中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1737-1748 DOI: 10.7536/PC190442 Previous Articles   Next Articles

Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization

Shifang Yuan1,2,**(), Yi Yan2   

  1. 1. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
    2. School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
  • Received: Online: Published:
  • Contact: Shifang Yuan
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21101101)
Richhtml ( 11 ) PDF ( 896 ) Cited
Export

EndNote

Ris

BibTeX

In comparison with mononuclear metal catalysts in olefin polymerization, bimetallic catalysts having two active species significantly affect catalytic activities and properties of resulting polyolefins(such as microstructure of polymer, molecular weight and polydispersity). Herein we highlight the recent progress of bimetallic catalysts in ethylene polymerization and co-polymerization, which have been illustrated through the differences of metals used either early transition metals(Zr, Ti, Hf) or late transition metals(Ni, Fe, Co), and the varieties of ligands including constrained-geometry catalyst(CGC), phenoxyimines, azaallyl, a-diimines as well as iminopyridines. On the basis of these results, the early-transition metal catalysts have achieved not only homo-polymerization of ethylene but also co-polymerization of ethylene with α-olefin, while the late transition metal catalysts catalyze efficiently polymerization of ethylene, resulting in highly linear polyethylene by iron and cobalt catalysts or higher branched polyethylenes by nickel catalysts.

Fig. 1 Dinuclear titanium and zirconium CGC metal complex catalysts 1 and 2[26,27,28,29,30,31,32,33,34,35]
Fig. 2 Binuclear pyridine amino hafnium metal complex catalysts 3 and 4[34,35,36,37,38]
Fig. 3 Dinuclear phenol imine metal complex catalysts 5[38,39]
Fig. 4 Dinuclear titanium complex catalysts 6 and 7[40]
Fig. 5 Nitrogen heterocyclic dinuclear zirconium metal complex catalysts 8~11[41,42,43,44]
Fig. 6 Methylene-bridged bis(α-diimine) dinickel pre-catalysts 12a~12f[45,46,47,48,49,50,51,52,53,54,55,56,57]
Fig. 7 Bis(α-diimine) dinuclear nickel pre-catalysts 13,14[58,59]
Fig. 8 Bis(α-diimine) dinuclear nickel pre-catalysts 15 and 16[60,61]
Fig. 9 Bis(α-diimine) dinuclear nickel pre-catalysts 17 and 18[62,63]
Fig. 10 Bis(α-diimine) dinuclear nickel pre-catalysts 19~21[64,65]
Fig. 11 Bimetallic nickel(Ⅱ) precatalysts 22,23[66,67,68]
Fig. 12 Phenoxyimine-containing binuclear nickel complexes 24[71]
Fig. 13 Binuclear phenoxyimine-nickel complexes 25~27[72,73,74,75,76]
Fig. 14 Binuclear phenoxyimine-nickel complexes 28~30[72,73,74,75,76]
Fig. 15 Binuclear nickel complexes 31 bearing rigid linkers[72,73,74,75,76]
Fig. 16 Macrocyclic bimetallic nickel complexes 32,33[77,78]
Fig. 17 Bimetallic(Fe and Co) complexes 34~36[79,80,81]
Fig. 18 Bimetallic(Fe and Co) complexes 37,38[82,83,84]
Fig. 19 Bimetallic(Fe and Co) complexes 39,40[85,86,87]
Fig. 20 Imine bimetallic complex catalysts 41[88]
Fig. 21 Imine bimetallic complex catalysts 42[89,90]
Fig. 22 Imine bimetallic complex catalysts 43~45[93,94,95]
Fig. 23 Imine bimetallic complex catalysts 46[96]
[1]
Redshaw C, Tang Y . Chem. Soc. Rev., 2012,41:4484. https://www.ncbi.nlm.nih.gov/pubmed/22592513

