中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1186-1201 DOI: 10.7536/PC180103 Previous Articles   Next Articles

• Review •

Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots

Junli Wang1,2, Yaling Wang1,2, Jingxia Zheng1,2, Shiping Yu1,3, Yongzhen Yang1,2*, Xuguang Liu1,4*   

  1. 1. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
    3. Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China;
    4. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.U1710117, U1610255, U1607120), the Shanxi Provincial Key Innovative Research Team in Science and Technology(No.2015013002-10, 201605D131045-10), and the Shanxi Provincial Key Research and Development Program(No.201603D111010, 201703D321015-1).
PDF ( 2100 ) Cited
Export

EndNote

Ris

BibTeX

Carbon dots(CDs), as a class of rising nano-materials with strong fluorescence and tunable emission wavelength, exhibit potential application in many fields including optoelectronic device, biosensing and drug carrier because of their superior resistance to photobleaching, low toxicity and excellent biocompatibility. The unique excitation-dependent fluorescence property of CDs denotes the variation of the emission wavelength of CDs with the excitation wavelength, thus the realization of full-color emission through tuning excitation wavelength, which will provide a possibility for the application of CDs in multicolor imaging. Meanwhile, the emission of CDs can extend to near-infrared region when excited by long-wavelength, exhibiting the potential application in living imaging. Therefore, it is important to explore the mechanism of excitation-dependent fluorescence property of CDs, so as to provide a theoretical guidance for realizing their excitation-dependent fluorescence property. In this review, the recent progress in excitation-dependent fluorescence property of CDs was summarized, with especial emphasis on their mechanism, realization approach and application. At present, the excitation-dependent fluorescence in CDs has induced different hypotheses, such as the presence of multiple surface states, wide size distribution, formation of carbon nuclei in CDs, and slow solvent relaxation around CDs. Therefore, the excitation-dependent fluorescence can be realized by tuning surface states, size distribution and carbon nuclei. In addition, the unique property exhibits potential application in imaging and optoelectronic field. In the end, the existing problems are pointed out and the prospects are predicted.
Contents
1 Introduction
2 Mechanism of excitation-dependent fluorescence property in CDs
2.1 Distribution of different surface states
2.2 Distribution of wide particle size
2.3 Structure of carbon nuclei
2.4 Slow solvent relaxation around CDs
3 Approaches to excitation-dependent fluorescence property in CDs
3.1 Tuning of surface states
3.2 Tuning of size distribution
3.3 Tuning of carbon nuclei
4 The application of excitation-dependent fluorescence property in CDs
4.1 Multicolor imaging in vitro
4.2 Imaging in vivo
5 Conclusion and outlook

CLC Number: 

