中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 698-706 DOI: 10.7536/PC121002 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Application of Graphene Edge Effect in Electrochemical Biosensors

Song Yingpan, Feng Miao, Zhan Hongbing*   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received: Revised: Online: Published:
PDF ( 1395 ) Cited
Export

EndNote

Ris

BibTeX

The unique structure of basal planes and edges in graphene endows graphene specific properties, such as the much higher heterogeneous electron transfer rate, capacitance, local density of states and structural defects, functional groups of edges than basal planes. These inherent features of graphene, which have a great role in promoting its electrochemical performance, are the embodiment of the edge effect. This paper introduces the influence of edge effect on the electrochemical performance of graphene, gives a review and prospect of graphene with different morphology characteristics, such as graphene nanoflakes, nanosheets, nanoplatelets, nanowalls, nanofibers, nanoribbons, and quantum dots, applying in the electrochemical biosensing field. Contents
1 Introduction
2 Edge effect of electrochemical performances: from graphite to graphene
2.1 Edge effect of electrochemical performances in graphite
2.2 Edge effect of electrochemical performances in graphene
3 Two- and quasi two-dimensional graphene-based electrochemical biosensors
4 One- and zero-dimensional graphene-based electr-ochemical biosensors
5 Conclusion and prospect

CLC Number: 