doi: 10.1039/c2cs35028a pmid: 22592513
[2]
Wang Z, Solan G A, Zhang W, Sun W H . Coord. Chem. Rev., 2018,363:92.
[3]
Wang Z, Liu Q, Solan G A, Sun W H . Coord. Chem. Rev., 2017,350:68.
[4]
袁世芳(Yuan S J), 王丽静(Wang L J), 张秋月(Zhang Q Y), 孙文华(Sun W H) . 化学进展 (Progress in Chemistry), 2017,29:1462.
[5]
袁世芳(Yuan S J), 牛春霞(Niu C X), 魏学红(Wei X H), 孙文华(Sun W H) . 化学进展 (Progress in Chemistry), 2016,28:1070.
[6]
黄伟(Huang W), 张文娟(Zhang W J), 孙文华(Sun W H) . 高分子通报 (Chinese Polymer Bulletin), 2011,10:63.
[7]
左伟伟(Zuo W W), 孙文华(Sun W H) . 高分子通报 (Chinese Polymer Bulletin), 2009,04:1.
[8]
Gibson V C, Redshaw C, Solan G A . Chem. Rev., 2007,38:1745.
[9]
Gibson V C, Spitzmesser S K . Chem. Rev., 2003,103:283. https://www.ncbi.nlm.nih.gov/pubmed/12517186

doi: 10.1021/cr980461r pmid: 12517186
[10]
Yuan S F, Bai S D, Liu D S, Sun W H . Organometallics, 2010,29:2132.
[11]
Yuan S F, Zhang L P, Liu D S, Sun W H . Macromol. Res., 2010,18:690. http://link.springer.com/10.1007/s13233-010-0704-9

doi: 10.1007/s13233-010-0704-9
[12]
Small B L . Acc. Chem. Res., 2015,48:2599. https://www.ncbi.nlm.nih.gov/pubmed/26267011

doi: 10.1021/acs.accounts.5b00252 pmid: 26267011
[13]
Yuan S F, Bai S D, Tong H B, Liu D S, Sun W H . Inorg. Chim. Acta, 2011,370:215.
[14]
Zhong L, Li G, Liang G, Gao H, Wu Q . Macromolecules, 2017,50:2675.
[15]
Wang Z, Solan G A, Mahmood Q, Liu Q, Ma Y, Hao X, Sun W H . Organometallics, 2018,37:380.
[16]
Yuan S F, Duan T, Zhang R D, Solan G A, Ma Y P, Liang T L, Sun W H . Appl. Organomet. Chem., 2019,33:4785.
[17]
Yuan S F, Yue E L, Wen C Y, Sun W H . RSC Adv., 2016,6:7431.
[18]
Wen C Y, Yuan S F, Shi Q S, Yue E L, Liu D S, Sun W H . Organometallics, 2014,33:7223.
[19]
Rhinehart J L, Mitchell N E, Long B K . ACS Catal., 2014,4:2501.
[20]
Camacho D H, Guan Z . Chem. Commun., 2010,46:7879. https://www.ncbi.nlm.nih.gov/pubmed/20852778

doi: 10.1039/c0cc01535k pmid: 20852778
[21]
Bianchini C, Giambastiani G, Rios I G, Mantovani G, Meli A, Segarra A M . Coord. Chem. Rev., 2006,250:1391.
[22]
Chen Z, Yao E, Wang J, Gong X, Ma Y . Macromolecules, 2016,49:8848.
[23]
Johnson L K, Killian C M, Brookhart M . J. Am Chem. Soc., 1995,117:6414.
[24]
McInnis J P, Delferro M, Marks T J . Acc. Chem. Res., 2014,47:2545. https://www.ncbi.nlm.nih.gov/pubmed/25075755

doi: 10.1021/ar5001633 pmid: 25075755
[25]
Suo H Y, Solan G A, Ma Y P, Sun W H . Coord. Chem. Rev., 2018,372:101.
[26]
Lanza G, Fragala I L, Marks T J . J. Am Chem. Soc., 2000,122:12764.
[27]
H Li, Stern C L, Marks T J. Macromolecules, 2014,38:9015.
[28]
Williams L A, Marks T J . Organometallics, 2009,28:2053.
[29]
Yang X, Stern C L, Marks T J . J. Am. Chem. Soc., 1994,116(22):10015.
[30]
Li L, Metz M V, Li H, Chen M C, Marks T J . J. Am. Chem. Soc., 2002,124:12725. https://www.ncbi.nlm.nih.gov/pubmed/12392420

