中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (2): 356-369 DOI: 10.7536/PC210105 Previous Articles   Next Articles

• Review •

Carbon Dots in Lubrication Applications

Chuang He1, Shuang E2(), Honghao Yan3, Xiaojie Li3   

  1. 1 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen 518060, China
    2 College of Life Science, Dalian Minzu University, Dalian 116600, China
    3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
  • Received: Revised: Online: Published:
  • Contact: Shuang E
  • Supported by:
    National Natural Science Foundation of China(11672068); National Natural Science Foundation of China(10872044); National Natural Science Foundation of China(11672067)
Richhtml ( 32 ) PDF ( 442 ) Cited
Export

EndNote

Ris

BibTeX

Various forms of friction and wear not only consume more than 20% of the world’s total energy, but also cause an enormous amount of equipment damage. As a result, it is of great significance to develop friction-reducing and anti-wear lubricating materials for saving energy and prolonging the service life of mechanical equipment. Carbon dots (CDs), as a new kind of carbon nanomaterial, have been extensively used in chemical sensing, bioimaging, catalysis, optoelectronic devices and other fields. In recent years, a large number of studies have explored the application of CDs in the fields of industrial lubrication, micro/nano-electrical-mechanical systems lubrication and biological lubrication, proving that CDs have excellent tribological properties and great potential to become the next generation of green and efficient friction-reducing and anti-wear lubrication materials. However, it still lacks a systematic summary and discussion of the application of CDs in the field of lubrication. Consequently, in this paper, the research progress of CDs in lubrication applications is comprehensively and systematically summarized. Firstly, lubricating effects of CDs as nano-additives and lubricating coatings and three strategies (size and shape control, surface modification and heteroatom doping) to improve their lubrication performance are introduced in detail. Then, the lubrication mechanism of CDs is fully analyzed. Finally, the main challenges of the application of CDs in lubrication are outlined.

Contents

1 Introduction

2 Lubrication applications

2.1 Nano-additive

2.2 Lubricating coating

2.3 Other lubrication applications

3 Lubricating mechanism

3.1 Lubrication mechanism of size and shape-controlled carbon dots

3.2 Lubrication mechanism of surface-modified carbon dots

3.3 Lubrication mechanism of heteroatom-doped carbon dots

4 Conclusion and prospect

Fig. 1 (a) The structure and (b) types of CDs
Fig. 2 (a) The SEM and TEM images and (b) Friction coefficient and wear scar diameter under different loads of CDs/CuSx composite nanoparticles; (c) Preparation of graphene quantum dots (GQDs) by ultrasonic method; (d) Fabrication of PMMA/CDs composite nanoparticles by pyrolysis
Fig. 3 (a) The friction coefficient curves, wear volume and extreme pressure properties of cyclopentane containing different solid nanoparticles; (b) CDs and graphene oxide prepared by pyrolysis
Fig. 4 (a) Preparation of ionic liquid modified CDs by pyrolyzing ionic liquid and citric acid; (b) Fabrication of metal-free ionic liquid modified CDs by hydrothermal method; (c) Friction coefficient curve, mean friction coefficient and wear scar diameter of oil-amine modified CDs as additives for poly alpha olefin; (d) PEG coated CDs prepared by ultrasonic method; (e) Schematic of preparation of branched polyelectrolyte modified CDs
Fig. 5 (a) Boron, nitrogen co-doped CDs prepared by pyrolysis; (b) Friction coefficient and wear scar diameter of PEG with different concentrations of CDs in sunlight and ultraviolet light
Fig. 6 (a) Preparation of ionic liquid modified CDs by grinding; (b) GQDs-based lubricating coatings prepared by electrophoretic deposition
Fig. 7 (a) Schematic of the structure of PEG modified CDs; (b) Friction test of CDs-based gel
Fig. 8 (a) TEM and Raman of wear debris of GQDs by after friction experiments; (b) Lubrication mechanism of GQDs; (c) TEM images of the cross section of wear scar; (d) Lubrication mechanism of CDs
Fig. 9 (a) Lubrication mechanism of ionic liquid modified CDs under different loads; (b) Lubrication mechanism of CDs with and without surface modification; (c) Lubrication mechanism of PEG modified CDs
Fig. 10 (a) Lubrication mechanism of sulfur, nitrogen co-doped CDs; (b) Lubrication mechanism of sulfur doped CDs as water-based nano-additives
[1]
Holmberg K, Erdemir A. Friction, 2017, 5(3): 263.

