中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 225-233 DOI: 10.7536/PC130822 Previous Articles   Next Articles

• Review •

Novel Non-TiO2 Semiconductor Photocatalysts

Jin Chao1, Qin Yao*2, Yang Jinhu*1,2   

  1. 1. Department of Chemistry, Tongji University, Shanghai 200092;
    2. East Hospital, Tongji University School of Medicine, Shanghai 200120, China
  • Received: Revised: Online: Published:
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (No.21273161, 21101117) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.81221001)

PDF ( 3301 ) Cited
Export

EndNote

Ris

BibTeX

Photocatalysis, in which solar photons are used to drive redox reactions to produce clean energy resources or to decompose environmental pollutants, has attracted considerable attention as we are facing the increasing challenges of diminishing fossil fuels and severe environmental pollution. Significant efforts have been made to develop various photocatalysts which can fundamentally dictate the overall efficiency of the solar energy conversion system. As a typical class of semiconductor photocatalysts, TiO2 based composites have been widely investigated and well reviewed in literatures. Therefore, this review mainly gives a concise overview of several novel non-TiO2 photocatalysts with a focus on their structural architectures and components which affect the catalytic activity. The article here includes five sections. After the first introduction section, the general working principles of semiconductor photocatalysts are presented in the second section. The main factors such as the light harvesting ability, the charge separation efficiency, the structure of the catalyst and the photoelectrochemical stability influencing the overall efficiency of photocatalytic reactions are discussed in section 3. Novel photocatalysts include Ag3PO4 based composites, non-TiO2 metal oxides, sulfides, bismuth compounds and cobalt compounds are reviewed in section 4. Lastly, the fundamental challenges and perspectives of semiconductor photocatalysts are briefly brought up in section 5.

Contents
1 Introduction
2 Process and mechanism of photocatalysis
3 Factors affecting the photocatalytic efficiency
3.1 Light harvesting ability
3.2 Separation efficiency of photogenerated charges
3.3 Active specific surface area
3.4 Stability and recoverability
4 Novel photocatalysts without TiO2 involved
4.1 Ag3PO4 based photocatalysts
4.2 Metal oxides
4.3 Sulfides
4.4 Bismuth compounds
4.5 Cobalt compounds
5 Conclusion and outlook

CLC Number: 

