中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 1056-1066 DOI: 10.7536/PC181212 Previous Articles   

The Preparation and Anti-Icing Properties of Flexible Surfaces

Cuiping Zhou1, Qiming Liu2, Xuan Zhao1, Chunsheng Li1, Hui Li1,**(), Shuxiang Zhang1,**()   

  1. 1.School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022, China
    2.Shandong Institute of Construction and Development, Jinan 250001, China
  • Received: Online: Published:
  • Contact: Hui Li, Shuxiang Zhang
  • About author:
    ** E-mail: (Hui Li);
    (Shuxiang Zhang)
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2016EMM04); Natural Science Foundation of Shandong Province(ZR2017ZC0529); Natural Science Foundation of China(51103061)
Richhtml ( 15 ) PDF ( 413 ) Cited
Export

EndNote

Ris

BibTeX

The attachment and accumulation of ice, a common natural phenomenon, brings many inconvenience and even serious disaster to human society. The anti-icing surface is a hot topic in current research, and the surface structure and properties of materials are the key factors that influence the icing. But up to date, there still exist some problems, such as poor stability and limitation of application conditions, to be further comprehensively and systematically studied due to the complexity of icing conditions and the diversity of icing types. In the review, based on the relationships between the anti-icing properties and the molecule’s flexibility or slippage of the material surface, the concept of the flexible anti-icing surface is proposed and the types and mechanisms of flexible anti-icing surfaces, including intrinsic surface, sustained release surface and lubrication surface are summarized. Furthermore,the research progress and prospects of various flexible anti-icing surfaces are emphatically described and the existing problems of these surfaces are particularly analyzed. The challenges and the prospective tendency of flexible anti-icing surfaces are also given according the current research.