doi: 10.1007/s40544-017-0183-5
[2]
Holmberg K, Erdemir A. Tribol. Int., 2019, 135: 389.

doi: 10.1016/j.triboint.2019.03.024
[3]
Holmberg K, Kivikytö-Reponen P, Härkisaari P, Valtonen K, Erdemir A. Tribol. Int., 2017, 115: 116.

doi: 10.1016/j.triboint.2017.05.010
[4]
Lin Y C, So H. Tribol. Int., 2004, 37(1): 25.

doi: 10.1016/S0301-679X(03)00111-7
[5]
Barnes A M, Bartle K D, Thibon V R A. Tribol. Int., 2001, 34(6): 389.

doi: 10.1016/S0301-679X(01)00028-7
[6]
Wu H, Zhao J W, Xia W Z, Cheng X, He A, Yun J H, Wang L, Huang H, Jiao S, Huang L, Zhang S, Jiang Z. Tribol. Int., 2017, 109: 398.

doi: 10.1016/j.triboint.2017.01.013
[7]
Gu K C, Chen B S, Chen Y. J. Rare Earths, 2013, 31(6): 589.

doi: 10.1016/S1002-0721(12)60325-1
[8]
Jiao D, Zheng S H, Wang Y Z, Guan R F, Cao B Q. Appl. Surf. Sci., 2011, 257(13): 5720.

doi: 10.1016/j.apsusc.2011.01.084
[9]
Guo Y X, Zhang L G, Zhang G, Wang D A, Wang T M, Wang Q H. J. Mater. Chem. A, 2018, 6(6): 2817.

doi: 10.1039/C7TA09649F
[10]
Liu G, Li X, Qin B, Xing D, Guo Y, Fan R. Tribol. Lett., 2004, 17(4): 961.

doi: 10.1007/s11249-004-8109-6
[11]
Gusain R, Khatri O P. J. Mater. Chem. A, 2013, 1(18): 5612.

doi: 10.1039/c3ta10248c
[12]
Wu X H, Gong K L, Zhao G Q, Lou W J, Wang X B, Liu W M. Adv. Mater. Interfaces, 2018, 5(1): 1700859.

doi: 10.1002/admi.v5.1
[13]
Ju C, Zheng D D, Zhao Q, Wang X B. Tribol. Lett., 2020, 68(3): 1.

doi: 10.1007/s11249-019-1243-y
[14]
Ma L, Liu Z, Cheng Z L. Ceram. Int., 2020, 46(3): 3786.

doi: 10.1016/j.ceramint.2019.10.101
[15]
Gong K L, Lou W J, Zhao G Q, Wu X H, Wang X B. Friction, 2019, 8: 674.

doi: 10.1007/s40544-019-0290-6
[16]
Pei X W, Hu L T, Liu W M, Hao J C. Eur. Polym. J., 2008, 44: 2458.

doi: 10.1016/j.eurpolymj.2008.06.016
[17]
Meng Y, Su F H, Chen Y Z. Tribol. Int., 2018, 118: 180.

doi: 10.1016/j.triboint.2017.09.037
[18]
Raina A, Anand A. Appl. Nanosci., 2017, 7(7): 371.

doi: 10.1007/s13204-017-0590-y
[19]
Ivanov M, Shenderova O. Curr. Opin. Solid State Mater. Sci., 2017, 21(1): 17.

doi: 10.1016/j.cossms.2016.07.003
[20]
Lee J, Cho S, Hwang Y, Cho H J, Lee C, Choi Y, Ku B C, Lee H, Lee B, Kim D, Kim S H. Tribol. Int., 2009, 42: 440.

doi: 10.1016/j.triboint.2008.08.003
[21]
Ku B C, Han Y C, Lee J E, Lee J K, Park S H, Hwang Y J. Int. J. Precis. Eng. Manuf., 2010, 11(4): 607.

doi: 10.1007/s12541-010-0070-8
[22]
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. ACS Appl. Mater. Interfaces, 2011, 3(11): 4221.

doi: 10.1021/am200851z
[23]
Hu Y W, Wang Y X, Zeng Z X, Zhao H C, Ge X, Wang K, Wang L, Xue Q. Carbon, 2018, 137: 41.

doi: 10.1016/j.carbon.2018.05.009
[24]
Luo N, Xiang J X, Shen T, Liang H L, Xin S. Diam. Relat. Mater., 2019, 97: 107448.