[1] Clark L C, Lyons C. Ann. N. Y. Acad. Sci., 1962, 102 (1): 29-45
[2] Pumera M. Mater. Today, 2011, 14 (7/8): 308-315
[3] Thévenot D R, Toth K, Durst R A, Wilson G S. Biosens. Bioelectron., 2001, 16 (1/2): 121-131
[4] Chaubey A, Malhotra B D. Biosens. Bioelectron., 2002, 17 (6/7): 441-456
[5] Andreu R, Ferapontova E E, Gorton L, Calvente J J. J. Phys. Chem. B, 2006, 111 (2): 469-477
[6] Zhao X J, Mai Z B, Kang X H, Zou X Y. Biosens. Bioelectron., 2008, 23 (7): 1032-1038
[7] Kim S N, Rusling J F, Papadimitrakopoulos F. Adv. Mater., 2007, 19 (20): 3214-3228
[8] Huang J S, Liu Y, You T Y. Anal. Methods, 2010, 2 (3): 202-211
[9] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A, Lin Y H. Electroanalysis, 2010, 22 (10): 1027-1036
[10] Wang J. Electroanalysis, 2005, 17 (1): 7-14
[11] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81 (1): 109-162
[12] Feng M, Sun R Q, Zhan H B, Chen Y. Nanotechnology, 2010, 21 (7): art. no. 75601
[13] Feng M, Zhan H B, Chen Y. Appl. Phys. Lett., 2010, 96 (3): art. no. 33107
[14] Pumera M. The Chemical Record, 2009, 9 (4): 211-223
[15] Pumera M, Ambrosi A, Bonanni A, Chng E L K, Poh H L. TrAC, Trends Anal. Chem., 2010, 29 (9): 954-965
[16] Allen M J, Tung V C, Kaner R B. Chem. Rev., 2009, 110 (1): 132-145
[17] Brownson D A C, Banks C E. Analyst, 2010, 135 (11): 2768-2778
[18] Bunch J S, Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, Mceuen P L. Science, 2007, 315 (5811): 490-493
[19] Geim A K, Novoselov K S. Nat. Mater., 2007, 6 (3): 183-191
[20] 宋英攀 (Song Y P), 冯苗 (Feng M), 詹红兵 (Zhan H B). 化学进展 (Progress in Chemistry), 2012, 24 (9): 1665-1673
[21] Chen D, Tang L H, Li J H. Chem. Soc. Rev., 2010, 39 (8): 3157-3180
[22] Guo S J, Dong S J. Chem. Soc. Rev., 2011, 40 (5): 2644-2672
[23] Jiang H J. Small, 2011, 7 (17): 2413-2427
[24] Gan T, Hu S S. Microchim. Acta, 2011, 175 (1/2): 1-19
[25] Ratinac K R, Yang W, Gooding J J, Thordarson P, Braet F. Electroanalysis, 2011, 23 (4): 803-826
[26] Banks C E, Davies T J, Wildgoose G G, Compton R G. Chem. Commun., 2005, (7): 829-841
[27] Davies T J, Hyde M E, Compton R G. Angew. Chem., 2005, 117 (32): 5251-5256
[28] Rice R J, McCreery R L. Anal. Chem., 1989, 61 (15): 1637-1641
[29] McCreery R L. Chem. Rev., 2008, 108 (7): 2646-2687
[30] Keeley G P, O'Neill A, McEvoy N, Peltekis N, Coleman J N, Duesberg G S. J. Mater. Chem., 2010, 20 (36): 7864-7869
[31] Chang J L, Chang K H, Hu C C, Cheng W L, Zen J M. Electrochem. Commun., 2010, 12 (4): 596-599
[32] Pumera M, Scipioni R, Iwai H, Ohno T, Miyahara Y, Boero M. Chem. Eur. J., 2009, 15 (41): 10851-10856
[33] Alwarappan S, Erdem A, Liu C, Li C Z. J. Phys. Chem. C, 2009, 113 (20): 8853-8857
[34] Wang J F, Yang S L, Guo D Y, Yu P, Li D, Ye J S, Mao L Q. Electrochem. Commun., 2009, 11 (10): 1892-1895
[35] Wu J F, Xu M Q, Zhao G C. Electrochem. Commun., 2010, 12 (1): 175-177
[36] Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Adv. Funct. Mater., 2008, 18 (21): 3506-3514
[37] Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81 (6): 2378-2382
[38] Wu P, Shao Q, Hu Y J, Jin J, Yin Y J, Zhang H, Cai C X. Electrochim. Acta, 2010, 55 (28): 8606-8614
[39] Wang Y, Li Y M, Tang L H, Lu J, Li J H. Electrochem. Commun., 2009, 11 (4): 889-892
[40] Liu S, Tian J Q, Wang L, Luo Y L, Lu W B, Sun X P. Biosens. Bioelectron., 2011, 26 (11): 4491-4496
[41] Akhavan O, Ghaderi E, Rahighi R. ACS Nano, 2012, 6 (4): 2904-2916
[42] Ambrosi A, Sasaki T, Pumera M. Chem. Asian J., 2010, 5 (2): 266-271
[43] Ambrosi A, Pumera M. Phys. Chem. Chem. Phys., 2010, 12 (31): 8943-8947
[44] Zhang S Y, Tang S, Lei J P, Dong H F, Ju H X. J. Electroanal. Chem., 2011, 656 (1/2): 285-288
[45] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13 (1): 31-33
[46] Si Y C, Samulski E T. Nano Lett., 2008, 8 (6): 1679-1682
[47] Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, Ruoff R S. J. Mater. Chem., 2006, 16 (2): 155-158
[48] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nano, 2008, 3 (2): 101-105
[49] Li X L, Wang X R, Zhang L, Lee S W, Dai H J. Science, 2008, 319 (5867): 1229-1232
[50] Xu G Y, Torres C M, Tang J S, Bai J W, Song E B, Huang Y, Duan X F, Zhang Y G, Wang K L. Nano Lett., 2011, 11 (3): 1082-1086
[51] 郑小青 (Zheng X Q), 冯苗 (Feng M), 詹红兵 (Zhan H B). 化学进展 (Progress in Chemistry), 2012, 24(12): 2320-2329
[52] 王娇娇 (Wang J J), 冯苗 (Feng M), 詹红兵 (Zhan H B). 化学进展 (Progress in Chemistry), 2012, 2013, 25(1): 86-94
[53] Shen J H, Zhu Y H, Yang X L, Li C Z. Chem. Commun., 2012, 48 (31): 3686-3699

[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[6] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[7] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[8] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[9] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[10] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[13] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[14] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[15] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.