中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120810 Previous Articles   Next Articles

• Mini Accounts •

Metal and Metal Oxide Nanocatalysts: Investigating the Influence of Structural Characteristics on their Catalytic Performance

Wang Dingsheng  Li Yadong   

  1. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Online: Published:
PDF ( 2684 ) Cited
Export

EndNote

Ris

BibTeX

In the past few decades, metal and metal oxide nanocrystals, as the most common catalytic materials, have attracted broad attention from worldwide scientists. Although considerable progress has been made in nanocatalysis, especially in controllable synthesis of nanocrystalline catalysts, it still remains a great challenge to fully understand the relationship between the catalytic properties (activity, selectivity, and durability) of nanocrystals with their structural characteristics in varied types of reactions. Actually, recognizing the regularity of nanocatalysis and revealing its physical and chemical nature are significant basic issues in catalytic science and technology. According to these basic scientific issues, our group has carried out systematic research work. This mini account highlights the recent progress in this area in our group.

CLC Number: 

[1] Brus L E. J. Chem. Phys., 1983, 79: 5566-5571

[2] Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal., 1989, 115: 301-309

[3] Valden M, Lai X, Goodman D W. Science, 1998, 281: 1647-1650

[4] Chen M S, Goodman D W. Acc. Chem. Res., 2006, 39: 739-746

[5] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115: 8706-8715

[6] Cushing B L, Kolesnichenko V L, O′Connor C J. Chem. Rev., 2004, 104: 3893-3946

[7] Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437: 121-124

[8] Wang D S, Xie T, Li Y D. Nano Res., 2009, 2: 30-46

[9] Zhang W P, Xu S T, Han X W, Bao X H. Chem. Soc. Rev., 2012, 41: 192-210

[10] Wu D Y, Liu X M, Huang Y F, Ren B, Xu X, Tian Z Q. J. Phys. Chem. C, 2009, 113: 18212-18222

[11] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J. Catal., 2005, 229: 206-212

[12] Bratlie K M, Lee H, Komvopoulos K, Yang P D, Somorjai G A. Nano Lett., 2007, 7: 3097-3101

[13] Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134: 10251-10258

[14] Zhu K, Wang D, Liu J. Nano Res., 2009, 2: 1-29

[15] Zhou K B, Wang R P, Xu B Q, Li Y D. Nanotechnology, 2006, 17: 3939-3943

[16] Xu R, Wang X, Wang D S, Zhou K B, Li Y D. J. Catal., 2006, 237: 426-430

[17] Hu L H, Peng Q, Li Y D. J. Am. Chem. Soc., 2008, 130: 16136-16137

[18] Hu L H, Sun K Q, Peng Q, Xu B Q, Li Y D. Nano Res., 2010, 3: 363-368

[19] Liu X W, Zhou K B, Wang L, Wang B Y, Li Y D. J. Am. Chem. Soc., 2009, 131: 3140-3141

[20] Ma Z, Dai S. Nano Res., 2011, 4: 3-32

[21] Liu J F, Chen W, Liu X W, Zhou K B, Li Y D. Nano Res., 2008, 1: 46-55

[22] Hu L H, Peng Q, Li Y D. ChemCatChem, 2011, 3: 868-874

[23] Bai F, Wang D S, Huo Z Y, Chen W, Liu L P, Liang X, Chen C, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2007, 46: 6650-6653

[24] Wang D S, Xie T, Peng Q, Li Y D. J. Am. Chem. Soc., 2008, 130: 4016-4022

[25] Chen C, Nan C Y, Wang D S, Su Q, Duan H H, Liu X W, Zhang L S, Chu D R, Song W G, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2011, 50: 3725-3729

[26] Li P, Wei Z, Wu T, Peng Q, Li Y D. J. Am. Chem. Soc., 2011, 133: 5660-5663

[27] Lin F, Chen W, Liao Y, Doong R, Li Y D. Nano Res. 2011, 4: 1223-1232

[28] Wang D S, Li Y D. Inorg. Chem., 2011, 50: 5196-5202

[29] Park J C, Song H. Nano Res., 2011, 4: 33-49

[30] Roucoux A, Schulz J, Patin H. Chem. Rev., 2002, 102: 3757-3778

[31] Xia Y N, Xiong Y J, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2009, 48: 60-103

[32] Chen M, Wu B H, Yang J, Zheng N F. Adv. Mater., 2012, 24: 862-879

[33] Sau T K, Rogach A L. Adv. Mater., 2010, 22: 1781-1804

[34] Niu Z Q, Peng Q, Gong M, Rong H P, Li Y D. Angew. Chem. Int. Ed., 2011, 50: 6315-6319

[35] Niu Z Q, Peng Q, Zhuang Z B, He W, Li Y D. Chem. Eur. J., 2012, 18: 9813-9817

[36] Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Science, 2009, 324: 1302-1305

[37] Singh S K, Singh A K, Aranishi K, Xu Q. J. Am. Chem. Soc., 2011, 133: 19638-19641

[38] Sun S H, Murray C B, Weller D, Folk L, Moser A. Science, 2000, 287: 1989-1992

[39] Yin A X, Min X Q, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2011, 133: 3816-3819

[40] Hu M J, Lin B, Yu S H. Nano Res., 2008, 1: 303-313

[41] Peng Z, Yang H. J. Am. Chem. Soc., 2009, 131: 7542-7543

[42] Wang D S, Li Y D. J. Am. Chem. Soc., 2010, 132: 6280-6281

[43] Wang D S, Peng Q, Li Y D. Nano Res., 2010, 3: 574-580

[44] Chen W, Yu R, Li L L, Wang A N, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2010, 49: 2917-2921

[45] Wang A N, Peng Q, Li Y D. Chem. Mater., 2011, 23: 3217-3222

[46] Hong X, Wang D S, Yu R, Yan H, Sun Y, He L, Niu Z Q, Peng Q, Li Y D. Chem. Commun., 2011, 47: 5160-5162

[47] Yu X F, Wang D S, Peng Q, Li Y D. Chem. Commun., 2011, 8094-8096

[48] Wang D S, Zhao P, Li Y D. Sci. Rep., 2011, 1: 37. DOI: 101038/srep00037

[49] Liu X W, Li X Y, Wang D S, Yu R, Cui Y R, Peng Q, Li Y D. Chem. Commun., 2012, 1683-1685

[50] Wang D S, Li Y D. Adv. Mater., 2011, 23: 1044-1060

[51] Wu Y E, Wang D S, Zhao P, Niu Z Q, Peng Q, Li Y D. Inorg. Chem., 2011, 50: 2046-2048

[52] Wu Y E, Cai S F, Wang D S, He W, Li Y D. J. Am. Chem. Soc., 2012, 134: 8975-8981

[53] Niu Z Q, Wang D S, Yu R, Peng Q, Li Y D. Chem. Sci., 2012, 3: 1925-1929

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[6] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[7] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[8] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[9] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[14] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[15] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.