Fig. 1 Preparation of organosilicon copolymers containing POSS structural units by different methods:(a) hydrosilylation,(b) RAFT,(c) click chemistry[27, 28]
Fig. 2 (a) Schematic illustration of anti-icing and deicing properties of a polyols-infused slippery surface.(b) Chemical strcture of amphiphilic copolymer P(PEGMA-co-GMA)[40]
Fig. 3 Method for preparing silicone sustained release flexible surface[41]
Fig. 4 (a) Schematic of the stimuli-responsive antifreeze secreting anti-icing coating;(b) schematic showing that the antifreeze liquid is secreted through the pores in response to contact with ice or frost forming on the surface, which results in melting of the ice or frost. Subsequently, the melt is removed via air motion or partially wicked back into the dermis[42]
Fig. 5 Schematic diagram of preparation of nanostructure PPy coating by electrodeposition[21]
Fig. 6 SEM images of lubricating oil before and after Rykalzewski freezing[54]
Fig. 7 Schematic diagram of the preparation of a earthworm-inspired polymer surface and its self-lubricating behavior[56,57,58]
Fig. 8 Preparation of poly(acrylic acid)(PAA) hydrophilic self-lubricating surface[62]
Fig. 9 Synthesis of the PAA-DA conjugate and schematic representation of the mussel-inspired construction of the anti-icing coating with an aqueous lubricating layer[63]
Fig. 10 Preparation of HBFP(Ⅲ)-PEG and LC-HBFP-PEG crosslinked networks[65,69,70]
Fig. 11 Synthesis of POSS-PDMAEMA-b-PSBMA and P(SBMA-co-FMA-co-AMA)[71, 72]
Fig. 12 Illustration of antifreeze protein from an insect(M. p. dzungarica) and selectively tethered MpdAFP on the PDA and GOPTS surfaces[75]
[1]
Ware C S, Smith-Palmer T, Peppou-Chapman S, Scarratt L, Humphries E M, Balzer D, Neto C . ACS Appl. Mater. Interfaces, 2018,10:4173.
[2]
Das A, Farnham T A, Subramanyam S B, Varanasi K K . ACS Appl. Mater. Interfaces, 2017,9:21496.
[3]
Ma Z, Chen P, Cheng W, Yan K, Pan L, Shi Y, Yu G . Nano Lett., 2018,18:4570.
[4]
Goh S C, Luan Y, Wang X, Du H, Chau C, Schellhorn H E, Brash J L, Chen H, Fang Q . J. Mater. Chem. B, 2018,6:940.
[5]
Menini R, Farzaneh M . J.Adhes. Sci. Technol., 2011,25:971.
[6]
Lv J, Song Y, Jiang L, Wang J . ACS Nano, 2014,8:3152.
[7]
Huang L, Liu Z, Liu Y, Wang J . Exp. Therm. Fluid Sci., 2009,33:1049.
[8]
李辉(Li H), 赵蕴慧(Zhao Y H), 袁晓燕(Yuan X Y) . 化学进展 (Progress in Chemistry), 2012,24:2087.
[9]
Onda T, Shibuichi S, Satoh N, Tsujii K . Langmuir, 1996,12:2125.
[10]
Samaha M A, Gad-El-Hak M . Polymers, 2014,6:1266.
[11]
郑海坤(Zheng H K), 常士楠(Chang S N), 赵媛媛(Zhao Y Y) . 化学进展 (Progress in Chemistry), 2017,29:102.
[12]
Chen J, Liu J, He M, Li K, Cui D, Zhang Q, Zeng X, Zhang Y, Wang J, Song Y . Appl. Phys. Lett., 2012,101:111603.
[13]
Jellinek H H G, Kittaka S, Lee M, Yokota R . Coll. Polym. Sci., 1978,256:544.
[14]
Andersson L, Golander C, Persson S . J.Adhes. Sci. Technol., 1994,8:117.
[15]
Murase H, Fujibayashi T . Prog. Org. Coat., 1997,31:97.
[16]
Adam J M, Gareth H M, Robert E C . ACS Nano, 2010,4:7048.
[17]
Kreder M J, Alvarenga J, Kim P, Aizenberg J . Nat. Rev. Mater, 2016,1:15003.
[18]
Murase H, Nakishi K, Kogure H, Fubayashi T, Tamura K, Haruta N . J.Appl. Polym. Sci., 1994,54:2051.
[19]
Bhamidipati M V . US 7514017, 2009.
[20]
Wong T S, Kang S H, Tang S, Smythe E J, Hatton B D, Grinthal A, Aizenberg J . Nature, 2011,477:443.
[21]
Kim P, Wong T, Alvarenga J, Kreder M J, Wilmer E A, Aizenberg J . ACS Nano, 2012,6:6569.
[22]
Hejazi V, Sobolev K, Nosonovsky M . Sci. Rep., 2013,3:2194.
[23]
Hoover K L, Watson C R, Putnam J W, Dolan R C, Bonarrigo B B, Kurz P L, Weisse M A . US 20070254170, 2007.
[24]
Chuppina S V, Glass Phys . Chem., 2007,33:502.
[25]
Li X, Zhao Y, Li H, Yuan X . Appl. Surf. Sci., 2014,316:222.
[26]
Li H, Li X, Luo C, Zhao X, Yuan X . Thin Solid Films, 2014,573:67.
[27]
Li Y, Luo C, Li X, Zhang K, Zhao Y, Zhu K, Yuan X . Appl. Surf. Sci., 2016,360:113.
[28]
Zhang K, Li X, Zhao Y, Zhu K, Li Y, Tao C, Yuan X . Prog. Org. Coat., 2016,93:87.
[29]
向青云(Xiang Q Y), 熊婷(Xiong T), 车国勇(Che G Y), 傅轩(Fu X), 漆刚(Qi G), 王有治(Wang Y Z) . 有机硅材料 (Silicone Material), 2017,31:197.
[30]
Arianpour F, Farzaneh M, Kulinich S . Appl. Surf. Sci., 2013,265:546.
[31]
Emelyanenko A, Boinovich L, Bezdomnikov A, Chulkova E, Emelyanenko K . ACS Appl. Mater. Interfaces, 2017,9:24210.
[32]
Zhu K, Li X, Su J, Li H, Zhao Y, Yuan X . Polym. Eng. Sci., 2018,973.
[33]
Zhu K, Qi H, Wang S, Zhou J, Zhao Y, Su J, Yuan X . J. Macromol. Sci. B, 2012,51:1976.
[34]
Simpson J T, Hunter S R, Aytug T . Rep. Prog. Phys., 2015,78:086501.
[35]
Nakajima A, Miyamoto T, Sakai M . Appl. Surf. Sci., 2014,292:990.
[36]
Golovin K, Kobaku S P R, Lee D H, DiLoreto E T, Mabry J M, Tuteja A . Sci. Adv., 2016,2:1501496.
[37]
Dou R, Chen J, Zhang Y, Wang X, Cui D, Song Y, Jiang L, Wang J . ACS Appl. Mater. Interfaces, 2014,6:6998.
[38]
Golovin K, Tuteja A . Sci. Adv., 2017,3:e1701617.
[39]
Ayres J, Simendinger W, Balik C . J.Coat. Technol. Res., 2007,4:463.
[40]
Zhang G, Zhang Q, Cheng T, Zhan X, Chen F . Langmuir, 2018,34:4052.
[41]
Yeong Y, Wang C, Wynne K, Gupta M . ACS Appl. Mater. Interfaces, 2016,8:32050.
[42]
Sun X, Damle V, Liu S, Rykaczewski K . Adv. Mater. Interfaces, 2015,23:1400479.
[43]
Eberle P, Tiwari M K, Maitra T, Poulikakos D . Nanoscale, 2014,6:4874.
[44]
Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D . Langmuir, 2011,27:3059.
[45]
韦存茜(Wei C Q), 严杰(Yan J),唐浩(Tang H), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q) . 化学进展 (Progress in Chemistry), 2016,28:9.
[46]
Rykaczewski K, Paxson A, Staymates M, Walker M, Sun X, Anand S, Srinivasan S, McKinley G, Chinn J, Scott J, Varanasi K . Sci. Rep., 2014,4:4158.
[47]
Xiao L, Li J, Mieszkin S, di Fino A, Clare A, Callow M, Callow J, Grunze M, Rosenhahn A, Levkin P . ACS Appl. Mater. Interfaces, 2013,5:10074.
[48]
Miranda D, Urata C, Masheder B, Dunderdale G, Yagihashi M, Hozumi A . APl. Mater., 2014,2:56108.
[49]
Wang S, Liu K, Yao X, Jiang L . Chem. Rev., 2015,115:8230.
[50]
Wang N, Xiong D, Lu Y, Pan S, Wang K, Deng Y, Shi Y . J. Phys. Chem. C, 2016,120:11054.
[51]
Wang N, Xiong D, Pan S, Wang K, Shi Y, Deng Y . New J. Chem., 2017,41:1846.
[52]
Wang Y, Zhang H, Liu X, Zhou Z . J. Mater. Chem. A, 2016,4:2524.
[53]
Liu Q, Yang Y, Huang M, Zhou Y, Liu Y, Liang X D . Appl. Surf. Sci., 2015,346:68.
[54]
Rykaczewski K, Anand S, Subramanyam S B . Langmuir, 2013,29:5230.
[55]
Smith J, Dhiman R, Anand S . Soft Matter, 2013,9:1772.
[56]
Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J . Nat. Mater., 2015,14:790.
[57]
Zhao H, Xu J, Jing G, Prieto-López L, Deng X, Cui J . Angew. Chem. Int. Ed., 2016,55:10681.
[58]
Zhao X, Sun Q, Deng X, Cui J . Adv. Mater., 2019,19:1802141.
[59]
Yeong Y, Milionis A, Loth E, Sokhey J . Cold Reg. Sci. Technol., 2018,148:29.
[60]
Golecki I, Jaccard C . J. Phys. C: Solid State Phys., 1978,11:4229.
[61]
Rosenberg R . Phys. Today, 2005,58:50.
[62]
Chen J, Dou R, Cui D, Zhang Q, Zhang Y, Xu F, Zhou X, Wang J, Song Y, Jiang L . ACS Appl. Mater. Interfaces, 2013,5:4026.
[63]
Chen J, Li K, Wu S, Liu J, Liu K, Fan Q . ACS Omega, 2017,2:2047.
[64]
Powell K, Cheng C, Wooley K . Macromolecules, 2007,40:4509.
[65]
Imbesi P, Finlay J, Aldred N, Eller M, Felder S, Pollack K, Lonnecker A, Raymond J, Mackay M, Schweikert E, Clare A, Callow J, Callow M, Wooley K . Polym. Chem., 2012,3:3121.
[66]
Chen S, Li L, Zhao C, Zheng J . Polymer, 2010,51:5283.
[67]
Bartels J, Cheng C, Powell K, Xu J, Wooley K . Macromol. Chem. Phys., 2007,208:1676.
[68]
Nutt D, Smith J . J.Am. Chem. Soc., 2008,130:13066. https://www.ncbi.nlm.nih.gov/pubmed/18774821

