中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 699-713 DOI: 10.7536/PC180815 Previous Articles   Next Articles

Special Issue: 锂离子电池

Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery

Zhimin Jiang1, Li Wang2, Min Shen1, Huichuang Chen1, Guoqiang Ma1,**(), Xiangming He2,**()   

  1. 1. Zhejiang Chemical Industry Research Institute Co. Ltd., Hangzhou 310023, China
    2. Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received: Online: Published:
  • Contact: Guoqiang Ma, Xiangming He
  • About author:
    ** E-mail: (Guoqiang Ma);
    (Xiangming He)
  • Supported by:
    Ministry of Science and Technology of China(2016YFE0102200); National Natural Science Foundation of China(U1564205)
Richhtml ( 51 ) PDF ( 2914 ) Cited
Export

EndNote

Ris

BibTeX

Increasing the voltage is one of the important ways to improve the energy density of lithium ion batteries. For example, LiNi0.5Mn1.5O4 (4.7 V), LiNiPO4(5.1 V) and lithium-rich manganese-based materials exhibit high energy density and low cost at high charge cut-off voltage, showing good application prospects. In addition, increasing the charge cut-off voltage of LiCoO2 and NMC battery systems is a simple and effective approach to increase the energy density. However, when the charge cut-off voltage is increased, not only the electrolyte will be oxidatively decomposed at the cathode /electrolyte interface, but also the dissolution of the metal cation from the cathode materials will be accelerated. These are the main causes for the decreased cycle stability and safety. The electrolyte additives can be used for modifying positive electrode interfaces, thus passivating the cathode/electrolyte interface and inhibiting the decomposition of the electrolyte. Moreover, the modified electrolyte can effectively suppress the destruction of the cathode structure. Based on the molecular structure of the additives, the related research results of additives such as sulfonate ester, boric acid ester, phosphate ester, fluorocarbonate, nitrile, anhydride and lithium salt at the positive electrode interface are introduced in this paper. The action mechanisms of different additives are explained and generalized. Furthermore, the combination technology of additives for different batteries are introduced. At last, the development of new electrolyte additives for cathode/electrolyte interface modification are discussed.

