中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (11): 1604-1614 DOI: 10.7536/PC150403 Previous Articles   Next Articles

• Review and comments •

Synthesis and Applications of Carbon Dots

Huang Qitong1,2*, Lin Xiaofeng1*, Li Feiming1,3, Weng Wen1, Lin Liping1,3, Hu Shirong1*   

  1. 1. College of Chemistry and Environmental, Minnan Normal University, Zhangzhou 363000, China;
    2. Department of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China;
    3. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Science and Technology Foundation of the National General Administration of Quality Supervision in China(No.2012QK053),the Science and Technology Foundation of Fujian Province Bureau of Quality and Technical Supervision(No.3002A91429),the Key Project of Industry University Research of Science and Technology Department of Fujian Province(No.2012H6026), the Fujian Province Natural Science Foundation(No.2012D136), and the Education Bureau of Fujian Province of China(No.JB14180).
PDF ( 6735 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, nanomaterials have made an important impact on diverse science, engineering, and commercial sectors due to their high catalysis, low cost, and good stability. Acting as a class of 'zero-dimensional' carbon nanomaterials, carbon dots(CDs) possess unique optical properties of high photostability against photobleaching, tunable excitation and emission wavelength, as well as low cytotoxicity and good biocompatibility. Therefore, CDs have become a hot subject of carbon nanomaterial in the past decade, not only for its unique properties but also for its applications in various fields such as bioimaging, biolabeling, sensors, photocatalysis, solar cells, light-emitting element and so on. This article reviews the different synthetic methodologies(including two classes: top-down and bottom-up) to achieve good performance of CDs. At the same time, the applications of CDs are also reviewed in the article.

Contents
1 Introduction
2 Synthesis methods of carbon dots
2.1 Top-down methods
2.2 Bottom-up methods
3 Applications of carbon dots
3.1 Bioimaging and Biolabeling
3.2 Sensors
3.3 Photocatalysis
3.4 Solar cells
3.5 Light-emitting diodes
4 Conclusion

CLC Number: 