doi: 10.1021/ja0201698 pmid: 12392420
[31]
Li H, Li L, Marks T J . Angew. Chem. Int. Ed., 2004,43:4937. https://www.ncbi.nlm.nih.gov/pubmed/15372564

doi: 10.1002/anie.200460288 pmid: 15372564
[32]
Motta A, Fragala I L, Marks T J . J. Am. Chem. Soc., 2016,131:3974. https://www.ncbi.nlm.nih.gov/pubmed/19249823

doi: 10.1021/ja8077208 pmid: 19249823
[33]
Li H, Li L, Marks T J, Liable-Sands L, Rheingold A L . J. Am. Chem. Soc., 2003,125, 10788. https://www.ncbi.nlm.nih.gov/pubmed/12952449

doi: 10.1021/ja036289c pmid: 12952449
[34]
Klosin J, Fontaine P P, Figueroa R . Acc. Chem. Res., 2015,48:2004. https://www.ncbi.nlm.nih.gov/pubmed/26151395

doi: 10.1021/acs.accounts.5b00065 pmid: 26151395
[35]
Resconi L, Cavallo L, Fait A, Piemontesi F . Chem. Rev., 2000,100:1253. https://www.ncbi.nlm.nih.gov/pubmed/11749266

doi: 10.1021/cr9804691 pmid: 11749266
[36]
Baier M C, Zuideveld M A, Mecking S . Angew. Chem. Int. Ed., 2015,45:9722.
[37]
Gao Y, Mouat A R, Motta A, Macchioni A, Zuccaccia C, Delferro M, Marks T J . ACS Catal., 2015,5:5272.
[38]
Salata M R, Marks T J . J. Am. Chem. Soc., 2008,130:12. https://www.ncbi.nlm.nih.gov/pubmed/18076176

doi: 10.1021/ja076857e pmid: 18076176
[39]
Salata M R, Marks T J . Macromolecules, 2016,42:1920. https://pubs.acs.org/doi/10.1021/ma8020745

doi: 10.1021/ma8020745
[40]
Han S, Yao E, Qin W, Zhang S, Ma Y . Macromolecules, 2012,45:4054.
[41]
Yuan S F, Wei X H, Tong H B, Zhang L P, Liu D S, Sun W H . Organometallics, 2010,29:2085.
[42]
Yuan S F, Wang L J, Hua Y P, Zhang J, Sun W H . Z. Naturf. B., 2016,71:1019.
[43]
Wei L, Bai S D, Su F, Yuan S F, Duan X E, Liu D S . New J. Chem., 2017,41:661. http://xlink.rsc.org/?DOI=C6NJ02537D

doi: 10.1039/C6NJ02537D
[44]
Yuan S F, Duan T, Wang L J, Wei X H, Wang X X, Sun W H . Inorg. Chim. Acta, 2017,466:497.
[45]
Younkin T R, Connor E F, Henderson J I, Friedrich S K, Grubbs R H, Bansleben D A . Science, 2000,287:460. https://www.ncbi.nlm.nih.gov/pubmed/10642541

doi: 10.1126/science.287.5452.460 pmid: 10642541
[46]
Liu F S, Hu H B, Xu Y, Guo L H, Zai S B, Song K M, Gao H Y, Zhang L, Zhu F M, Wu Q . Macromolecules, 2009,4:7789.
[47]
Mahmood Q, Zeng Y, Wang X, Sun Y, Sun W H . Dalton Trans., 2017,46:6934. https://www.ncbi.nlm.nih.gov/pubmed/28504797