[1] 颜范勇(Yan F Y), 邹宇(Zou Y), 王猛(Wang M), 代林枫(Dai L F),周旭光(Zhou X G),陈莉(Chen L). 化学进展(Prog. Chem.), 2014, 26:61.
[2] Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[3] Baker S N, Baker G A. Angew Chem. Int. Edit., 2010, 49:6726
[4] Wang F, Kreiter M, He B, Pang S P, Liu C Y. Chem. Commun., 2010, 46:3309.
[5] Zhao L X, Di F, Wang D B, Guo L H, Yang Y, Wan B, Zhang H. Nanoscale, 2013, 5:2655.
[6] Qu Q, Zhu A, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48:5473.
[7] Tuerhong M, Yang X U, Bo Y X. Chinese J. Anal. Chem., 2017, 45:139.
[8] Himaja A L, Karthik P S, Singh S P. Chem. Record, 2015, 15:595.
[9] Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126:12736.
[10] Wang X, Cao L, Lu F S, Meziani M J, Li H T, Qi G, Zhou B, Harruff B A, Kermarrec F, Sun Y P. Chem. Commun., 2009:3774.
[11] Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131:11308.
[12] Zhao Q L, Zhang Z L, Huang B H, Peng J, Zhang M, Pang D W. Chem. Commun., 2008, 5116.
[13] Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B. J. Am. Chem. Soc., 2009, 131:4564.
[14] Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis E P. Small, 2008, 4:455.
[15] Liu R L, Wu D Q, Liu S H, Koynov K, Knoll W, Li Q. Angew Chem. Int. Ed., 2009, 48:4598.
[16] Liu Y, Xiao N, Gong N Q, Wang H, Shi X, Gu W, Ye L. Carbon, 2014, 68:258.
[17] Zhao P, Li X, Baryshnikov G, Wu B, Ågren H, Zhang J J, Zhu L L. Chem. Sci., 2018, 9:1323.
[18] Tomskaya A E, Egorova M N, Kapitonov A N, Nikolaev D V, Popov V I, Fedorov A L, Smagulova S A.Phys. Status Solidi-R, 2018, 255:1700222.
[19] 黄启同(Huang Q T),林小凤(Lin X F),李飞明(Li F M),翁文(Wen W),林丽萍(Lin L P),胡世荣(Hu S R).化学进展(Prog. Chem.), 2015, 27:1604.
[20] Mozdbar A, Nouralishahi A, Fatemi S, Mirakhori G. Proceedings of the International Biennial Conference on Ultrafine Grained and Nanostructured Materials. AIP Conference Proceedings, 2018, 1920.
[21] Chen L Y, Zhang Y Y, Duan B H, Gu Z Z, Guo Y T, Wang H F, Duan C Y. New J Chem., 2018, 42:1690.
[22] Ma X H, Dong Y H, Sun H Y, Chen N S. Mater. Today Chem., 2017, 5:1.
[23] Li B, Guo Y L, Iqbal A, Dong Y P, Li W, Liu W S, Qin W W, Wang Y B. RSC Adv., 2016, 6:4.
[24] Yan H P, Tan M Q, Zhang D M, Cheng F S, Wu H, Fan M, Ma X J, Wang J H. Talanta, 2013, 108:59.
[25] Jiang K, Sun S, Zhang L, Wang Y H, Cai C Z, Lin H W. ACS Appl. Mater. Inter., 2015, 7:23231.
[26] Luo P G, Yang F, Yang S T, Sonkar S K, Yang L J, Broglie J J, Liu Y, Sun Y P. RSC Adv., 2014, 4:10791.
[27] Chen J C, Liu J H, Li J Z, Xu L Q, Qiao Y J. J Colloid Interf. Sci., 2017, 485:167.
[28] Xu Y, Wu M, Liu Y, Feng X Z, Yin X B, He X W, Zhang Y K. Chem. Eur. J, 2013, 19:2276.
[29] Ko H Y, Chang Y W, Paramasivam G, Jeong M S, Cho S, Kim S. Chem. Commun., 2013, 49:10290.
[30] Qu S N, Zhou D, Li D, Ji W Y, Jing P T, Han D, Liu L, Zeng H B, Shen D Z. Adv. Mater., 2016, 28:3516.
[31] Tian Z, Zhang X T, Li D, Zhou D, Jing P T, Shen D Z, Qu S N, Zboril R, Rogach A L. Adv. Opt. Mater., 2017, 5:1700416.
[32] Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Adv. Mater., 2017, 30:1870002.
[33] Miao X, Yan X L, Qu D, Li D B, Tao F F, Sun Z C. ACS Appl. Mater. Inter., 2017, 9:
[34] Qu D, Miao X, Wang X T, Nie C, Li Y X, Luo L, Sun Z C. J. Mater. Chem. B, 2017, 5:18549.
[35] Li H, Kong W Q, Liu J, Liu N Y, Huang H, Liu Y, Kang Z H. Carbon, 2015, 91:66.
[36] Shi W L, Guo F, Han M M, Yuan S L, Guan W S, Li H, Huang H, Liu Y, Kang Z H. J. Mater. Chem. B, 2017, 5:3293.
[37] Wang L P, Zhao S Y, Wu X Q, Guo S J, Liu N Y, Huang H, Liu Y, Kang Z H. RSC Adv., 2016, 6:66893.
[38] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44:362.
[39] Guo X, Wang C F, Yu Z Y, Chen L, Chen S. Chem. Commun., 2012, 48:2692.
[40] Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83:173.
[41] Tang L B, Ji R B, Li X M, Teng K S, Lau S P. J Mater. Chem. C, 2013,1:4908.
[42] Liu R L, Wu D Q, Feng X L, Müllen K. J. Am. Chem. Soc., 2011, 133:15221.
[43] Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T. Adv. Mater., 2011, 23:776.
[44] Fu M, Ehrat F, Wang Y, Milowska K Z, Reckmeier C, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15:6030.
[45] Wang Y F, Dong L H, Xiong R L, Hu A G. J. Mater. Chem. C, 2013, 1:7731.
[46] Yan J A, Xian L, Chou M Y. Phys. Rev. Lett., 2009, 103:086802.
[47] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Adv. Mater., 2010, 22:505.
[48] Zhu S J, Zhang J H, Tang S J, Qiao C Y, Wang L, Wang H Y, Liu X, Li B, Li Y F, Yu W L, Wang X F, Sun H C, Yang B. Adv. Funct. Mater., 2012, 22:4732.
[49] Ray S C, Saha A, Jana N R, Sarkar R. J. Phys. Chem. C, 2009, 113:18546.
[50] Song Y B, Zhu S J, Zhang S T, Fu Y, Zhao X H,Wang L, Yang B. J Mater. Chem. C, 2015, 3:5976.
[51] Khan S, Gupta A, Verma N C, Nandi C K. Nano Lett., 2015, 15:8300.
[52] Wang J, Cheng C M, Huang Y, Zheng B Z, Yuan H Y, Bo L, Zheng M W, Yang S Y, Guo Y, Xiao D. J Mater. Chem. C, 2014, 2:5028.
[53] Mao L H, Tang W Q, Deng Z Y, Liu S S, Wang C F, Chen S. Ind. Eng. Chem. Res., 2014, 53:6417.
[54] Zheng B Z, Liu T, Paau M C, Wang M N, Liu Y, Liu L Z, Wu C F, Du J, Xiao D, Choi M F. RSC Adv., 2015, 5:11667.
[55] Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X M, Teng K S, Luk C M, Zeng S J, Hao J H, Lau S P. ACS Nano, 2012, 6:5102.
[56] Nguyen V, Si J H, Yan L H, Hou X. Carbon, 2015, 95:659.
[57] Yang Z, Xu M H, Liu Y, He F J, Gao F, Su Y J, Wei H, Zhang Y F. Nanoscale, 2014, 6:1890.
[58] Lecroy G E, Messina F, Sciortino A, Bunker C E, Wang P, Fernando K A S, Sun Y P. J. Phys. Chem. C, 2017, 121:28180.
[59] Zhai X Y, Zhang P, Liu C J, Bai T, Li W C, Dai L M, Liu W G. Chem. Commun., 2012, 48:7955.
[60] Cui Y Y, Hu Z B, Zhang C F, Liu X F. J. Mater. Chem. B, 2014, 2:6947.
[61] Zhang Y, He Y H, Cui P P, Feng X T, Chen L, Yang Y Z, Liu X G. RSC Adv., 2015, 5:40393.
[62] Hu S L, Trinchi A, Atkin P, Cole I. Angew Chem. Int. Ed., 2015, 54:2970.
[63] Nie H, Li M J, Li Q S, Liang S J, Tan Y Y, Sheng L, Shi W, Zhang S X A. Chem. Mater., 2014, 26:3104.
[64] Dam B V, Nie H, Ju B, Emanuele M, Paulusse J M J, Schall P, Li M J, Dohnalová K. Small, 2017, 13:1702098.
[65] Ju B, Nie H, Liu Z, Xu H J, Li M J, Wu C F, Wang H D, Zhang S X A. Nanoscale, 2017, 9:1336.