[1] 廖建国(Liao J G), 李艳群(Li Y Q), 段星泽(Duan X Z)朱伶俐(Zhu L L), 化学进展(Progress in Chemistry), 2015, 27(2/3):220.
[2] Lim S Y, Shen W, Gao Z. Chem. Soc. Rev., 2015, 44(1):362.
[3] Yin P T, Shah S, Chhowalla M, Lee K B. Chem. Rev., 2015, 115(7):2483.
[4] Li S X, Lin X, Zheng F Y, Liang W, Zhong Y, Cai J. Anal. Chem., 2014, 86(14):7079.
[5] 张茜(Zhang Q), 朱艳红(Zhu Y H), 徐辉碧(Xu H B), 杨祥良(Yang X L). 化学进展(Progress in Chemistry), 2015, 27(2/3):275.
[6] Li H, Kang Z, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[7] 林丽萍(Lin L P). 漳州师范学院硕士论文(Mater Dissertation of Zhangzhou Normal University), 2012.
[8] Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Nanoscale, 2015, 7:1586.
[9] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44:362.
[10] 颜范勇(Yan F Y), 邹宇(Zou Y), 王猛(Wang M), 代林枫(Dai L F), 周旭光(Zhou X G), 陈莉(Chen L). 化学进展(Progress in Chemistry), 2014, 26:61.
[11] Xu X, Ray R, Gu Y, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126:12736.
[12] Zhou J, Booker C, Li R, Zhou X, Sham T, Sun X, Ding Z. J. Am. Chem. Soc., 2007, 129:744.
[13] Lu J, Yang J, Wang J, Lim A, Wang S, Loh K P. ACS Nano, 2009, 3:2367.
[14] Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang C H A. Yang X, Lee S T. Angew. Chem. Int. Ed., 2010, 49:4430.
[15] Shinde D B, Pillai V K. Chem. Eur. J., 2012, 18:12522.
[16] Zhao Q L, Zhang Z L, Huang B H, Peng J, Zhang M, Pang D W. Chem. Commun., 2008, 41:5116.
[17] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Adv. Mater., 2011, 23:5801.
[18] Tan D, Yamada Y, Zhou S, Shimotsuma Y, Miura K, Qiu J. Carbon, 2014, 69:638.
[19] Hu S, Niu K, Sun J, Yang J, Zhao N, Du X. J. Mater. Chem., 2009, 19:484.
[20] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H, Luo P G, Yang H, Kose M E, Chen B, L. Veca M, Xie S Y. J. Am. Chem. Soc.,2006, 128(24):7756.
[21] Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis E P. Chem. Mater., 2008, 20(14):4539.
[22] Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q. Angew. Chem., 2009, 121:4668.
[23] Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L. Carbon, 2014, 68:258.
[24] Zhu H, Wang X L, Li Y, Wang Z J, Yang F, Yang X R. Chem. Commun., 2009, 5118.
[25] Wang J, Cheng C, Yuan H, Zheng B, Yuan H, Bo L, Zheng M W, Yang S Y, Guo Y, Xiao D. J. Mater. Chem. C, 2014, 2:5028.
[26] Li H, He X, Liu Y, Huang H, Lian S, Lee S, Kang Z. Carbon, 2011, 49:605.
[27] Ma Z, Ming H, Huang H, Liu Y, Kang Z. New J. Chem., 2012, 36:861.
[28] Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X, You S, Lin Y, Zeng K, Chen S. Nanoscale, 2013, 5(5):1967.
[29] Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis E P. Small, 2008,4(4):455.
[30] Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang S X A. Chem. Mater., 2014, 26:3104.
[31] Liu H, Ye T, Mao C. Angew. Chem. Int. Ed., 2007, 46:6473.
[32] Peng H,Travas-Sejdic J. Chem. Mater., 2009, 21(23):5563.
[33] Wu Z L, Zhang P, Gao M X, Liu C F, Wang W, Leng F, Huang C Z. J. Mater. Chem. B, 2013, 1:2868.
[34] Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Angew. Chem., 2013, 125:4045.
[35] Fan R J, Sun Q, Zhang L, Zhang Y, Lu A H. Carbon, 2014, 71:87.
[36] Li C L, Ou C M, Huang C C, Wu W C, Chen Y P, Lin T E, Ho L C, Wang C W, Shih C C, Zhou H C, Lee Y C, Tzeng W F, Chiou T J, Chu S T, Cang J, Chang H T. J. Mater. Chem. B, 2014, 2:4564.
[37] Yang S, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y. J. Am. Chem. Soc., 2009, 131:11308.