Fig. 1 Structures of additives for cathodes containing sulfur, phosphorus and boron groups
Fig. 2 Structures of additives for cathodes containing fluorine, nitrile groups
Fig. 3 Floating test of F-EMC solvent mixed with EC, TFPC, FEC, and TFP-PC-E at 1∶1 ratio[15]
Fig. 4 The schematic for the surface modification mechanism of the HTN additive on the cathode[63]
Fig. 5 Comparison of electrochemical behaviors of a LNM/LTO cell with and without GA as electrolyte additive[65]
Fig. 6 Structures of additives for cathode of Lithium salt type and others
Scheme. 1 Possible mechanism for the EC decomposition[84]
Table 1 The interface modification on the cathode of different ectrolyte additive and the different performance behavior to batteries
Electrolyte additive Oxidation potential
(V vs. Li+/Li)
Additive effect ref
Main action mechanism Interface film component Reported battery chemistry and the mechanism of the additives
FEC 6.44(PF6-) Film formation PEO-like polymer, carbonate LiNi0.5Mn1.5O4/graphite: Participate in the formation of protective surface film on cathode; enhance voltage stability at elevated temperature. 15
FEMC 6.26(PF6-) Film formation Metal fluorides, C-F containing species LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12: Increase oxidation stsbility in high-voltage; enhance cycling performance. 15
VC 4.85[11] Film formation Ploy(VC) LiCoO2/Li: Form effective passivation layers at the surface of both electrodes; not suitable for the condition of high voltage. 11
ADN 6.9[72] Metal ions absorbing -CN
containing species
LiCoO2/MCMB: Improve resistance to aluminum; form a stable solid electrolyte interface especially to cathode of LiCoO2. 72
SUN 6.8[72] Metal ions absorbing -CN
containing species
Li[Li0.2Mn0.56Ni0.16Co0.08]O2/Li: Form a more dense and stabe interface; suppress the decomposition of LiPF6,EC and DMC; enhance capacity performance. 72
BP 4.5[73] Overcharge protection Oligomers having 6-12 benzene rings LiCoO2/graphite: Have lower oxidation potential than solvents; form a thick interfacial film on cathode. 73
HFiP 4.2[74] Film formation CF3-,CF3-CR2- species Li[Li0.2Mn0.56Ni0.16Co0.08]O2/Li: Form a more stable SEI layer; have more stable solid electrolyte impedance and smaller charge transfer resistance. 74
TMSP 4.1[75] Film formation and electrolyte stabilizer Si-O,P-O species LiNi0.5Mn1.5O4/graphite: Alleviate the decomposition of LiPF6 by hydrolysis; eliminate HF promoting Mn/Ni dissolution from the cathode. 75
TMSB 3.76[48] Film formation and electrolyte stabilizer Si-O,B-O species LiMn2O4/Li: Show excellent capacity retention at high temperature; reduce the content of HF. 48
MMDS 4.6[76] Film formation Li2SO3,ROSO2Li,
sulfide component
LiNi0.5Co0.2Mn0.3O2/graphite: Increase capacity retention; improve the conductivity of CEI; suppress the solvent decompdsition at high voltage. 76
SA 4.4[64] Film formation Hydrocarbons,Li2CO3 LiNi0.5Mn1.5O4/Li: Improve high voltage stability; form a modified protective layer. 64
TB 4.3[50] Film formation and electrolyte stabilizer Metal oxide,
B-O species
LiNi1/3Co1/3Mn1/3O2/Li: Improve cyclic stability and rate
capability; form a stable and low impedance film.
50
LiBOB 4.2[74] Film formation and electrolyte stabilizer Li oxalate,
oxalate species
LiNi0.5Mn1.5O4/Li: React with water traces and suppress the formation of POF3; improve high voltage and high temperature stability. 74
LiDFOB 4.35[77] Film formation and electrolyte stabilizer B containing polycarbonate Li1.2Ni0.15Mn0.55Co0.1O2/ Li: Reduces both cell capacity loss and impedance rise; inhibits electrolyte oxidation; reduces dissolution of metal ions. 77
Scheme. 2 Schematic representation of possible mechanisms for electrochemical oxidative decomposition of TMSP[11]
Scheme. 3 Main possible VC degradation products:(A)radical polymer,(B)linear polymer[87]
Scheme. 4 Electrochemical oxidative decomposition of DFDEC and its further reaction with EC to form a stable SEI[89]
Scheme. 5 Proposed mechanisms for the functions of phosphite-based additives for the HF removal[42]
Scheme. 6 Proposed mechanisms for the LiBOB additive for improvement in electrochemical performance of high-voltage cathode[94]
Scheme. 7 Proposed reaction mechanisms of BP and CHB[97]
Scheme. 8 Proposed mechanisms for the functions of nitrile-based additives for the HF removal[61]
Fig. 7 Effects of nitriles protecting cathode surface from electrolyte(a) nitrile-absent electrolyte and nitrile-present electrolytes of(b) long-chain nitriles and(c) short-chain nitriles[102]
Fig. 8 Optimized structure of EC, EMC, TMSB and TMSP with PF6- and the calculated oxidation potential(vs. Li/Li+)[106]
[1]
Armand M, Tarascon J M . Nature, 2008,451:652. https://www.ncbi.nlm.nih.gov/pubmed/18256660

doi: 10.1038/451652a pmid: 18256660
[2]
Zhang X, Ross P N, Kostecki R, Kong F, Sloop S, Kerr J B, Striebel K, Cairns E J, McLarnon F . Journal of the Electrochemical Society, 2001,148(5):147.
[3]
李伟善(Li W S) . 新能源进展 (Journal of Circuits and Systems), 2013,1(1):95.
[4]
Goodenough J B, Park K S . Journal of the American Chemical Society, 2013,135(4):1167. https://www.ncbi.nlm.nih.gov/pubmed/23294028

doi: 10.1021/ja3091438 pmid: 23294028
[5]
Yim T, Kang K S, Mun J, Lim S H, Woo S G, Kim K J, Park M S, Cho W, Song J H, Han Y K, Yu J S, Kim Y J . Journal of Power Sources, 2016,302:431. https://linkinghub.elsevier.com/retrieve/pii/S0378775315304389

doi: 10.1016/j.jpowsour.2015.10.051
[6]
Lin Y M, Klavetter K C, Abel P R, Davy N C, Snider J L, Heller A, Mullins C B . Chemical Communications, 2012,48(58):7268. https://www.ncbi.nlm.nih.gov/pubmed/22706565