[1] Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L. Catal. Today, 2005, 107/108: 612.
[2] 程萍(Cheng P), 顾明元(Gu M Y), 金燕苹(Jin Y P). 化学进展(Progress in Chemistry), 2005, 17(1): 8.
[3] Ozaki H, Iwamoto S, Inoue M. Catal. Lett., 2007, 113: 95.
[4] Hoffmann M R, Martin S T, Choi W, Bahnemannt D W. Chem. Rev., 1995, 95: 69.
[5] Bavykin D V, Friedrich J M, Walsh F C. Adv. Mater., 2006, 18: 2807.
[6] Torres-Martínez C L, Kho R, Mian O I, Mehra R K. J. Colloid Interface Sci., 2001, 240: 525.
[7] Makita Y, Uchiyama K, Hobo T. Bunseki Kagaku, 1996, 45: 745.
[8] Chen H W, Ku Y, Kuo Y L. Water Res., 2007, 41: 2069.
[9] Maeda K, Eguchi M, Youngblood W J, Mallouk T E. Chem. Mater., 2008, 20: 6770.
[10] Karlsson S, Boixel J, Pellegrin Y, Blart E, Becker H C, Odobel F, Hammarstrom L. J. Am. Chem. Soc., 2010, 132: 17977.
[11] Wang C, Thompson R L, Ohodnicki P, Baltrus J, Matranga C. J. Mater. Chem., 2011, 21: 13452.
[12] Yang T T, Chen W T, Hsu Y J, Wei K H, Lin T Y, Lin T W. J. Phys. Chem. C, 2010, 114: 11414.
[13] Hirakawa T, Kamat P V. J. Am. Chem. Soc., 2005, 127: 3928.
[14] Yu Z Y, Bensimon M, Sarria V, Stolitchnov I, Jardim W, Laub D, Mielczarski E, Mielczarski J, Minsker L, Kiwi J. Appl. Catal. B: Environ., 2007, 76: 185.
[15] Zhang G K, Zou X, Gong J, He F S, Zhang H, Ouyang S X, Liu H X, Zhang Q, Liu Y, Yang X, Hu X. J. Mol. Catal. A: Chem., 2006, 255: 109.
[16] Zou T, Xie C, Liu Y, Zhang S S, Zou Z J, Zhang S P. J. Alloy. Compd., 2013, 552: 504.
[17] Baker D R, Kamat P V. Adv. Funct. Mater., 2009, 19: 805.
[18] Yang Z, Zhang J, Kintner-Meyer M C W, Lu X, Choi D, Lemmon J P, Liu J. Chem. Rev., 2011, 111: 3577.
[19] Zhou H, Qu Y, Zeid T, Duan X. Energy Environ. Sci., 2012, 5: 6732.
[20] Silva C G, Jurez R, Marino T, Molinari R, Garcia H. J. Am. Chem. Soc., 2011, 133: 595.
[21] Lu C H, Qi L H, Cong H L, Wang X Y, Yang J H, Yang L L, Zhang D Y, Ma J M, Cao W X. Chem. Mater., 2005, 17: 5218.
[22] Wang S W, Yu Y, Zuo Y H, Li C Z, Yang J H, Lu C H. Nanoscale, 2012, 4: 5895.
[23] 李远志(Li Y Z). 武汉理工大学硕士论文(Master Dissertation of Wuhan University of Science and Technology), 2009.
[24] Jiang L C, Zhang W D, Yu Y X, Wang J. Electrochem. Commun., 2011, 13: 627.
[25] Ma W F, Zhang Y, Li L L, You L J, Zhang P, Zhang Y T, Li J M, Yu M, Guo J, Lu H J, Wang C C. ACS Nano, 2012, 6: 3179.
[26] Yi Z G, Ye J H, Kikugawa N, Ouyang S X, Stuart -Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. Nature Mater., 2010, 9: 559.
[27] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J. Am. Chem. Soc., 2011, 133: 6490.
[28] Bi Y P, Ouyang S X, Cao J Y, Ye J H. Phys. Chem. Chem. Phys., 2011, 13: 10071.
[29] Bi Y P, Hu H Y, Ouyang S X, Jiao Z B, Lu G X, Ye J H. Chem. Eur. J., 2012, 18: 14272.
[30] Bi Y P, Hu H Y, Ouyang S X, Jiao Z B, Lu G X, Ye J H. J. Mater. Chem., 2012, 22: 14847.
[31] Bi Y P, Hu H Y, Jiao Z B, Yu H C, Lu G X, Ye J H. Phys. Chem. Chem. Phys., 2012, 14: 14486.
[32] Liu I K, Luo C X, Wang J D, Yang X Y, Zhong X H. CrystEngComm., 2012, 14: 8714.
[33] Liang Q H, Ma W J, Shi Y, Li Z, Yang X M. CrystEngComm., 2012, 14: 2966.
[34] Huang L J, Yin S, Guo C S, Huang Y F, Wang M, Dong Q, Li H H, Kimura T, Tanaka M, Sato T. Funct. Mater. Lett., 2012, 5: 12600051.
[35] Li P, Wei Z, Wu T, Peng Q, Li Y D. J. Am. Chem. Soc., 2011, 133: 5660.
[36] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515.
[37] Liu Y X, Shi J X, Peng Q, Li Y D. Chem. Eur. J., 2013, 19: 4319.
[38] Ohno T, Bai L, Hisatomi T, Maeda K, Domen K. J. Am. Chem. Soc., 2012, 134: 8254.
[39] Pan J, Li J T, Yan Z L, Zhou B H, Wu H S, Xiong X. Nanoscale, 2013, 5: 3022.
[40] Boppana V B R, Yusuf S, Hutchings G S, Jiao F. Adv. Funct. Mater., 2013, 23: 878.
[41] Kang S Z, Chen L L, Li X Q, Mu J. Appl. Surf. Sci., 2012, 258: 6029.
[42] Fu X L, Tang W M, Ji L, Chen S F. Chem. Eng. J., 2012, 180: 170.
[43] Zhou B, Liu Z G, Wang H X. Yang Y Q, Su W H. Catal. Lett., 2009, 132: 75.
[44] Hwang D W, Kim J, Park T J, Lee J S. Catal. Lett., 2002, 80: 53.
[45] Xi G C, Yue B, Cao J Y, Ye J H. Chem. Eur. J., 2011, 17: 5145.
[46] Muruganandham M, Kusumoto Y. J. Phys. Chem. C, 2009, 113: 16144.