[38] Cao L, Wang X, Mezsiani M J, Lu F, Wang H, Luo P G, Lin Y, Harruff B A, Veca L M. Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129:11318.
[39] Xu Z Q, Yang L Y, Fan X Y, Jin J C, Mei J, Peng W, Jiang F L, Xiao Q, Liu Y. Carbon, 2014, 66:351.
[40] Zhang H, Huang Y, Hu S, Huang Q, Wei C, Zhang W, Kang L, Huang Z, Hao A. J. Mater. Chem. C, 2015, 3(9):2093.
[41] Choi C K K, Li J, Wei K, Xu Y J, Ho L W C, Zhu M, To K K W, Choi C H J, Bian L. J. Am. Chem. Soc., 2015, 137:7337.
[42] Zhang L, Huang Q, Lin C, Lin X, Huang Y, Liu J, Ma X. J. Lumin., 2014, 156:124.
[43] 景晓彤(Jing X T), 于法标(Yu F B), 陈令新(Chen L X). 化学进展(Progress in Chemistry), 2014, 26(05):866.
[44] Liu J M, Lin L, Wang X X, Jiao L, Cui M L, Jiang S L, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2013, 138(1):278.
[45] Liu J M, Lin L P, Wang X X, Lin S Q, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2012, 137:2637.
[46] Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G. Anal. Chem., 2012, 84(14):6220.
[47] Bai W J, Zheng H Z, Long Y J, Mao X J, Gao M, Zhang L Y. Anal. Sci., 2011, 27(3):243.
[48] Qu K G, Wang J S, Ren J S, Qu X G. Chem. Eur. J., 2013, 19(22):7243.
[49] Zhang Y, Wang L, Zhang H, Liu Y, Wang H, Kang Z, Lee S T. RSC Adv., 2013, 3(11):3733.
[50] Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri A M, Al-Youbi A O, Sun X. Anal. Chem., 2012, 84(12):5351.
[51] Goncalves H, Duarte A J, Davis F, Higson S P J, Esteves da S J C G. Anal. Chim. Acta, 2012, 735(20):90.
[52] Li H, Zhai J, Sun X. Langmuir, 2011, 27(8):4305.
[53] Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y, Yao S. Analyst, 2013, 138(21):6551.
[54] Dong Y, Wang R, Tian W, Chi Y, Chen G. RSC Adv., 2014, 4(8):3701.
[55] Qin X, Lu W, Asiri A M, Al-Youbi A O, Sun X. Catal. Sci. Technol., 2013, 3(4):1027.
[56] Shen P, Xia Y. Analy. Chem., 2014, 86(11):5323.
[57] Wang C I, Periasamy A P, Chang H T. Anal. Chem., 2013, 85(6):3263.
[58] Xu B, Zhao C, Wei W, Ren J, Miyoshi D, Sugimoto N, Qu X. Analyst, 2012, 137(23):5483.
[59] Liu J, Li J, Jiang Y, Yang S, Tan W, Yang R. Chem. Commun., 2011, 47(40):11321.
[60] Zhou L, Lin Y, Huang Z, Ren J, Qu X. Chem. Commun., 2012, 48(8):1147.
[61] Liu J, Wagan S, Dávila-Morris M, Taylor J, White R J. Anal. Chem., 2014, 86(22):11417.
[62] Zhang H, Huang Q, Huang Y, Li F, Zhang W, Wei C, Chen J, Dai P, Huang L, Huang Z, Kang L, Hu S, Hao A. Electrochim. Acta, 2014, 142:125.
[63] Liu J, Morris M D, Macazo F C, Schoukroun-Barnes L R, White R J. J. Electrochem. Soc., 2014, 161:H301.
[64] 方莉(Fang L), 贺进禄(He J L). 化学进展(Progress in Chemistry), 2015, 27(05):585.
[65] Huang Q, Hu S, Zhang H, Chen J, He Y, Li F, Weng W, Ni J, Bao X, Lin Y. Analyst, 2013, 138(18):5417.
[66] Huang Q, Zhang H, Hu S, Li F, Weng W, Chen J, Wang Q, He Y, Zhang W, Bao X. Biosens. Bioelectron., 2014, 52:277.
[67] Huang Q, Lin X, Lin C, Zhang Y, Hu S, Wei C. RSC Adv., 2015, 5:54102.
[68] Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Guo Z, Bao X, Shi J, Hao A. Electrochim. Acta, 2014, 130:805.
[69] Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L. Electrochim. Acta, 2014, 149:237.
[70] Dai H, Xu G, Gong L, Yang C, Lin Y, Tong Y, Chen J, Chen G. Electrochim. Acta, 2012, 80:362.
[71] Sheng M, Gao Y, Sun J, Gao F. Biosens. Bioelectron., 2014, 58:351.
[72] Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G. Anal. Chem., 2013, 85(1):418.
[73] Jiang G, Jiang T, Zhou H, Yao J, Kong X. RSC Adv., 2015, 5:9064.
[74] Li Q, Xu Z, Tang W, Wu Y. Anal. Lett., 2015, 48(13):2040.