doi: 10.1016/j.diamond.2019.107448
[25]
He C, Yan H H, Li X J, Wang X H. J. Mater. Sci., 2021, 56(2): 1286.

doi: 10.1007/s10853-020-05311-0
[26]
Ma W, Gong Z B, Gao K X, Qiang L, Zhang J Y, Yu S R. Mater. Lett., 2017, 195: 220.

doi: 10.1016/j.matlet.2017.02.135
[27]
Shang W J, Cai T, Zhang Y X, Liu D, Liu S G. Tribol. Int., 2018, 118: 373.

doi: 10.1016/j.triboint.2017.09.029
[28]
Huang H, Hu H L, Qiao S, Bai L, Han M M, Liu Y, Kang Z H. Nanoscale, 2015, 7(26): 11321.

doi: 10.1039/c5nr01923k pmid: 26062680
[29]
Zhang W L, Cao Y L, Tian P Y, Guo F, Tian Y, Zheng W, Ji X, Liu J. ACS Appl. Mater. Inter., 2016, 8: 32440.

doi: 10.1021/acsami.6b09752
[30]
Wang B G, Tang W W, Lu H S, Huang Z Y. J. Mater. Chem. A, 2016, 4(19): 7257.

doi: 10.1039/C6TA01098A
[31]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126(40): 12736.

doi: 10.1021/ja040082h
[32]
Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128: 7756.

pmid: 16771487
[33]
Kang Z H, Lee S T. Nanoscale, 2019, 11(41): 19214.

doi: 10.1039/C9NR05647E
[34]
Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726.

doi: 10.1002/anie.200906623
[35]
Yao B W, Huang H, Liu Y, Kang Z H. Trends Chem., 2019, 1(2): 235.

doi: 10.1016/j.trechm.2019.02.003
[36]
Liu M L, Yang L, Li R S, Chen B B, Liu H, Huang C Z. Green Chem., 2017, 19: 3611.

doi: 10.1039/C7GC01236E
[37]
Shuang E, Mao Q X, Yuan X L, Kong X L, Chen X W, Wang J H. Nanoscale, 2018, 10(26): 12788.

doi: 10.1039/c8nr03453b pmid: 29947397
[38]
Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8(2): 355.

doi: 10.1007/s12274-014-0644-3
[39]
Hu C, Yu C, Li M Y, Wang X, Yang J, Zhao Z, Eychmuller A, Sun Y P, Qiu J. Small, 2014, 10: 4926.

doi: 10.1002/smll.v10.23
[40]
Dong Y Q, Li G L, Zhou N N, Wang R, Chi Y, Chen G. Anal. Chem., 2012, 84: 8378.

doi: 10.1021/ac301945z
[41]
Zhou L, Lin Y H, Huang Z Z, Ren J S, Qu X G. Chem. Commun., 2012, 48: 1147.

doi: 10.1039/C2CC16791C
[42]
Hai X, Mao Q X, Wang W J, Wang X F, Chen X W, Wang J H. J. Mater. Chem. B, 2015, 3(47): 9109.

doi: 10.1039/C5TB01954K
[43]
E S, Mao Q X, Wang J H, Chen X W. Nanoscale, 2020, 12: 6852.

doi: 10.1039/C9NR10982J
[44]
Yu S, Zhong Y Q, Yu B Q, Cai S Y, Wu L Z, Zhou Y. Phys. Chem. Chem. Phys., 2016, 18(30): 20338.

doi: 10.1039/C6CP02561G
[45]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J, Lian S, Tsang C H, Yang X, Lee S T. Angew. Chem. Int. Ed., 2010, 49: 4430.

doi: 10.1002/anie.200906154
[46]
Yan Y B, Chen J, Li N, Tian J Q, Li K, Jiang J, Liu J, Tian Q, Chen P. ACS Nano, 2018, 12: 3523.

doi: 10.1021/acsnano.8b00498
[47]
Zhang F, Feng X T, Zhang Y, Yan L P, Yang Y Z, Liu X G. Nanoscale, 2016, 8(16): 8618.

doi: 10.1039/c5nr08838k pmid: 27049931
[48]
Guo X, Wang C F, Yu Z Y, Chen L, Chen S. Chem. Commun., 2012, 48(21): 2692.

doi: 10.1039/c2cc17769b
[49]
Mao L H, Tang W Q, Deng Z Y, Liu S S, Wang C F, Chen S. Ind. Eng. Chem. Res., 2014, 53(15): 6417.