[66] Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew Chem. Int. Edit., 2013, 52:7800.
[67] Li X M, Liu Y L, Song X F, Wang H, Gu H S, Zeng H B. Angew Chem. Int. Edit., 2015, 54:1759.
[68] Wang Y Y, Li Y, Yan Y, Xu J, Guan B Y, Wang Q, Li J Y, Yu J H. Chem. Commun., 2013, 49:9006.
[69] Yan X, Cui X, Li L S. J. Am. Chem. Soc., 2010, 132:5944.
[70] Huang J J, Zhong Z F, Rong M Z, Zhou X, Chen X D, Zhang M Q. Carbon, 2014, 70:190.
[71] Hu S L, Liu J, Yang J L, Wang Y Z, Cao S R. J. Nanopart. Res., 2011, 13:7247.
[72] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem. Int. Edit., 2010, 49:4430.
[73] Khan S, Gupta A, Verma N C, Nandi C K. Nano Lett., 2015, 15:8300.
[74] Chen D Q, Wu W W, Yuan Y J, Zhou Y, Wan Z Y, Huang P. J Mater. Chem. C, 2016, 4:9027.
[75] Long Y M, Zhou C H, Zhang Z L, Tian Z Q, Bao L, Lin Y, Pang D W. J. Mater. Chem., 2012, 22:5917.
[76] Pan L L, Sun S, Zhang A D, Jiang K, Zhang L, Dong C Q, Huang Q, Wu A G, Lin H W. Adv. Mater., 2015, 27:7782.
[77] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B, Pang D W. Adv. Mater., 2011, 23:5801.
[78] Shang J Z, Ma L, Li J W, Ai W, Yu T, Gurzadyan G G. Sci. Rep., 2012, 2:792.
[79] Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Sci. Rep., 2014, 4:4976.
[80] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8:355.
[81] Dong Y Q, Shao J W, Chen C Q, Li H, Wang R X, Chi Y W, Lin X M, Chen G N. Carbon, 2012, 50:4738.
[82] Hu Y P, Yang J, Tian J W, Jia L, Yu J S. RSC Adv., 2015, 5:15366.
[83] Hou J, Yan J, Zhao Q, Li Y, Ding H, Ding L. Nanoscale, 2013, 5:9558.
[84] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew Chem. Int. Ed., 2013, 52:3953.
[85] Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J. Am. Chem. Soc., 2012, 134:747.
[86] Hou J, Wang W, Zhou T Y, Wang B, Li H Y, Ding L. Nanoscale, 2016, 8:11185.
[87] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128:7756.
[88] Zhang F, Wang Y L, Miao Y Q, He Y H, Yang Y Z, Liu X G. Appl. Phys. Lett., 2016, 109:083103.
[89] Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. ACS Nano, 2013, 7:11234.
[90] Zhu S, Zhang J H, Qiao C Y, Tang S J, Li Y F, Yuan W J, Li B, Tian L, Liu F, Hu R, Gao H N, Wei H T, Zhang H, Sun H C, Yang B. Chem. Commun., 2011, 47:6858.
[91] Tao H Q, Yang K, Ma Z, Wan J M, Zhang Y J, Kang Z H, Liu Z. Small, 2012, 8:281.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[3] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[4] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[5] Huang Qitong, Lin Xiaofeng, Li Feiming, Weng Wen, Lin Liping, Hu Shirong. Synthesis and Applications of Carbon Dots [J]. Progress in Chemistry, 2015, 27(11): 1604-1614.
[6] Yan Fanyong, Zou Yu, Wang Meng, Dai Linfeng, Zhou Xuguang, Chen Li. Synthesis and Application of the Fluorescent Carbon Dots [J]. Progress in Chemistry, 2014, 26(01): 61-74.
[7]

Li Na|Wang Xianyou**|Yi Siyong|Dai Chunling

. Template Synthesis of Mesoporous Carbon Materials [J]. Progress in Chemistry, 2008, 20(0708): 1202-1207.
[8] Dai Chunling|Wang Xianyou**|Hang Qinghua|Li Jun. Porous Carbide Derived Carbon [J]. Progress in Chemistry, 2008, 20(01): 42-47.