[75] Zhang H, Dai P, Huang L, Huang Y, Huang Q, Zhang W, Wei C, Hu S. Anal. Methods, 2014, 6:2687.
[76] Li Y, Zhong Y, Zhang Y, Weng W, Li S. Sensor. Actuat. B:Chem., 2015, 206:735.
[77] Zhang L, Han Y, Zhu J, Zhai Y, Dong S. Anal. Chem., 2015, 87:2033.
[78] 杨帆(Yang F), 王伶俐(Wang L L), 郭志慧(Guo Z H). 化学学报(Acta Chimica Sinica), 2012, 70(11):1283.
[79] Wu L, Wang J, Ren J, Li W, Qu X. Chem. Commun., 2013, 49(50):5675.
[80] Zhang M, Liu H, Chen L, Yan M, Ge L, Ge S, Yu J. Biosens. Bioelectron., 2013, 49:79.
[81] 周丽(Zhou L), 邓慧萍(Deng H P), 张为(Zhang W). 化学进展(Progress in Chemistry), 2015, 27(4):349.
[82] Lin X, Chen Y, Li S. Anal. Methods, 2013, 5(22):6480.
[83] Liu J, Zhu W, Yu S, Yan X. Carbon, 2014, 79:369.
[84] 张金水(Zhang J S), 王博(Wang B), 王心晨(Wang X C). 化学进展(Progress in Chemistry), 2013, 26(01):19.
[85] Ming H, Ma Z, Liu Y, Pan K, Yu H, Wang F, Kang Z. Dalton Trans., 2012, 41(31):9526.
[86] Zhang X, Wang F, Huang H, Li H, Han X, Liu Y, Kang Z. Nanoscale, 2013, 5(6):2274.
[87] Yu H, Zhang H, Huang H, Liu Y, Li H, Ming H, Kang Z. New J. Chem., 2012, 36(4):1031.
[88] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J, Kang Z. Science, 2015, 347(6225):970.
[89] Zhang H, Ming H, Lian S, Huang H, Li H, Zhang L, Liu Y, Kang Z, Lee S T. Dalton Trans., 2011, 40(41):10822.
[90] Zhang H, Huang H, Ming H, Li H, Zhang L, Liu Y, Kang Z. J. Mater. Chem., 2012, 22(21):10501.
[91] Li H, Liu R, Liu Y, Huang H, Yu H, Ming H, Lian S, Lee S T, Kang Z. J. Mater. Chem., 2012, 22(34):17470.
[92] Mirtchev P, Henderson E J, Soheilnia N, Yip C M, Ozin G A. J. Mater. Chem., 2012, 22:1265.
[93] Zhang Y Q, Ma D K, Zhang Y G, Chen W, Huang S M. Nano Energy, 2013 2:545.
[94] Xiong H, Zhang X, Dong B, Lu H, Zhao L, Wan L, Dai G, Wang S. Electrochim. Acta, 2013, 88:100.
[95] Wang F, Chen Y, Liu C, Ma D. Chem. Commun., 2011, 47:3502.
[96] Shen C, Wang J, Cao Y, Lu Y. J. Mater. Chem. C, 2015, DOI:10.1039/C5TC01156F.
[97] Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. Angew. Chem. Int. Ed., 2015, 54:5360.
[98] Wei W, Chen W. J. Power Sources, 2012, 204:85.
[99] Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng, H. Carbon, 2013, 59:192.
[100] Pandey S, Thakur M, Mewada A, Anjarlekar D, Mishra N, Sharon M. J. Mater. Chem. B, 2013, 1(38):4972.
[101] Hu S, Trinchi A, Atkin P, Cole I. Angew. Chem. Int. Ed., 2015, 54:2970.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[4] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[5] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[8] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[9] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[10] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[11] Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang, Yougen Tang. Preparation and Applications of Mn-Ce Binary Oxides [J]. Progress in Chemistry, 2019, 31(6): 811-830.
[12] Junli Wang, Yaling Wang, Jingxia Zheng, Shiping Yu, Yongzhen Yang, Xuguang Liu. Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots [J]. Progress in Chemistry, 2018, 30(8): 1186-1201.
[13] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.
[14] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[15] Zheng Na, Jie Suyun, Li Bogeng. Synthesis, Chemical Modifications and Applications of Hydroxyl-Terminated Polybutadiene [J]. Progress in Chemistry, 2016, 28(5): 665-672.
Viewed
Full text


Abstract

Synthesis and Applications of Carbon Dots