中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (01): 61-74 DOI: 10.7536/PC130643 Previous Articles   Next Articles

• Review •

Synthesis and Application of the Fluorescent Carbon Dots

Yan Fanyong*1, Zou Yu1, Wang Meng2, Dai Linfeng1, Zhou Xuguang1, Chen Li2   

  1. 1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21174103)

PDF ( 6884 ) Cited
Export

EndNote

Ris

BibTeX

Carbon dots are the most popular nanomaterials in recent years among the nanocarbon family, including fullerene, the carbon nanotube and graphene. This kind of nanomaterial has successfully overcome some defects of traditional semiconductor quantum dots. It is highly evaluated not only for the excellent optical performance and small size effect, but also the great biocompatibility and ease to achieve surface functionalization. Carbon dots can be widely used in the field of biochemical sensing, fluorescent probes, environmental testing, photocatalytic technology, drug carriers and so on. In this review, the progress made in the field of carbon dots in recent years, especially in latest developments of applications are reviewed, the characteristics of carbon dots are outlined, the problems remaining to be solved are summarized and the further advances are prospected.

Contents
1 Introduction
2 Properties of the carbon dots
2.1 Optical property
2.2 Low toxicity and biocompatibility
3 Preparation of carbon dots
4 Application of carbon dots
4.1 Detection probes
4.2 Bioimaging
4.3 Light-emitting element
4.4 Photocatalysis
4.5 Drug carriersis
5 Conclusions and perspectives

CLC Number: 