doi: 10.1039/c2cc31712e pmid: 22706565
[7]
Kraytsberg A, Ein-Eli Y . Journal of Power Sources, 2011,196(3):886. 5ff43c19-ecc2-492b-8b62-99fd70511a82http://dx.doi.org/10.1016/j.jpowsour.2010.09.031

doi: 10.1016/j.jpowsour.2010.09.031
[8]
Ma G Q, Wen Z Y, Jin J, Wu M F, Zhang G X, Wu X W, Zhang J C . Solid State Ionics, 2014,262:174. 1945c94f-6826-4930-8f4e-532c39663e30http://dx.doi.org/10.1016/j.ssi.2013.10.012

doi: 10.1016/j.ssi.2013.10.012
[9]
Hu M, Pang X, Zhou Z . Journal of Power Sources, 2013,237:229.
[10]
Lloris J M, Vicente C P R, Tirado J L . Electrochemical and Solid-State Letters, 2002,5(10):A234.
[11]
Song Y M, Han J G, Park S, Lee K T, Choi N S . J. Mater. Chem. A, 2014,2(25):9506.
[12]
Xia Y, Sakai T, Fujieda T, Wada M, Yoshinaga H . Electrochemical and Solid-State Letters, 2001,4(2):A9. https://iopscience.iop.org/article/10.1149/1.1339238

doi: 10.1149/1.1339238
[13]
Wang D, Xiao J, Xu W, Nie Z, Wang C, Graff G, Zhang J G . Journal of Power Sources, 2011,196(4):2241. 52b7b67f-fc47-4d65-873f-593b4b2439d5http://dx.doi.org/10.1016/j.jpowsour.2010.10.021

doi: 10.1016/j.jpowsour.2010.10.021
[14]
Zhou F, Cococcioni M, Kang K, Ceder G . Electrochemistry Communications, 2004,6(11):1144. 45064e28-7dc8-4814-bdd5-a903d85c1164http://www.sciencedirect.com/science/article/pii/S1388248104002401

doi: 10.1016/j.elecom.2004.09.007
[15]
He M, Hu L, Xue Z, Su C C, Redfern P, Curtiss L A, Polzin B, Cresce A V, Xu K, Zhang Z . Journal of the Electrochemical Society, 2015,162(9):A1725.
[16]
Xu K, Angell C A . Journal of the Electrochemical Society, 1998,145(4):L70.
[17]
Moshkovich M, Cojocaru M, Gottlieb H E, Aurbach D . Journal of Electroanalytical Chemistry, 2001,497(1):84.
[18]
Yang L, Markmaitree T, Lucht B L . Journal of Power Sources, 2011,196(4):2251.
[19]
邢丽丹(Xing L D), 许梦清(Xu M Q), 李伟善(Li W S), . 中国科学:化学 (Scientia Sinica Chimica), 2014,44(8):1289.
[20]
Wu Y, Vadivel Murugan A, Manthiram A . Journal of the Electrochemical Society, 2008,155(9):A635.
[21]
Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y . Solid State Ionics, 2008,179(27/32):1794.
[22]
Park B C, Kim H B, Myung S T, Amine K, Belharouak I, Lee S M, Sun Y K . Journal of Power Sources, 2008,178(2):826.
[23]
Peled E . Journal of the Electrochemical Society, 1979,126(12):2047.
[24]
马国强(Ma G Q), 蒋志敏(Jiang Z M), 陈慧闯(Chen H C), 王莉(Wang L), 董经博(Dong J B), 张建君(Zhang J J), 徐卫国(Xu W G), 何向明(He X M) . 无机材料学报 (Journal of Inorganic Materials), 2018,33(7):699.
[25]
Thomas M, Bruce P G, Goodenough J B . Journal of the Electrochemical Society, 1985,132(7):1521.
[26]
Guyomard D, Tarascon J M . Journal of the Electrochemical Society, 1992,139(4):937.
[27]
Guyomard D, Tarascon J M . Journal of the Electrochemical Society, 1993,140(11):3071.
[28]
Xu M Q, Li W S, Zuo X X, Liu J S, Xu X . Journal of Power Sources, 2007,174(2):705.
[29]
Li B, Xu M, Li B, Liu Y, Yang L, Li W, Hu S . Electrochimica Acta, 2013,105(26):1.
[30]
Petibon R, Madec L, Rotermund L M, Dahn J R . Journal of Power Sources, 2016,313:152. https://linkinghub.elsevier.com/retrieve/pii/S0378775316301616

