1801076.

doi: 10.1002/advs.v6.1     URL    
[48]
Feng Q, Li D G, Li Q T, Li H F, Wang Z T, Zhu S L, Lin Z F, Cao X D, Dong H. ACS Appl. Mater. Interfaces, 2022, 14(13): 15653.

doi: 10.1021/acsami.2c01295     URL    
[49]
Ma Q M, Song Y, Sun W T, Cao J, Yuan H, Wang X Y, Sun Y, Shum H. Advanced Science, 2020, 7(7): 1903359.

doi: 10.1002/advs.v7.7     URL    
[50]
Mendes B B, Daly A C, Reis R L, Domingues R M A, Gomes M E, Burdick J A. Acta Biomater., 2021, 119: 101.

doi: 10.1016/j.actbio.2020.10.040     URL    
[51]
Park H S, Lee J E, Cho M Y, Hong J H, Cho S H, Lim Y T. Macromol. Rapid Commun., 2012, 33(18): 1549.

doi: 10.1002/marc.201200246     URL    
[52]
Yi Z H, Sun Z C, Shen Y, Luo D D, Zhang R, Ma S T, Zhao R B, Farheen J, Iqbal M Z, Kong X D. J. Mater. Chem. B, 2022, 10(21): 4105.

doi: 10.1039/D2TB00413E     URL    
[1] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[2] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[3] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[4] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[5] 肖肖, 陈昌盛, 刘伟强, 张业顺. 丝胶蛋白的结构、性能及生物医学应用[J]. 化学进展, 2017, 29(5): 513-523.
[6] 刘迎亚, 范霄, 李艳艳, 渠陆陆, 覃海月, 曹英男, 李海涛. 多光谱光声层析成像及其在生物医学中的应用[J]. 化学进展, 2015, 27(10): 1459-1469.
[7] 杜凯, 朱艳红, 徐辉碧, 杨祥良. 多功能磁性纳米粒的合成、修饰及生物医学应用[J]. 化学进展, 2011, 23(11): 2287-2298.
[8] 陈文求,杨小进,李全涛,易昌凤,徐祖顺. 超支化聚酰亚胺的改性研究* [J]. 化学进展, 2009, 21(0708): 1560-1567.
[9] 黄毅,黄金花,谢青季,姚守拙. 糖-蛋白质相互作用*[J]. 化学进展, 2008, 20(06): 942-950.
[10] 张伟 闫翠娥 . 透明质酸及其衍生物作药物载体[J]. 化学进展, 2006, 18(12): 1684-1690.