中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (5): 472-481 DOI: 10.7536/PC141035 Previous Articles   Next Articles

• Review and evaluation •

Bimetallic Nanocatalysts Synthesized via Galvanic Replacement Reaction

Jiao Chengpeng1, Huang Zili1, Zhang Haijun*2, Zhang Shaowei2   

  1. 1. Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51272188, 51472184, 51472185), the State Basic Research Development Program of China (973 Program)(No. 2014CB660802), the Natural Science Foundation of Hubei Province, China (No. 2013CFA086), and the Foreign Cooperation Projects in Science and Technology of Hubei Province, China (No. 2013BHE002).
PDF ( 3066 ) Cited
Export

EndNote

Ris

BibTeX

Bimetallic nanoparticles usually have more excellent catalytic, optical and electrical properties than that of corresponding monometallic nanoparticles. Co-reduction, successive reduction, galvanic replacement reaction, chemical vapor deposition, microemulsion and microwave assisted heating method are widely used for the preparation of bimetallic nanoparticles. Alloy, core@shell and hollow-structured bimetallic nanocatalysts with controllable structure and uniform particle size that prepared under mild conditions via galvanic reaction, usually possess highly catalytic activities. Recently development of bimetallic nanoparticles prepared by galvanic replacement reactions with structure of alloy, core@shell and hollow are introduced in present paper, and the effects of preparation condition such as the kind and composition of template nanoparticles, protective agents, reaction medium, reaction time and temperature, precursor concentration on the structure, and the catalytic activity of the as-prepared bimetallic nanoparticles are reviewed in detail. The present problems and potential development directions on bimetallic nanocatalysts with different structures synthesized by replacement reaction are also proposed.

Contents
1 Introduction
1.1 Application and structure of bimetallic nanocatalysts
1.2 Synthesis methods of bimetallic nanocatalysts
1.3 Galvanic replacement reaction
2 Alloy-structured bimetallic nanocatalysts prepared by replacement reaction
2.1 Catalytic property of alloy-structured bimetallic nanocatalysts
2.2 Formation mechanism of alloyed bimetallic nanocatalysts prepared by replacement reaction
2.3 Control synthesis of alloyed bimetallic nanocatalysts by replacement reaction
3 Core@shell-structured bimetallic nanocatalysts prepared by replacement reaction
3.1 Catalytic property of core@shell-structured bimetallic nanocatalysts
3.2 Formation mechanism of core@shell nanocatalysts prepared by replacement reaction
3.3 Control synthesis of core@shell nanocatalysts by replacement reaction
4 Hollow-structured bimetallic nanocatalysts prepared by replacement reaction
4.1 Catalytic property of hollow-structured bimetallic nanocatalysts
4.2 Formation mechanism of hollow nanocatalysts prepared by replacement reaction
4.3 Control synthesis of hollow nanocatalysts by replacement reaction
5 Conclusion and outlook

CLC Number: 