[1] Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126: 12736.
[2] Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P J G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129: 11318.
[3] Zhao H X, Liu L Q, Liu Z D, Wang Y, Zhao X J, Huang C Z. Chem. Commun., 2011, 47: 2604.
[4] Zhang C M, Lin J. Chem. Soc. Rev., 2012, 41: 7938.
[5] Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev., 2013, DOI: 10.1039/c3cs35429f.
[6] 胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展(Progress in Chemistry), 2010, 22(2/3): 345.
[7] Luo P J G, Sahu S, Yang S T, Sonkar S K, Wang J P, Wang H F, LeCroy G E, Cao L, Sun Y P. J. Mater. Chem. B, 2013, 1: 2116.
[8] Esteves da Silva J C G, Gonalves H M R. Trac-trend. Anal. Chem., 2011, 30: 1327.
[9] Li J, Guo S J, Wang E K. RSC Adv., 2012, 2: 3579.
[10] Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22: 24230.
[11] Ming H, Ma Z, Liu Y, Pan K M, Yu H, Wang F, Kang Z H. Dalton Trans., 2012, 41: 9526.
[12] Hu S L, Niu K Y, Sun J, Yang J, Zhao N Q, Du X W. J. Mater. Chem., 2009, 19: 484.
[13] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Adv. Mater., 2011, 23: 5801.
[14] Bae Y, Myung N, Bard A J. Nano Lett., 2004, 4: 1153.
[15] Ding Z F, Quinn B M, Haram S K, Pell L E, Korgel B A, Bard A J. Science, 2002, 296: 1293.
[16] Jiang H, Ju H X. Anal. Chem., 2007, 79: 6690.
[17] Liu H P, Ye T, Mao C D. Angew. Chem. Int. Ed., 2007, 46: 6473.
[18] Lin L P, Wang X X, Lin S Q, Zhang L H, Lin C Q, Li Z M, Liu J M. Spectrochim. Acta A, 2012, 95: 555.
[19] Shen R, Song K, Liu H R, Li Y S, Liu H W. J. Phys. Chem. C, 2012, 116: 15826.
[20] Xu J, Sahu S, Cao L, Bunker C E, Peng G, Liu Y M, Shiral Fernando K A, Wang P, Guliants E A, Meziani M J, Qian H J, Sun Y P. Langmuir, 2012, 28: 16141.
[21] Zhu H, Wang X L, Li Y L, Wang Z J, Yang F, Yang X R. Chem. Commun., 2009, 34: 5118.
[22] Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B. J. Am. Chem. Soc., 2009, 131: 4564.
[23] Lin P, Chen J W, Chang L W, Wu J P, Redding L, Chang H, Yeh T K, Yang C S, Tsai M H, Wang H J, Kuo Y C, Yang R S H. Environ. Sci. Technol., 2008, 42: 6264.
[24] Gey J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts M F, Nemery B, Hoet P H M. Environ. Health. Persp., 2008, 116: 1607.
[25] Baker S N, Baker G A. Angew. Chem. Int. Ed., 2010, 49: 6726.
[26] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J G, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128: 7756.
[27] Sun Y P, Wang X, Lu F S, Cao L, Meziani M J, Luo P G, Gu L G. J. Phys. Chem. C, 2008, 112: 18295.
[28] Zhou J G, Booker C, Li R Y, Zhou X T, Sham T K, Sun X L, Ding Z F. J. Am. Chem. Soc., 2007, 129: 744.
[29] Luo P H, Li C, Shi G Q. Phys. Chem. Chem. Phys., 2012, 14: 7360.
[30] Ray S C, Saha A, Jana N R, Sarkar R. J. Phys. Chem. C, 2009, 113: 18546.
[31] Qiao Z A, Wang Y F, Gao Y, Li H W, Dai T Y, Liu Y L, Huo Q S. Chem. Commun., 2010, 46: 8812.
[32] Zheng H Z, Wang Q L, Long Y J, Zhang H J, Huang X X, Zhu R. Chem. Commun., 2011, 47: 10650.
[33] Li H T, He X D, Liu Y, Hang Yu, Kang Z H, Lee S T. Mater. Res. Bull., 2011, 46: 147.
[34] Wang F, Xie Z, Zhang H, Liu C Y, Zhang Y G. Adv. Funct. Mater., 2011, 21: 1027.
[35] Wang F, Pang S Q, Wang L, Li Q, Kreiter M, Liu C Y. Chem. Mater., 2010, 22: 4528.
[36] Zong J, Zhu Y H, Yang X L, Shen J H, Li C Z. Chem. Commun., 2011, 47: 764.