doi: 10.1016/j.jpowsour.2016.02.054
[31]
Zhang B, Metzger M, Solchenbach S, Payne M, Meini S, Gasteiger H A, Garsuch A, Lucht B L . Journal of Physical Chemistry C, 2015,119(21):11337.
[32]
Downie L, Hyatt S R, Wright A, Dahn J R . Journal of Physical Chemistry C, 2014,118(51):29533.
[33]
Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2014,161(14):A2250.
[34]
Zuo X, Fan C, Xiao X, Liu J, Nan J . ECS Electrochemistry Letters, 2012,1(3):A50. https://iopscience.iop.org/article/10.1149/2.006203eel

doi: 10.1149/2.006203eel
[35]
Lee H, Choi S, Choi S, Kim H J, Choi Y, Yoon S, Cho J J . Electrochemistry Communications, 2007,9(4):801. bc2e7ae5-aa8c-4cee-baa6-c285637692a2http://www.sciencedirect.com/science/article/pii/S1388248106005200

doi: 10.1016/j.elecom.2006.11.008
[36]
许梦清(Xu M Q), 邢丽丹(Xing L D), 李伟善(Li W S) . 化学进展 (Progress in Chemistry), 2009,21(10):2017.
[37]
Pires J, Timperman L, Castets A, Peña J S, Dumont E, Levasseur S, Dedryvere R, Tessier C, Anouti M . RSC Advances, 2015,5(52):42088.
[38]
Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W . Journal of Materials Chemistry A, 2013,1(41):12954.
[39]
Nam N D, Park I J, Kim J G . ECS Transactions, 2011,33(22):7.
[40]
Ma Y, Yin G, Zuo P, Tan X, Gao Y, Shi P . Electrochemical and Solid-State Letters, 2008,11(8):A129. https://iopscience.iop.org/article/10.1149/1.2931972

doi: 10.1149/1.2931972
[41]
Tan S, Zhang Z, Li Y, Li Y, Zheng J, Zhou Z, Yang Y . Journal of the Electrochemical Society, 2012,160(2):A285.
[42]
Song Y M, Kim C K, Kim K E, Hong S Y, Choi N S . Journal of Power Sources, 2016,302:22.
[43]
Tu W, Xia P, Zheng X, Ye C, Xu M, Li W . Journal of Power Sources, 2017,341:348.
[44]
Xia J, Madec L, Ma L, Ellis L D, Qiu W, Nelson K J, Lu Z, Dahn J R . Journal of Power Sources, 2015,295:203.
[45]
Zuo X, Fan C, Liu J, Xiao X, Wu J, Nan J . Journal of Power Sources, 2013,229(3):308.
[46]
Yan C, Ying X, Xia J, Gong C, Chen K . Journal of Energy, 2016,4:015.
[47]
Pang C, Xu G, An W, Ding G, Liu X, Chai J, Ma J, Liu H, Cui G . Energy Technology, 2017,5(11):1979.
[48]
Li J, Xing L, Zhang R, Chen M, Wang Z, Xu M, Li W . Journal of Power Sources, 2015,285:360.
[49]
Liu Y, Tan L, Li L . Journal of Power Sources, 2013,221:90.
[50]
Wang Z, Xing L, Li J, Li B, Xu M, Liao Y, Li W . Electrochimica Acta, 2015,184:40.
[51]
Chang C C, Chen T K . Journal of Power Sources, 2009,193(2):834.
[52]
Markevich E, Salitra G, Aurbach D . ACS Energy Letters, 2017,2(6):1337.
[53]
马国强(Ma G Q), 王莉(Wang L), 张建君(Zhang J J), 陈慧闯(Chen H C), 何向明(He X M), 丁元胜(Ding Y S) . 化学进展 (Progress in Chemistry), 2016,28(9):1299.
[54]
Hu L, Zhang Z, Amine K . Electrochemistry Communications, 2013,35:76.
[55]
Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D . Langmuir, 2014,30(25):7414. https://www.ncbi.nlm.nih.gov/pubmed/24885475