doi: 10.1039/c7dt01295k pmid: 28504797
[48]
Yue E, Zeng Y, Zhang W, Huang F, Cao X P, Liang T, Sun W H . Inorg. Chim. Acta, 2016,442:178.
[49]
Huang F, Zhang W J, Sun Y, Hu X Q, Solan G A, Sun W H . New J. Chem., 2016,40:8012.
[50]
Weberski M P, Chen C, Delferro M, Zuccaccia C, Macchioni A, Marks T J . Organometallics, 2012,31:3773.
[51]
Wang J, Yao E, Chen Z, Ma Y . Macromolecules, 2015,48:5504. https://pubs.acs.org/doi/10.1021/acs.macromol.5b01090

doi: 10.1021/acs.macromol.5b01090
[52]
Cai Z, Xiao D, Do L H . J. Am. Chem. Soc., 2015,137:15501. https://www.ncbi.nlm.nih.gov/pubmed/26562609

doi: 10.1021/jacs.5b10351 pmid: 26562609
[53]
Radlauer M R, Day M W, Agapie T . J. Am. Chem. Soc., 2012,134:1478. https://www.ncbi.nlm.nih.gov/pubmed/22225528

doi: 10.1021/ja210990t pmid: 22225528
[54]
Radlauer M R, Day M W, Agapie T . Organometallics, 2012,31:2231. https://www.ncbi.nlm.nih.gov/pubmed/22711966

doi: 10.1021/om2011694 pmid: 22711966
[55]
Radlauer M R, Buckley A K, Henling L M, Agapie T . J. Am. Chem. Soc., 2013,135:3784. https://www.ncbi.nlm.nih.gov/pubmed/23425209

doi: 10.1021/ja4004816 pmid: 23425209
[56]
Makio H, Terao H, Iwashita A, Fujita T . Chem. Rev., 2011,111:2363. https://www.ncbi.nlm.nih.gov/pubmed/21250670

doi: 10.1021/cr100294r pmid: 21250670
[57]
Kong S, Song K, Liang T, Guo C Y, Sun W H, Redshaw C . Dalton Trans., 2013,42:9176. https://www.ncbi.nlm.nih.gov/pubmed/23460131

doi: 10.1039/c3dt00023k pmid: 23460131
[58]
Zhu L, Fu Z, Pan H, Peng W, Chen C, Fan Q Z . Dalton Trans., 2014,43:2900. https://www.ncbi.nlm.nih.gov/pubmed/24343297

doi: 10.1039/c3dt51782a pmid: 24343297
[59]
Xing Q, Song K, Liang T, Liu Q, Sun W H, Redshaw C . Dalton Trans., 2014,43:7830. https://www.ncbi.nlm.nih.gov/pubmed/24699982

doi: 10.1039/c4dt00503a pmid: 24699982
[60]
Khoshsefat M, Zohuri G H, Ramezanian N, Ahmadjo S, Haghpanah M J . Polym. Sci. Part A: Polym. Chem., 2016,54:3000.
[61]
Savjani N, Singh K, Solan G A . Inorg. Chim. Acta, 2015,436:184.
[62]
Jie S, Zhang D, Zhang T, Sun W H, Chen J, Ren Q, Liu D, Zheng G, Chen W J . Polym. Sci. Part A Polym. Chem., 2005,690:1739.
[63]
Zeng Y N, Xing Q F, Ma Y P, Sun W H . Chin. J. Polym. Sci., 2018,36:207.
[64]
Wang R, Sui X, Pang W, Chen C . ChemCatChem, 2016,8:434.
[65]
Na Y, Wang X, Lian K, Zhu Y, Li W, Luo Y, Chen C . ChemCatChem, 2017,9:1062.
[66]
Rodriguez B A, Delferro M, Marks T J . Organometallics, 2008,27:2166.
[67]
Rodriguez B A, Delferro M, Marks T J . J. Am. Chem. Soc., 2009,131:5902. https://www.ncbi.nlm.nih.gov/pubmed/19351155