doi: 10.1021/ie500602n
[50]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angew. Chem. Int. Ed., 2012, 51: 12215.

doi: 10.1002/anie.v51.49
[51]
Li Y D, Xu X K, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y. Mater. Chem. Front., 2020, 4: 437.

doi: 10.1039/C9QM00614A
[52]
Li H, Huang J, Liu Y, Lu F, Zhong J, Wang Y, Li S M, Lifshitz Y, Lee S T, Kang Z H. Nano Res., 2019, 12(7): 1585.

doi: 10.1007/s12274-019-2397-5
[53]
Zhu C, Fu Y J, Liu C G, Liu Y, Hu L, Liu J, Bello I, Li H, Liu N, Guo S, Huang H, Lifshitz Y, Lee S T, Kang Z. Adv. Mater., 2017, 29: 1701399.

doi: 10.1002/adma.201701399
[54]
Wu S S, Li W, Zhou W, Zhan Y, Hu C F, Zhuang J L, Zhang H R, Zhang X J, Lei B F, Liu Y L. Adv. Opt. Mater., 2018, 6(7): 1701150.

doi: 10.1002/adom.201701150
[55]
Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y, Chen P. Adv. Mater., 2019, 31(21): 1808283.

doi: 10.1002/adma.v31.21
[56]
Sun X C, Lei Y. Trend. Aanl. Chem., 2017, 89: 163.
[57]
Liu M L, Chen B B, Li C M, Huang C Z. Green Chem., 2019, 21(3): 449.

doi: 10.1039/C8GC02736F
[58]
Hu C, Li M Y, Qiu J S, Sun Y P. Chem Soc Rev, 2019, 48: 2315.

doi: 10.1039/C8CS00750K
[59]
Fernando K A S, Sahu S, Liu Y M, Lewis W K, Guliants E A, Jafariyan A, Wang P, Bunker C E, Sun Y P. ACS Appl. Mater. Interfaces, 2015, 7(16): 8363.

doi: 10.1021/acsami.5b00448
[60]
Hai X, Feng J, Chen X W, Wang J H. J. Mater. Chem. B, 2018, 6(20): 3219.

doi: 10.1039/C8TB00428E
[61]
Zhang Y X, Cai T, Shang W J, Liu D, Guo Q, Liu S G. Dalton Trans., 2017, 46(36): 12306.

doi: 10.1039/C7DT02389H
[62]
Fan X Q, Li W, Fu H M, Zhu M, Wang L, Cai Z, Liu J, Li H. ACS Sustain. Chem. Eng., 2017, 5: 4223.

doi: 10.1021/acssuschemeng.7b00213
[63]
Zhou Y, Qu J. ACS Appl. Mater. Interfaces, 2017, 9(4): 3209.

doi: 10.1021/acsami.6b12489
[64]
Li J, Chen H, Stone H A. Proc Natl Acad Sci U.S.A., 2013, 110: 20023.

doi: 10.1073/pnas.1309319110
[65]
Shang W J, Ye M T, Cai T, Zhao L N, Zhang Y, Liu D, Liu S. J. Mol. Liq, 2018, 266: 65.

doi: 10.1016/j.molliq.2018.06.042
[66]
Ye M T, Cai T, Zhao L, Liu D, Liu S G. Tribol. Int., 2019, 136: 349.

doi: 10.1016/j.triboint.2019.03.045
[67]
Liu X, Huang Z Y, Tang W W, Wang B G. Nano, 2017, 12: 1750108.

doi: 10.1142/S1793292017501089
[68]
Tang W W, Wang B G, Li J T, Li Y Z, Zhang Y, Quan H P, Huang Z Y. J. Mater. Sci., 2019, 54(2): 1171.

doi: 10.1007/s10853-018-2877-0
[69]
Qiang R B, Hu L F, Hou K M, Wang J Q, Yang S R. Tribol. Lett., 2019, 67: 64.

doi: 10.1007/s11249-019-1177-4
[70]
Mou Z H, Wang B G, Huang Z Y. Fuller. Nanotub. Car. N., 2019, 27: 899.

doi: 10.1080/1536383X.2019.1659246
[71]
Chimeno-Trinchet C, Pacheco M E, Fernández-González A, Díaz-García M E, Badía-Laíño R. J. Int. Eng. Chem., 2020, 87: 152.
[72]
He C, Yan H H, Li X J, Wang X H. Green Chem., 2019, 21: 2279.