[1] 王定胜(Wang D S), 李亚栋(Li Y D). 化学进展(Progress in Chemistry), 2013, 25(1): 1.
[2] 孙学科(Sun X K), 陈上(Chen S), 张兴宏(Zhang X H), 戚国荣(Qi G R). 化学进展(Progress in Chemistry), 2012, 24(9): 1776.
[3] 王小凤(Wang X F), 黄自力 (Huang Z L), 张海军 (Zhang H J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2013, 42(8) : 1751.
[4] Wilson O M, Scott R W, Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2005, 127(3): 1015.
[5] Mazumder V, Chi M F, Mankin M N, Liu Y, Metin O, Sun D H, More K L, Sun S H. Nano Lett., 2012, 12: 1102.
[6] Yang Y, Zhang F, Wang H L, Yao Q L, Chen X S, Lu Z H. J. Nanomaterials, 2014, DOI: 10.1155/2014/294350
[7] Liu X W, Liu J Y, He W, Huang Q H, Yang H. J. Colloid Interface Sci., 2010, 344(1): 132.
[8] Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
[9] Chen J L, Liu X, Zhang F Z. Chem. Eng. J., 2015, 259: 43.
[10] Singh H P, Gupta N, Sharma S K, Sharma R K. Colloids Surf. A, 2013, 416: 43.
[11] Tsai M C, Yeh T K, Tsai C H. Int. J. Hydrogen Energy, 2011, 36(14): 8261.
[12] Vijayakumar J, Mohan S, Kumar S A, Suseendiran S R, Pavithra S. Int. J. Hydrogen Energy, 2013, 38(25): 10208.
[13] Tsai C H, Yang F L, Chang C H, Yui W C Y. International J. Hydrogen Energy, 2012, 37(9): 7669.
[14] Tendamudzimu R, Kenneth I O, Remegia M M, Charl J J, Mkhulu K M. Electrochim. Acta, 2012, 59: 310.
[15] Zhang X, Zhang G Y, Zhang B D, Su Z H. Langmuir, 2013, 29(22): 6722.
[16] Ghosh T, Satpati B, Senapati D. J. Mater. Chem. C, 2014, 2(13): 2439.
[17] Cobley C M, Xia Y N. Mater. Sci. Eng. R, 2010, 70(3/6): 44.
[18] Zhang H J, Toshima N, Takasaki K, Okumura M. J. Alloys Compd., 2014, 586: 462.
[19] Choi J P, Fields-Zinna C A, Stiles R L, Balasubramanian R, Douglas A D, Crowe M C, Murray R W. J. Phys. Chem. C, 2010, 114: 15890
[20] Wu Z. Angew. Chem. Int. Ed., 2012, 51: 2934.
[21] Liu X W, Wang D S, Li Y D. Nano Today, 2012, 7: 448.
[22] Jo M, Choi Y W, Koo Y M, Kwon S K. Comput. Mater. Sci., 2014, 92: 166.
[23] Sun Y, Mayers B, Xia Y N. Nano Lett., 2002, 2: 481.
[24] Erlebacher J, Aziz M J, Karma A, Dimitrov N, Sieradzki K. Nature, 2001, 410: 450.
[25] Kan C X, Wang C S, Zhu J J, Li H C. J. Solid State Chem., 2010, 183(4): 858.
[26] Kim S M, Kim G S, Lee S Y. Mater. Lett., 2008, 62(28): 4354.
[27] Pastoriza-Santos I, Liz-Marzán L M. Langmuir, 2002, 18(7): 2888.
[28] Mazumder V, Sun S H. J. Am. Chem. Soc., 2009, 131(13): 4588.
[29] Chauhan H, Kumar Y, Deka S. Nanoscale, 2014, 6(17): 10347.
[30] Lucatero S, Podlaha E J. J. Electrochem. Soc., 2010, 157(6): 370.
[31] Ren B, Fan M Q, Liu Q, Wang J, Song D L, Bai X F. Electrochim. Acta, 2013, 92: 197.
[32] (a)Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N. J. Catal., 2013, 305: 7.; (b) Zhang H J, Lu L L, Kawashima K, Okumura M, Haruta M, Toshima N. Adv. Mater., 2014, DOI: 10.1002/adma.201404870
[33] Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N. Nat. Mater., 2012, 11: 49.
[34] Pearson A, O'Mullane A P, Bhargava S K, Bansal V. Electrochem. Commun., 2012, 25: 87.
[35] Tang S C, Vongehr S, Zheng Z, Meng X K. J. Colloid Interface Sci., 2010, 351(1): 217.
[36] Liu X Y, Wang A Q, Li L, Zhang T, Mou C Y, Lee J F. Prog. Nat. Sci., 2013, 23(3): 317.
[37] Yi Z, Chen S J, Chen Y, Luo J S, Wu W D, Yi Y G, Tang Y J. Thin Solid Films, 2012, 520(7): 2701.
[38] Mintsouli I, Georgieva J, Armyanov S, Valova E, Avdeev G, Hubin A, Steenhaut O, Dille J, Tsiplakides D, Balomenou S, Sotiropoulos S. Appl. Catal. B, 2013, 136/137: 160.
[39] Coleman E J, Co A C. J. Catal., 2014, 316: 191.
[40] Li Y H, Zhang Q, Zhang N W, Zhu L H, Zheng J B, Chen B H. International J. Hydrogen Energy, 2013, 38(30): 13360.
[41] You D J, Jin S, Lee K H, Pak C, Choi K H, Chang H. Catal. Today, 2012, 185(1): 138.
[42] Lu Y Z, Jiang Y Y, Chen W. Nano Energy, 2013, 2(5): 836.