doi: 10.1021/ja900257k pmid: 19351155
[68]
Weberski M P, Chen C, Delferro M, Marks T J . Chem. Eur. J., 2012,18:10715. https://www.ncbi.nlm.nih.gov/pubmed/22807059

doi: 10.1002/chem.201200713 pmid: 22807059
[69]
Soldatov D V, Henegouwen A T, Enright G D, Ratcliffe C I, Ripmeester J A . Inorg. Chem., 2001,40:1626. https://www.ncbi.nlm.nih.gov/pubmed/11261973

doi: 10.1021/ic000981g pmid: 11261973
[70]
Brandon M D, Rodriguez A, Marks T J . J. Am. Chem. Soc., 2013,135:17651. https://www.ncbi.nlm.nih.gov/pubmed/24191741

doi: 10.1021/ja409590r pmid: 24191741
[71]
Guironnet D, Friedberger T, Mecking S . Dalton Trans., 2009,41:8929. https://www.ncbi.nlm.nih.gov/pubmed/19826725

doi: 10.1039/b912883b pmid: 19826725
[72]
Hu T, Tang L M, Li X F, Li Y S, Hu N H . Organometallics, 2005,24:2628.
[73]
Wang W H, Jin G X . Inorg. Chem. Commun., 2006,9:548. https://linkinghub.elsevier.com/retrieve/pii/S1387700306000712

doi: 10.1016/j.inoche.2006.02.015
[74]
Wehrmann P, Mecking S . Organometallics, 2008,27:1399.
[75]
Hu T, Li Y G, Li Y S, Hu N H . J. Mol. Catal. A: Chem., 2006,253:155.
[76]
Chen Q, Yu J, Huang J . Organometallics, 2007,26:617.
[77]
Na S J, Joe D J, Sujith S, Han W S, Kang S O, Lee B Y . J. Organomet. Chem., 2006,691:611.
[78]
Takeuchi D, Chiba Y, Takano S, Osakada K . Angew. Chem. Int. Ed., 2013,52:12536. https://www.ncbi.nlm.nih.gov/pubmed/24249551

doi: 10.1002/anie.201307741 pmid: 24249551
[79]
Bianchini C, Giambastiani G, Rios I G, Meli A, Oberhauser W, Sorace L, Toti A . Organometallics, 2007,26:5066.
[80]
Bianchini C, Mantovani G, Meli A, Migliacci F, Zanobini F, Laschi F, Sommazzi A . Eur. J. Inorg. Chem., 2003,1620.
[81]
Barbaro P, Bianchini C, Giambastiani G, Rios I G, Meli A, Oberhauser W, Segarra A M, Sorace L, Toti A . Organometallics, 2007,26:4639.
[82]
Khamker Q, Champouret Y D M, Singh K, Solan G A . Dalton Trans., 2009,41:8935. https://www.ncbi.nlm.nih.gov/pubmed/19826726

doi: 10.1039/b910181k pmid: 19826726
[83]
Champouret Y D M, Marechal J D, Dadhiwala I, Fawcett J, Palmer D, Singh K, Solan G A . Dalton Trans., 2006,19:2350. https://www.ncbi.nlm.nih.gov/pubmed/16688323

doi: 10.1039/b516083a pmid: 16688323
[84]
Savjani N, Singh K, Solan G A . Inorg. Chim. Acta, 2015,436:184.
[85]
Zhang S, Sun W H, Kuang X, Vystorop I, Yi J J . Organomet. Chem., 2007,692:5307.
[86]
Zhang S, Vystorop I, Tang Z, Sun W H . Organometallics, 2007,26:2456.
[87]
Sun W H, Xing Q, Yu J, Novikova E, Zhao W, Tang X, Liang T, Redshaw C . Organometallics, 2013,32:2309.
[88]
Wang L, Sun J . Inorg. Chim. Acta, 2008,361:1843.
[89]
Xing Q, Zhao T, Du S, Yang W, Liang T, Redshaw C, Sun W H . Organometallics, 2014,33:1382.
[90]
Xing Q, Zhao T, Qiao Y, Wang L, Redshaw C, Sun W H . RSC Adv., 2013,3:26184.
[91]
Britovsek G J P, Bruce M, Gibson V C, Kimberley B S, Maddox P J, Mastroianni S, McTavish S J, Redshaw C, Solan G A, Strömberg S, White A J P, Williams D J . J. Am. Chem. Soc., 1999,121.
[92]
Yu J, Liu H, Zhang W, Hao X, Sun W H . Chem. Commun., 2011,47:3257. https://www.ncbi.nlm.nih.gov/pubmed/21279230