doi: 10.1021/ja8034027 pmid: 18774821
[69]
Zigmond J, Pollack K, Smedley S, Raymond J, Link L, Pavıa-Sanders A, Hickner M, Wooley K . J.Polym. Sci. Polym. Chem., 2016,54:238.
[70]
Zigmond J, Pavía-Sanders A, Russell J, Wooley K . Chem. Mater., 2016,28:5471.
[71]
Li C, Li X, Tao C, Ren L, Zhao Y, Bai S, Yuan X . ACS Appl. Mater. Interfaces, 2017,9:22959.
[72]
Tao C, Bai S, Li X, Li C, Ren L, Zhao Y, Yuan X . Prog. Org. Coat., 2018,115:56.
[73]
Liang B, Zhang G, Zhong Z, Huang Y, Su Z . Langmuir, 2019,35:1294.
[74]
He Z, Liu K, Wang J . Acc. Chem. Res., 2018,51:1082.
[75]
Liu K, Wang C, Ma J, Shi G, Yao X, Fang H, Song Y, Wang J . PNAS Early Edition, 2016,113:14739.
[76]
Kirillova A, Ionov L, Roisman I, Synytska A . Chem. Mater, 2016,28:6995.
[1] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[2] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[3] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[4] Wei Cunqian, Yan Jie, Tang Hao, Zhang Qinghua, Zhan Xiaoli, Chen Fengqiu. Fabrication and Application of Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2016, 28(1): 9-17.
[5] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[6] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.
[7] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.
[8] Xue Qunji Zhang Junyan. Tribochemistry of Lubricating Materials [J]. Progress in Chemistry, 2009, 21(11): 2445-2457.
[9] Wen Xin An Shengjun Hou Zhifei Jiao Zhan. Ag-Loaded Sustained Release Antimicrobial Dressings [J]. Progress in Chemistry, 2009, 21(0708): 1644-1654.
[10] Wu Yusong,Dong Yanming**,Qiu Xingping. Advances in Liquid Crystal Lubrication [J]. Progress in Chemistry, 2001, 13(05): 343-.