[43] Wang C N, Fang J H, Jin Y L. Spectrochimica Acta Part A, 2012, 96: 820.
[44] 王锐(Wang R), 訾学红(Zi X H), 刘立成(Liu L C), 戴洪兴(Dai H X), 何 洪(He H). 化学进展(Progress in Chemistry), 2010, 22(2/3): 358.
[45] Chatterjee K, Sarkar S, Rao K J, Paria S. Adv. Colloid Interface Sci., 2014, 209: 8.
[46] Li S Y, Wang M. Mater. Lett., 2013, 92: 350.
[47] Li C L, Su Y, Lv X Y, Zuo Y Y, Yang X G, Wang Y J. Sensors and Actuators B: Chemical, 2012, 171/172: 1192.
[48] Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Microchem. J., 2014, 116: 62.
[49] Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
[50] Zihlmann S, Lüönd F, Spiegel J K. J. Aerosol Sci., 2014, 75: 81.
[51] Du C, Su J, Luo W, Cheng G Z. J. Mol. Catal. A, 2014, 383/384: 38.
[52] Cao N, Su J, Luo W, Cheng G Z. Catal. Commun., 2014, 43: 47.
[53] Wojtysiak S, Solla-Gulón J, Dtu ? ewski P, Kudelski A. Colloids Surf. A, 2014, 441: 178.
[54] Reyes-Rodríguez J L, Leyva M A, Solorza-Feria O. International J. Hydrogen Energy, 2013, 38(28): 12634.
[55] Yang J, Lee J, Too H. J. Phys. Chem. B, 2005, 109: 19208
[56] Zhang Q B, Xie J P, Lee J Y, Zhang J X, Hroyd C B. Small, 2008, 4(8): 1067.
[57] Mott D M, Anh D T N, Singh P, Shankar C, Maenosono S. Adv. Colloid Interface Sci., 2012, 185/186: 14.
[58] Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y N. Acc. Chem. Res., 2008, 41: 1587
[59] Gong X, Yang Y, Huang S. J. Phys. Chem. C, 2010, 114: 18073
[60] Ban Z H, Barnakov Y A, Li F, Golub V O, O'Connor C J. J. Mater. Chem., 2005, 15: 4660.
[61] Sieben J M, Comignani V, Alvarez A E, Duarte M M E. International J. Hydrogen Energy, 2014, 39(16): 8667.
[62] Reyes-Rodríguez J L, Godínez-Salomón F, Leyva M A, Solorza-Feria O. International J. Hydrogen Energy, 2013, 38(28): 12634.
[63] Du C Y, Chen M, Wang W G, Tan Q, Xiong K, Yin G P. J. Power Sources, 2013, 240: 630.
[64] Sun Y, Xia Y N. J. Am. Chem. Soc., 2004, 126: 3892.
[65] Gilroy K D, Farzinpour P, Sundar A, Tan T, Hughes R A, Neretina S. Nano Res., 2013, 6(6): 418.
[66] Tsuji M, Hamasaki M, Yajima A, Hattori M, Tsuji T, Kawazumi H. Materials Lett., 2014, 121: 113.
[67] Kim M R, Lee D K, Jang D J. Appl. Catal. B, 2011, 103: 253.
[68] Hu Y J, Wu P, Zhang H, Cai C X. Electrochim. Acta, 2012, 85: 314.
[1] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[2] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[3] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[4] Fengguo Liu, Bo Wang, Lianyu Zhang, Aimin Liu, Zhaowen Wang, Zhongning Shi. Application of Ionic Liquids in Aluminum and Alloy Electrodeposition [J]. Progress in Chemistry, 2020, 32(12): 2004-2012.
[5] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[6] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[7] Huadong Zhang, Gongke Li*, Yufei Hu*. Applications of Halloysite Nanotubes in Separation and Enrichment [J]. Progress in Chemistry, 2018, 30(2/3): 198-205.
[8] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[9] Guo Yan, Peng Bo, Zhang Chunyu, Zhang Xuequan. Morphology of Polypropylene in-Reactor Alloys [J]. Progress in Chemistry, 2015, 27(12): 1815-1821.
[10] He Hanna, Wang Haiyan, Tang Yougen, Liu Younian. Current Studies of Anode Materials for Sodium-Ion Battery [J]. Progress in Chemistry, 2014, 26(04): 572-581.
[11] Jin Chao, Qin Yao, Yang Jinhu. Novel Non-TiO2 Semiconductor Photocatalysts [J]. Progress in Chemistry, 2014, 26(0203): 225-233.
[12] Zhang Weihong, Huang Yi, Tian Wei. Polymer-Based Hollow Microspheres:Preparation Methods and Applications [J]. Progress in Chemistry, 2013, 25(11): 1951-1961.
[13] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.
[14] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[15] Chen Zhaoxu, Huang Yucheng, He Xiang. Theoretical Study of the Mechanism of Methanol Steam Reforming over Pd/ZnO [J]. Progress in Chemistry, 2012, 24(06): 873-878.