[37] Dong Y Q, Wang R X, Li H, Shao J W, Chi Y W, Lin X M, Chen G N. Carbon, 2012, 50: 2810.
[38] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013, 52: 3953.
[39] Peng H, Travas-Sejdic J. Chem. Mater., 2009, 21: 5563.
[40] Han B F, Wang W X, Wu H Y, Fang F, Wang N Z, Zhang X J, Xu S K. Colloid. Surface. B, 2012, 100: 209.
[41] Xu Y, Wu M, Liu Y, Feng X Z, Yin X B, He X W, Zhang Y K. Chem. Eur. J., 2013, 19: 2276.
[42] Wang X H, Qu K G, Xu B L, Ren J S, Qu X G. J. Mater. Chem., 2011, 21: 2445.
[43] Jaiswal A, Ghosh S S, Chattopadhyay A. Chem. Commun., 2012, 48: 407.
[44] Shen L M, Zhang L P, Chen M L, Chen X W, Wang J H. Carbon, 2013, 55: 343.
[45] Lin Z, Xue W, Chen H, Lin J M. Chem. Commun., 2012, 48: 1051.
[46] Li H T, He X D, Liu Y, Huang H, Lian S Y, Lee S T, Kang Z H. Carbon, 2011, 49: 605.
[47] Li M, Gou H L, Al-Ogaidi I, Wu N Q. ACS Sustainable Chem. Eng., 2013, 1: 713.
[48] Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24: 2037.
[49] Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubí-Robles M, Fernández B, Ruedas-Rama M J, Megia-Fernández A, Lapresta-Fernández A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey L F. Chem. Commun., 2013, 49: 1103.
[50] Liu J M, Lin L P, Wang X X, Lin S Q, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2012, 137: 2637.
[51] Zhu A W, Qu Q, Shao X L, Kong B, Tian Y. Angew. Chem., 2012, 124: 7297.
[52] Shao X L, Gu H, Wang Z, Chai X L, Tian Y, Shi G Y. Anal. Chem., 2013, 85: 418.
[53] Wei W, Xua C, Ren J, Xu B, Qu X. Chem. Commun., 2012, 48: 1284.
[54] Liu L Q, Li Y F, Zhan L, Liu Y, Huang C Z. Sci. China Chem., 2011, 54: 1342.
[55] Liu Y, Liu C Y, Zhang Z Y. Appl. Surf. Sci., 2012, 263: 481.
[56] Gonalves H M R, Duarte A J, Esteves da Silva J C G. Biosens. Bioelectron., 2010, 26: 1302.
[57] Qu K G, Wang J S, Ren J S, Qu X G. Chem. Eur. J., 2013, 19: 7243.
[58] Lin Z, Xue W, Chen H, Lin J M. Anal. Chem., 2011, 83: 8245.
[59] Zhao H X, Liu L Q, Liu Z D, Wang Y, Zhao X J, Huang C Z. Chem. Commun., 2011, 47: 2604.
[60] Liu J M, Lin L P, Wang X X, Jiao L, Cui M L, Jiang S L, Cai W L, Zhang L H, Zheng Z Y. Analyst, 2013, 138: 278.
[61] Yu C M, Li X Z, Zeng F, Zheng F Y, Wu S Z. Chem. Commun., 2013, 49: 403.
[62] Barman S, Sadhukhan M. J. Mater. Chem., 2012, 22: 21832.
[63] Li J Z, Wang N Y, Tran T T, Huang C A, Chen L, Yuan L J, Zhou L P, Shen R, Cai Q Y. Analyst, 2013, 138: 2038.
[64] Xu B L, Zhao C Q, Wei W L, Ren J S, Miyoshi D, Sugimoto N, Qu X G. Analyst, 2012, 137: 5483.
[65] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Nat. Methods, 2008, 5: 763.
[66] Weng J, Ren J. Curr. Med. Chem., 2006, 13: 897.
[67] Mao Y, Bao Y, Han D X, Li F H, Niu L. Biosens. Bioelectron., 2012, 38: 55.
[68] Wang C I, Periasamy A P, Chang H T. Anal. Chem., 2013, 85: 3263.
[69] Anilkumar P, Cao L, Yu J J, Tackett Ⅱ K N, Wang P, Meziani M J, Sun Y P. Small, 2013, 9: 545.
[70] Lin F, Pei D J, He W N, Huang Z X, Huang Y J, Guo X Q. J. Mater. Chem., 2012, 22: 11801.
[71] Hötzer B, Medintz I L, Hildebrandt N. Small, 2012, 8: 2297.
[72] Liu R L, Wu D Q, Liu S H, Koynov K, Knoll W, Li Q. Angew. Chem. Int. Ed., 2009, 48: 4598.
[73] Li Q, Ohulchanskyy T Y, Liu R L, Koynov K, Wu D Q, Best A, Kumar R, Bonoiu A, Prasad P N. J. Phys. Chem. C, 2010, 114: 12062.
[74] Liu C J, Zhang P, Tian F, Li W C, Li F, Liu W G. J. Mater. Chem., 2011, 21: 13163.