doi: 10.1039/c0cc05373b pmid: 21279230
[93]
Chen Q, Zhang W, Solan G A, Liang T, Sun W H . Dalton Trans., 2018,47:6124. https://www.ncbi.nlm.nih.gov/pubmed/29666852

doi: 10.1039/c8dt00907d pmid: 29666852
[94]
Chen Q, Zhang W J, Solan G A, Zhang R D, Guo L W, Hao X, Sun W H . Organometallics, 2018,37:4002.
[95]
Chen Q, Suo H Y, Zhang W J, Zhang R D, Solan G A, Liang T L, Sun W H . Dalton Trans., 2019,48:8264. https://www.ncbi.nlm.nih.gov/pubmed/31099370

doi: 10.1039/c9dt01235d pmid: 31099370
[96]
Takeuchi D, Takano S, Takeuchi Y, Osakada K . Organometallics, 2014,33:5316.
[1] Junxian Hong, Xun Zhu, Lei Ge, Mingchuan Xu, Wenzhen Lv, Runfeng Chen. The Synthesis and Applications of CsPbX3(X = Cl, Br, I) Nanocrystals [J]. Progress in Chemistry, 2021, 33(8): 1362-1377.
[2] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[3] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[4] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[5] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[6] Chenhui Wei, Heyun Fu, Xiaolei Qu, Dongqiang Zhu. Environmental Processes of Dissolved Black Carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052.
[7] Jiao Chengpeng, Huang Zili, Zhang Haijun, Zhang Shaowei. Bimetallic Nanocatalysts Synthesized via Galvanic Replacement Reaction [J]. Progress in Chemistry, 2015, 27(5): 472-481.
[8] Liu Guorui, Li Li, Sun Sufang, Jiang Xiaoxu, Wang Mei, Zheng Minghui. Sources, Analytical Methods and Environmental Characteristics of Polybrominated Biphenyls [J]. Progress in Chemistry, 2014, 26(08): 1434-1444.
[9] Jin Chao, Qin Yao, Yang Jinhu. Novel Non-TiO2 Semiconductor Photocatalysts [J]. Progress in Chemistry, 2014, 26(0203): 225-233.
[10] Song Yingpan, Feng Miao, Zhan Hongbing*. Application of Graphene Edge Effect in Electrochemical Biosensors [J]. Progress in Chemistry, 2013, 25(05): 698-706.
[11] Wang Dingsheng Li Yadong. Metal and Metal Oxide Nanocatalysts: Investigating the Influence of Structural Characteristics on their Catalytic Performance [J]. Progress in Chemistry, 2013, 25(01): 1-11.
[12] Song Hua, Dai Min, Song Hualin. Ni2P Catalyst for Hydrodesulfurization [J]. Progress in Chemistry, 2012, 24(05): 757-768.
[13] Zhang Na, Zhang Sheng, Zhu Tong, Yin Geping. Application of Metal Oxides in Electrocatalysts for Low Temperature Fuel Cells [J]. Progress in Chemistry, 2011, 23(11): 2240-2246.
[14] Wei Pingyu Yang Qinglin Guo Lin. Bismuth Oxyhalide Compounds as Photocatalysts [J]. Progress in Chemistry, 2009, 21(09): 1734-1741.
[15] Yan Qiang|Sui Xiaofeng|Yuan Jinying**. Living/Controlled Polymerization in the Synthesis of Star Polymer [J]. Progress in Chemistry, 2008, 20(10): 1562-1571.