doi: 10.1021/la501368y pmid: 24885475
[56]
Lee Y M, Nam K M, Hwang E H, Kwon Y G, Kang D H, Kim S S, Song S W . The Journal of Physical Chemistry C, 2014,118(20):10631.
[57]
Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P . Journal of Power Sources, 2014,246:184.
[58]
尹成果(Yin C G), 马玉林(Ma Y L), 程新群(Cheng X Q), 尹鸽平(Yin G P) . 化学进展 (Progress in Chemistry), 2013,25(1):54.
[59]
Abu-Lebdeh Y, Davidson I . Journal of Power Sources, 2009,189(1):576.
[60]
Abu-Lebdeh Y, Davidson I . Journal of the Electrochemical Society, 2009,156(1):A60.
[61]
Chen R, Liu F, Chen Y, Ye Y, Huang Y, Wu F, Li L . Journal of Power Sources, 2016,306:70.
[62]
Wang C, Yu L, Fan W, Liu J, Ouyang L, Yang L, Zhu M . ACS Applied Materials & Interfaces, 2017,9(11):9630. https://www.ncbi.nlm.nih.gov/pubmed/28221019

doi: 10.1021/acsami.6b16220 pmid: 28221019
[63]
Wang L, Ma Y, Li Q, Zhou Z, Cheng X, Zuo P, Du C, Gao Y, Yin G . Journal of Power Sources, 2017,361:227. https://linkinghub.elsevier.com/retrieve/pii/S0378775317308583

doi: 10.1016/j.jpowsour.2017.06.075
[64]
Luo R, Xu D, Zeng X, Li X, Zeng J, Liao S . Ionics, 2015,21(9):2535.
[65]
Bouayad H, Wang Z, Dupré N, Dedryvère R, Foix D, Franger S, Martin J F, Boutafa L, Patoux S, Gonbeau D . Journal of Physical Chemistry C, 2014,118(9):4634. https://pubs.acs.org/doi/10.1021/jp5001573

doi: 10.1021/jp5001573
[66]
Aravindan V, Gnanaraj J, Madhavi S, Liu H K . Chemistry, 2011,17(51):14326. https://www.ncbi.nlm.nih.gov/pubmed/22114046

doi: 10.1002/chem.201101486 pmid: 22114046
[67]
Kawamura T, Kimura A, Egashira M, Okada S, Yamaki J I . Journal of Power Sources, 2016,104(2):260. https://linkinghub.elsevier.com/retrieve/pii/S0378775301009600

doi: 10.1016/S0378-7753(01)00960-0
[68]
Li C, Hou Q, Li S, Tang F, Wang P . Journal of Alloys & Compounds, 2017,723:887.
[69]
Zhang L, Ma Y, Cheng X, Zuo P, Cui Y, Guan T, Du C, Gao Y, Yin G . Solid State Ionics, 2014,263(10):146.
[70]
Kanamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z I . Journal of the Electrochemical Society, 2002,149(2):A185.
[71]
胡锋波(Hu F B), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q) . 化工进展 (Progress in Chemistry), 2011,10:2097.
[72]
Tan S, Ji Y J, Zhang Z R, Yang Y . Chemphyschem, 2014,15(10):1956. https://www.ncbi.nlm.nih.gov/pubmed/25044525

doi: 10.1002/cphc.201402175 pmid: 25044525
[73]
Abe K, Ushigoe Y, Yoshitake H, Yoshio M . Journal of Power Sources, 2006,153(2):328.
[74]
Xu K . Chemical Reviews, 2014,114(23):11503. https://www.ncbi.nlm.nih.gov/pubmed/25351820

doi: 10.1021/cr500003w pmid: 25351820
[75]
Jie Z, Wang J, Yang J, Nuli Y . Electrochimica Acta, 2014,117(4):99.
[76]
Zheng X, Huang T, Pan Y, Wang W, Fang G, Wu M . Journal of Power Sources, 2015,293:196. https://linkinghub.elsevier.com/retrieve/pii/S0378775315009520

doi: 10.1016/j.jpowsour.2015.05.061
[77]
Choi N S, Han J G, Ha S Y, Park I, Back C K . RSC Advances, 2015,5(4):2732.
[78]
Ha S Y, Han J G, Song Y M, Chun M J, Han S I, Shin W C, Choi N S . Electrochimica Acta, 2013,104:170.
[79]
Zhu Y, Li Y, Bettge M, Abraham D P . Journal of the Electrochemical Society, 2012,159(12):A2109. https://iopscience.iop.org/article/10.1149/2.083212jes