[47] Hu Y, Qian H H, Liu Y, Du G H, Zhang F M, Wang L B, Hu X. CrystEngComm, 2011, 13: 3438.
[48] Wang Y B, Wang Y S, Xu R. J. Phys. Chem. C, 2013, 117: 783.
[49] De G C, Roy A M, Bhattacharya S S. Int. J. Hydrogen Energ., 1996, 21: 19.
[50] Jing D W, Guo L J. J. Phys. Chem. B, 2006, 110: 11139.
[51] Liu F Z, Shao X, Wang J Q. Yang S R, Li H Y, Meng X H, Liu X H, Wang M. J. Alloy. Compd., 2013, 551: 327.
[52] Zhang Y H, Zhang N, Tang Z R, Xu Y J. ACS Nano, 2012, 6: 9777.
[53] Lei Z B, You W S, Liu M Y, Zhou G H, Takata T, Hara M, Domen K, Li C. Chem. Commun., 2003, 2142.
[54] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555.
[55] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Progress in Chemistry), 2010, 22(12): 2282.
[56] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D. Appl. Catal. B: Environ., 2006, 68: 125.
[57] Wang W D, Huang F Q, Lin X P, Yang J H. Catal. Commun., 2008, 9: 8.
[58] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J. Phys. Chem. C, 2007, 111: 18288.
[59] Lin X P, Huang T, Huang F Q, Wang W D, Shi J L. J. Mater. Chem., 2007, 17: 2145.
[60] Zhao W, Liu Y F, Liu J J, Chen P, Chen I W, Huang F Q, Lin J H. J. Mater. Chem. A, 2013, 1: 7942.
[61] Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang Z Y, Jiang M H. J. Solid State Chem., 2009, 182: 2274.
[62] Zhang H J, Chen G, Li X. Solid State Ionics, 2009, 180: 1599.
[63] Zhang Z J, Wang W Z, Shang M. Yin W Z. Catal. Commun., 2010, 11: 982.
[64] Lin X P, Huang F Q, Wang W D, Shan Z C, Shi J L. Dyes Pigments, 2008, 78: 39.
[65] Zhang Y H, Zhang N, Tang Z R, Xu Y J. Chem. Sci., 2013, 4: 1820.
[66] Chang X F, Huang J, Cheng C, Sui Q, Sha W, Ji G B, Deng S B, Yu G. Catal. Commun., 2010, 11, 5: 460.
[67] Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. J. Catal., 2009, 262: 144.
[68] Zhou Z J, Long M C, Cai W M, Cai J. J. Mol. Catal. A: Chem., 2012, 353/354: 22.
[69] Liu W, Chen S F, Zhang H Y, Yu X L. J. Exp. Nanosci., 2011, 6: 102.
[70] Hou Y, Zuo F, Dagg A, Feng P Y. Nano Lett., 2012, 12: 6464.
[71] Kanan M W, Nocera D G. Science, 2008, 321: 1072.
[72] Kanan M W, Surendranath Y, Nocera D G. Chem. Soc. Rev., 2009, 38: 109.
[73] McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. J. Am. Chem. Soc., 2010, 132: 6882.
[74] Kanan M W, Yano J, Surendranath Y, Dinca M, Yachandra V K, Nocera D G. J. Am. Chem. Soc., 2010, 132: 13692.
[75] Surendranath Y, Kanan M W, Nocera D G.. J. Am. Chem. Soc., 2010, 132: 16501.
[76] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110: 6446.
[77] Zhang F, Yamakata A, Maeda K, Moriya Y, Takata T, Kubota J, Teshima K, Oishi S, Domen K. J. Am. Chem. Soc., 2012, 134: 8348.
[78] Zhao Z G, Zhang J, Yuan Y Y, Lv H, Tian Y Y, Wu D, Li Q W. Sci. Rep. 2013, 3: 2263. DOI: 10.1038/srep02263

[1] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[2] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Hui Zhang, Shanshan Wang, Jinshan Yu. Low-Symmetry Two-Dimensional ReS2 and its Heterostructures:Chemical Vapor Deposition Synthesis and Properties [J]. Progress in Chemistry, 2022, 34(6): 1440-1452.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[7] Junlan Guo, Yinghua Liang, Huan Wang, Li Liu, Wenquan Cui. The Cocatalyst in Photocatalytic Hydrogen Evolution [J]. Progress in Chemistry, 2021, 33(7): 1100-1114.
[8] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.
[9] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[10] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[11] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[12] Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*. Polyesters Containing Furan Rings Based on Renewable Resources [J]. Progress in Chemistry, 2018, 30(6): 719-736.
[13] Wei Wang, Rui Xie, Xiaojie Ju, Zhuang Liu, Liangyin Chu*. Progress on Control of Meso-Scale Structures for Droplet-Template Syntheses of Particle Materials [J]. Progress in Chemistry, 2018, 30(1): 44-50.
[14] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[15] Wenzhong Zhai, Yufeng He, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang. Fabrication and Applications of Polymeric Janus Particles [J]. Progress in Chemistry, 2017, 29(1): 127-136.