doi: 10.1039/C8GC04021D
[73]
Zhang R H, Xiong L P, Pu J B, Lu Z B, Zhang G G, He Z Y. Adv. Mater. Interfaces, 2019, 6(24): 1901386.

doi: 10.1002/admi.v6.24
[74]
Xu M H, He G L, Li Z H, He F, Gao F, Su Y, Zhang L, Yang Z, Zhang Y. Nanoscale, 2014, 6: 10307.

doi: 10.1039/C4NR02792B
[75]
Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng K S, Luk C M, Zeng S, Hao J, Lau S P. ACS Nano, 2012, 6: 5102.

doi: 10.1021/nn300760g
[76]
He C, Yan H H, Li X J, Wang X H. Diam. Relat. Mater., 2019, 91: 255.

doi: 10.1016/j.diamond.2018.12.003
[77]
He C, Yan H H, Wang X H, Bai M L. Diam. Relat. Mater., 2018, 89: 293.

doi: 10.1016/j.diamond.2018.09.019
[78]
Yan H H, He C, Li X J, Zhao T J. Diam. Relat. Mater., 2018, 87: 233.

doi: 10.1016/j.diamond.2018.06.008
[79]
Lu H S, Tang W W, Liu X, Wang B G, Huang Z Y. J. Mater. Sci., 2016, 52: 4483.

doi: 10.1007/s10853-016-0694-x
[80]
Liu H P, Ye T, Mao C D. Angew. Chem. Int. Ed., 2007, 46: 6473.

doi: 10.1002/(ISSN)1521-3773
[81]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X J, Chen S W. Chem. Mater., 2009, 21(13): 2803.

doi: 10.1021/cm900709w
[82]
Sarno M, Abdalglil Mustafa W A, Senatore A, de Scarpa D. Tribol. Int., 2020, 148: 106311.

doi: 10.1016/j.triboint.2020.106311
[83]
Shang W J, Cai T, Zhang Y X, Liu D, Sun L, Su X, Liu S. Tribol. Int., 2018, 121: 302.

doi: 10.1016/j.triboint.2018.01.054
[84]
Tu Z Q, Hu E Z, Wang B B, David K D, Seeger P, Moneke M, Stengler R, Hu K H, Hu X G. Friction, 2020, 8(1): 182.

doi: 10.1007/s40544-019-0272-8
[85]
Tang J Z, Chen S Q, Jia Y L, Ma Y, Xie H M, Quan X, Ding Q. Carbon, 2020, 156: 272.

doi: 10.1016/j.carbon.2019.09.055
[86]
Hu Y W, Wang Y X, Wang C T, Ye Y W, Zhao H, Li J, Lu X, Mao C, Chen S, Mao J, Wang L, Xue Q. Carbon, 2019, 152: 511.

doi: 10.1016/j.carbon.2019.06.047
[87]
Ruiz V, Yate L, Langer J, Kosta I, Grande H J, Tena-Zaera R. Tribol. Int., 2019, 137: 228.

doi: 10.1016/j.triboint.2019.05.001
[88]
Seymour B T, Fu W X, Wright R A E, Luo H, Qu J, Dai S, Zhao B. ACS Appl. Mater. Inter., 2018, 10: 15129.

doi: 10.1021/acsami.8b01579
[89]
Gusain R, Mungse H P, Kumar N, Ravindran T R, Pandian R, Sugimura H, Khatri O P. J. Mater. Chem. A, 2016, 4(3): 926.

doi: 10.1039/C5TA08640J
[90]
Mou Z H, Wang B G, Lu H S, Dai S S, Huang Z Y. Carbon, 2019, 154: 301.

doi: 10.1016/j.carbon.2019.08.014
[91]
Ye M T, Cai T, Shang W J, Zhao L, Zhang Y, Liu D, Liu S. Tribol. Int., 2018, 127: 557.

doi: 10.1016/j.triboint.2018.06.033
[92]
Liu X, Chen Y G. Fuller. Nanotub. Car. N., 2019, 27: 400.

doi: 10.1080/1536383X.2019.1587747
[93]
Mou Z H, Wang B G, Lu H S, Quan H P, Huang Z Y. Carbon, 2019, 149: 594.

doi: 10.1016/j.carbon.2019.04.066
[94]
Tomala A M, Kumar V B, Porat Z E, Michalczewski R, Gedanken A. Lubricants, 2019, 7(4): 36.

doi: 10.3390/lubricants7040036
[95]
Cai T, Zhang Y X, Liu D, Tong D Y, Liu S G. Mater. Lett., 2019, 250: 20.