doi: 10.1149/2.083212jes
[80]
Qin Y, Chen Z, Liu J, Amine K . Electrochemical and Solid-State Letters, 2010,13(2):A11. https://iopscience.iop.org/article/10.1149/1.3261738

doi: 10.1149/1.3261738
[81]
Yang G H, Shi J L, Shen C, Wang S W, Xia L, Luo H, Xia Y G . RSC Advances, 2017,7(42):26052. http://xlink.rsc.org/?DOI=C7RA03926C

doi: 10.1039/C7RA03926C
[82]
李建刚(Li J G), 杨冬平(Yang D P), 万春荣(Wan C R), 杨张平(Yang Z P) . 电池 (Battery Bimonthly), 2004,34(2):135.
[83]
庄全超(Zhuang Q C), 许金梅(Xu J M), 樊小勇(Fan X Y), 魏国祯(Wei G Z), 董全峰(Dong Q F), 姜艳霞(Jiang Y X), 黄令(Huang L), 孙世刚(Sun S G) . 中国科学 (Scientia Sinica), 2007,37(1):18.
[84]
Xing L, Li W, Wang C, Gu F, Xu M, Tan C, Jin Y . Journal of Physical Chemistry B, 2009,113(52):16596. https://www.ncbi.nlm.nih.gov/pubmed/19947609

doi: 10.1021/jp9074064 pmid: 19947609
[85]
Haregewoin A M, Wotango A S, Hwang B J . Energy. Environ. Sci., 2016,9(6):1955. http://xlink.rsc.org/?DOI=C6EE00123H

doi: 10.1039/C6EE00123H
[86]
邓邦为(Deng B W), 万琦(Wan Q), 瞿美臻(Qu M Z), 彭工厂(Peng G C) . 化学学报 (Acta Chimica Sinica), 2018,76(4):259. d9014313-625f-4378-9b36-530b6b55f454http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract346508.shtml

doi: 10.6023/A17110517
[87]
El Ouatani L, Dedryveère R, Siret C, Biensan P, Reynaud S, Iratçabal P, Gonbeau D . Journal of The Electrochemical Society, 2009,156(2):A103.
[88]
Madec L, Petibon R, Tasaki K, Xia J, Sun J P, Hill I G, Dahn J R . J. Physical Chemistry Chemical Physics Pccp, 2015,17(40):27062.
[89]
Pham H Q, Nam K M, Hwang E H, Kwon Y G, Jung H M, Song S W . Journal of the Electrochemical Society, 2014,161(14):A2002. 404a25b3-2f5f-4382-9e73-679a36361110http://dx.doi.org/10.1149/2.1141412jes

doi: 10.1149/2.1141412jes
[90]
Terborg L, Weber S, Blaske F, Passerini S, Winter M, Karst U, Nowak S . Journal of Power Sources, 2013,242(4):832. https://linkinghub.elsevier.com/retrieve/pii/S0378775313009154

doi: 10.1016/j.jpowsour.2013.05.125
[91]
Rong H, Xu M, Xie B, Liao X, Huang W, Xing L, Li W . Electrochimica Acta, 2014,147(147):31.
[92]
Lee Y M, Lee Y G, Kang Y M, Cho K Y . Electrochemical and Solid-State Letters, 2010,13(13):A55.
[93]
Yim T, Woo S G, Lim S, Cho W, Song J, Han Y K, Kim Y J . Journal of Materials Chemistry A, 2015,3(11):6157.
[94]
Pieczonka N P W, Yang L, Balogh M P, Powell B R, Chemelewski K, Manthiram A, Krachkovskiy S A, Goward G R, Liu M, Kim J H . Journal of Physical Chemistry C, 2013,117(44):22603.
[95]
张玲玲(Zhang L L), 马玉林(Ma Y L), 杜春雨(Du C Y), 尹鸽平(Yin G P) . 化学进展 (Progress in Chemistry), 2014,26(4):553.
[96]
Lee K S, Sun Y K, Noh J, Song K S, Kim D W . Electrochemistry Communications, 2009,11(10):1900.
[97]
Shima K, Shizuka K, Ue M, Ota H, Hatozaki T, Yamaki J I . Journal of Power Sources, 2006,161(2):1264.
[98]
陈仕玉(Chen S Y), 王兆翔(Wang Z X), 赵海雷(Zhao H L), 陈立泉(Chen L Q) . 化学进展 (Progress in Chemistry), 2009,21(4):629.
[99]
Lee H, Lee J H, Ahn S, Kim H J, Cho J J . Electrochemical and Solid-State Letters, 2006,9(9):A307.
[100]
Ji Y, Zhang Z, Gao M, Li Y, McDonald M J, Yang Y . Journal of the Electrochemical Society, 2015,162(4):A774.
[101]
Kim Y S, Kim T H, Lee H, Song H K . Energy & Environmental Science, 2011,4(10):4038.
[102]
Kim Y S, Lee H, Song H K . ACS Applied Materials & Interfaces, 2014,6(11):8913. https://www.ncbi.nlm.nih.gov/pubmed/24836760