[75] Bourlinos A B, Bakandritsos A, Kouloumpis A, Gournis D, Krysmann M, Giannelis E P, Polakova K, Safarova K, Hola K, Zboril R. J. Mater. Chem., 2012, 22: 23327.
[76] Sahu S, Behera B, Maiti T K, Mohapatra S. Chem. Commun., 2012, 48: 8835.
[77] Yang S T, Cao L, Luo P J G, Lu F S, Wang X, Wang H F, Meziani M J, Liu Y F, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131: 11308.
[78] Yang S T, Wang X, Wang H F, Lu F S, Luo P J G, Cao L, Meziani M J, Liu J H, Liu Y F, Chen M, Huang Y P, Sun Y P. J. Phys. Chem. C, 2009, 113: 18110.
[79] Huang X L, Zhang F, Zhu L, Choi K Y, Guo N, Guo J X, Tackett K, Anilkumar P, Liu G, Quan Q M, Choi H S, Niu G, Sun Y P, Lee S, Chen X Y. ACS Nano, DOI: 10.1021/nn401911k.
[80] Shen J H, Zhu Y H, Chen C, Yang X L, Li C Z. Chem. Commun., 2011, 47: 2580.
[81] Jia X F, Li J, Wang E K. Nanoscale, 2012, 4: 5572.
[82] Zhang Y Q, Ma D K, Zhuang Y, Zhang X, Chen W, Hong L L, Yan Q X, Yu K, Huang S M. J. Mater. Chem., 2012, 22: 16714.
[83] Huang P, Lin J, Wang X S, Wang Z, Zhang C L, He M, Wang K, Chen F, Li Z M, Shen G X, Cui D X, Chen X Y. Adv. Mater., 2012, 24: 5104.
[84] Guo X, Wang C F, Yu Z Y, Chen L, Chen S. Chem. Commun., 2012, 48: 2692.
[85] Wang F, Chen Y H, Liu C Y, Ma D G. Chem. Commun., 2011, 47: 3502.
[86] Zhang X, Ming H, Liu R H, Han X, Kang Z H, Liu Y, Zhang Y L. Mater. Res. Bull., 2013, 48: 790.
[87] Fan Y Q, Cheng H H, Zhou C, Xie X J, Liu Y, Dai L M, Zhang J, Qu L T. Nanoscale, 2012, 4: 1776.
[88] Zhang P, Li W C, Zhai X Y, Liu C J, Dai L M, Liu W G. Chem. Commun., 2012, 48: 10431.
[89] Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angew. Chem. Int. Ed., 2012, 51: 1.
[90] Wang J, Wang C F, Chen S. Angew. Chem. Int. Ed., 2012, 51: 9297.
[91] Ma Z, Zhang Y L, Wang L, Ming H, Li H T, Zhang X, Wang F, Liu Y, Kang Z H, Lee S T. ACS Appl. Mater. Inter., 2013, 5: 5080.
[92] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew. Chem. Int. Ed., 2010, 49: 4430.
[93] Li H T, Liu R H, Liu Y, Huang H, Yu H, Ming H, Lian S Y, Lee S T, Kang Z H. J. Mater. Chem., 2012, 22: 17470.
[94] Li H T, Liu R H, Lian S Y, Yang Liu, Huang H, Kang Z H. Nanoscale, 2013, 5: 3289.
[95] Zhang H C, Huang H, Ming H, Li H T, Zhang L L, Liu Y, Kang Z H. J. Mater. Chem., 2012, 22: 10501.
[96] Tang D, Zhang H C, Huang H, Liu R H, Han Y Z, Liu Y, Tong C Y, Kang Z H. Dalton Trans., 2013, 42: 6285.
[97] Li H P, Zhu Y H, Cao H M, Yang X L, Li C Z. Mater. Res. Bull., 2013, 48: 232.
[98] Zhang X, Wang F, Huang H, Li H T, Han X, Liu Y, Kang Z H. Nanoscale, 2013, 5: 2274.
[99] Lai C W, Hsiao Y H, Peng Y K, Chou P T. J. Mater. Chem., 2012, 22: 14403.
[100] Zhou L, Li Z H, Liu Z, Ren J S, Qu X G. Langmuir, 2013, 29: 6396.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[6] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[7] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[8] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[9] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[10] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[11] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[12] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[13] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[14] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[15] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.