doi: 10.1016/j.matlet.2019.04.107
[96]
Wang B B, Hu E Z, Tu Z Q, David K D, Hu K, Hu X, Yang W, Guo J, Cai W, Qian W, Zhang H. Appl. Surf. Sci., 2018, 462: 944.

doi: 10.1016/j.apsusc.2018.08.165
[97]
Xiao H P, Liu S H, Xu Q, Zhang H. Sci. China Technol. Sci., 2019, 62(4): 587.

doi: 10.1007/s11431-018-9330-y
[98]
Zhao L N, Cai T, Ye M T, Liu D, Liu S G. Carbon, 2019, 150: 319.

doi: 10.1016/j.carbon.2019.05.019
[99]
Sadeghalvaad M, Dabiri E, Afsharimoghadam P. SN Appl. Sci., 2019, 1(3): 1.

doi: 10.1007/s42452-018-0001-3
[100]
Qiang R B, Hou K M, Wang J Q, Yang S R. Appl. Surf. Sci., 2020, 509: 145338.

doi: 10.1016/j.apsusc.2020.145338
[101]
Wolk A, Rosenthal M, Neuhaus S, Huber K, Brassat K, Lindner J K N, Grothe R, Grundmeier G, Bremser W, Wilhelm R. Sci. Rep., 2018, 8(1): 1.
[102]
Lu H L, Ren S S, Zhang P P, Guo J D, Li J, Dong G. RSC Adv., 2017, 7: 21600.

doi: 10.1039/C7RA02387A
[103]
Lu H L, Lv L, Ma J, Ban W R, Ren S S, Dong G N, Li J H, Dang X Q. J. Mech. Behav. Biomed. Mater., 2018, 88: 261.

doi: 10.1016/j.jmbbm.2018.08.024
[104]
Guo J D, Mei T J, Li Y, Hafezi M, Lu H L, Li J H, Dong G N. J. Biomater. Sci. Polym. Ed., 2018, 29(13): 1549.

doi: 10.1080/09205063.2018.1470736
[105]
Hajalilou A, Abouzari-Lotf E, Abbasi-Chianeh V, Shojaei T R, Rezaie E. J. Alloys Compd., 2018, 737: 536.

doi: 10.1016/j.jallcom.2017.12.071
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[3] Cuiping Zhou, Qiming Liu, Xuan Zhao, Chunsheng Li, Hui Li, Shuxiang Zhang. The Preparation and Anti-Icing Properties of Flexible Surfaces [J]. Progress in Chemistry, 2019, 31(7): 1056-1066.
[4] Zhimin Jiang, Li Wang, Min Shen, Huichuang Chen, Guoqiang Ma, Xiangming He. Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(5): 699-713.
[5] Yun Zhao, Yuqiong Kang, Yuhong Jin, Li Wang, Guangyu Tian, Xiangming He. Silicon-Based and -Related Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2019, 31(4): 613-630.
[6] Junli Wang, Yaling Wang, Jingxia Zheng, Shiping Yu, Yongzhen Yang, Xuguang Liu. Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots [J]. Progress in Chemistry, 2018, 30(8): 1186-1201.
[7] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[8] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[9] Wei Cunqian, Yan Jie, Tang Hao, Zhang Qinghua, Zhan Xiaoli, Chen Fengqiu. Fabrication and Application of Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2016, 28(1): 9-17.
[10] Huang Qitong, Lin Xiaofeng, Li Feiming, Weng Wen, Lin Liping, Hu Shirong. Synthesis and Applications of Carbon Dots [J]. Progress in Chemistry, 2015, 27(11): 1604-1614.
[11] Yan Fanyong, Zou Yu, Wang Meng, Dai Linfeng, Zhou Xuguang, Chen Li. Synthesis and Application of the Fluorescent Carbon Dots [J]. Progress in Chemistry, 2014, 26(01): 61-74.
[12] Qin Xueying, Wang Jinglun, Zhang Lingzhi. Organosilicon Based Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2012, 24(05): 810-822.
[13] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.
[14] Xue Qunji Zhang Junyan. Tribochemistry of Lubricating Materials [J]. Progress in Chemistry, 2009, 21(11): 2445-2457.
[15] Qian He Han Chan Liu Libing. The Function and Risk Control of Chemical Additives in Foods [J]. Progress in Chemistry, 2009, 21(11): 2424-2434.
Viewed
Full text


Abstract

Carbon Dots in Lubrication Applications