doi: 10.1021/am501671p pmid: 24836760
[103]
Wang X S, Zheng X W, Liao Y H, Huang Q M, Xing L D, Xu Q M, Li W S . Journal of Power Sources, 2017,338:108.
[104]
Shao N, Sun X G, Dai S, Jiang D . The Journal of Physical Chemistry B, 2011,115(42):12120. https://www.ncbi.nlm.nih.gov/pubmed/21919491

doi: 10.1021/jp204401t pmid: 21919491
[105]
Wang Y, Xing L, Li W, Bedrov D . The Journal of Physical Chemistry Letters, 2013,4(22):3992. https://www.ncbi.nlm.nih.gov/pubmed/26276483

doi: 10.1021/jz501973d pmid: 26276483
[106]
Wang K, Xing L D, Zhu Y M, Zheng X W, Cai D D, Li W S . Journal of Power Sources, 2017,342:677.
[107]
Jian X, Sinha N N, Chen L P, Dahn J R . Journal of the Electrochemical Society, 2013,161(3):A264.
[108]
Xia J, Dahn J R . Journal of Power Sources, 2016,324:704.
[109]
Sinha N N, Burns J C, Dahn J R . Journal of the Electrochemical Society, 2014,161(6):A1084.
[110]
Han Y K, Yoo J, Yim T . Journal of Materials Chemistry A, 2015,3(20):10900.
[111]
王超(Wang C), 胡立新(Hu L X) . 湖北工业大学学报 (Journal of Hubei University of Technology), 2011,26(2):80.
[112]
范伟贞(Fan W Z), 左晓希(Zuo X X), 刘建生(Liu J J), 李钊(Li Z) . 电池 (Battery Bimonthly), 2015,45(4):21.
[113]
Ma L, Wang D Y, Downie L E, Xia J, Nelson K J, Sinha N N, Dahn J R . Journal of the Electrochemical Society, 2014,161(9):A1261.
[114]
Xia J, Ma L, Dahn J R . Journal of Power Sources, 2015,287:377.
[115]
Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2015,162(7):A1170. https://iopscience.iop.org/article/10.1149/2.0181507jes

doi: 10.1149/2.0181507jes
[116]
Nelson K J, D'Eon G L, Wright A T B, Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2015,162(6):A1046. https://iopscience.iop.org/article/10.1149/2.0831506jes

doi: 10.1149/2.0831506jes
[117]
Yang J P, Zhao P, Shang Y M, Wang L, He X M, Fang M, Wang J L . Electrochimica Acta, 2014,121:264. 5f24f079-78d1-4130-8721-55ab971f43e4http://dx.doi.org/10.1016/j.electacta.2013.12.170

doi: 10.1016/j.electacta.2013.12.170
[118]
Yang J P, Zhang Y F, Zhao P, Shang Y M, Wang L, He X M, Wang J L . Electrochimica Acta, 2015,158:202. https://linkinghub.elsevier.com/retrieve/pii/S0013468614026024

doi: 10.1016/j.electacta.2014.12.143
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[6] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[7] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[8] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[9] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[10] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[11] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[12] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[13] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[14] Yi Zhang, Meng Zhang, Yifan Tong, Haixia Cui, Pandeng Hu, Weiwei Huang. Application of Multi-Carbonyl Covalent Organic Frameworks in Secondary Batteries [J]. Progress in Chemistry, 2021, 33(11): 2024-2032.
[15] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.