中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 613-630 DOI: 10.7536/PC180916 Previous Articles   

Special Issue: 锂离子电池

Silicon-Based and -Related Materials for Lithium-Ion Batteries

Yun Zhao1, Yuqiong Kang1, Yuhong Jin2, Li Wang1,**(), Guangyu Tian3, Xiangming He1,3,**()   

  1. 1. Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Beijing Guyue New Materials Research Institute, Beijing University of Technology, Beijing 100124, China
    3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received: Online: Published:
  • Contact: Li Wang, Xiangming He
  • About author:
    ** E-mail:(Li Wang)
    (Xiangming He)
  • Supported by:
    Ministry of Science and Technology of China(2016YFE0102200); National Natural Science Foundation of China(U1564205); Beijing Talents Project(YETP0157)
Richhtml ( 67 ) PDF ( 1766 ) Cited
Export

EndNote

Ris

BibTeX

Lithium ion batteries(LIBs) have been widely used as the energy storage system for the applications of the laptop, the communication equipment and the consumer electronics. And importantly, it will be largely used in the electrical vehicles in the near future. Silicon with a high theoretical capacity of 4200 mAh·g-1(more than 10 time of current graphite anode) is one of the most promising alternative anode material for the next generation of LIBs. However, the electrode pulverization, continuous growth of solid electrolyte interphase(SEI) and lithium consumption in silicon anode material based batteries usually happen during charge/discharge process due to its huge volume change. Moreover, the weak interaction between conventional binder and silicon anode material results in the continuous separation of silicon active material. These problems severely hinder the practical application of silicon anode material. This review systematically summarize the recent progress of silicon and its related materials for LIBs. The content includes the fabrication of silicon materials, the structure of silicon materials, binders, electrolytes and electrolyte additives. Finally, the future development direction of silicon-based materials is presented.

Table 1 The comparison of the fabrication of silicon materials with different raw materials
Fig. 1 Si electrochemical lithiation and delithiation curves at room temperature and 450 ℃. Black line: theoretical voltage curve at 450 ℃. Red and green line: lithiation and delithiation of crystalline Si at room temperature, respectively[24]
Fig. 2 Scheme of fabrication of sandwich structure and its cycling performance[90]
Fig. 3 (a) Scheme of volume changes of silicon nanotube with SiO2 layer as mechanical clamping layer. The mechanical clamping layer directed the volume expasion of lithiated silicon towards inner cavity, SEI then is stable as the surface of the nanotube keeps constant during charge/discharge;(b) cycling curve of silicon nanotube and(c) rate performance[92]
Fig. 4 (a) First-cycle voltage profiles of Si/LixSi composite and Si control cells. (b) Cycling performance of graphite/coated LixSi composite and graphite control cells. (c) Schematic diagrams of the electrochemical prelithiation of SiNWs, and the internal electron and Li+ pathways during the prelithiation. (d) Schematic diagrams of chemical prelithiation of Si particles. The stable LixSi can be mixed with various anode materials and serve as an prelithiation reagent. (e) Prelithiated materials are synthesized by heating a stoichiometric mixture of M nanoparticles and Li metal under mechanical stirring[99, 100, 103, 104]
Fig. 5 Scheme of(a) cross-linked binders;(b) the interaction of binders and active materials by covalent bonding;(c) binders coated on the surface of active materials, keeping pulverized particles together without disintegration [110,111,112]
Table 2 The comparison of different binders
Fig. 6 The structure of different binders
Fig. 7 (a) Possible reaction schemes with FEC as electrolyte additive;(b) schematic comparison of the mechanisms occurring at Si surface using different salts;(c) the cycling curve of SiNW electrode using different electrolyte,and the SEM images of SiNW after 30 cycles: ① EC-DMC/LiPF6; ② DMC-FEC/LiPF6; ③ EC-DMC-FEC/LiPF6;(d) Raman images of the Si electrode surface after the 10th cycle in electrolytes ①PC, ②PP1NEN-TFSA[157, 162, 165, 168]
[1]
Lin D C, Liu Y Y, Cui Y . Nat. Nanotech 2017,12:194.
[2]
Wang F X, Wu X W, Li C Y, Zhu Y S, Fu L J, Wu Y P, Liu X. Energy Environ.Sci., 2016,9:3570.
[3]
Haregewoin A M, Wotango A S ,Hwang B J. Energy Environ. Sci., 2016,9:1955.
[4]
Su X, Wu Q L, Li J C, Xiao X C, Lott A, Lu W Q, Sheldon B W ,Wu J. Adv. Energy Mater, 2014,4:1300882.
[5]
李振杰(Li Z J), 钟杜(Zhong D), 张洁(Zhang J), 陈金伟(Chen J W), 王刚(Wang G), 王瑞林(Wang R L) . 化学进展(Progress in Chemistry), 2019,31:201.
[6]
Sun Y M, Liu N, Cui Y . Nature Energy, 2016,1:16071.
[7]
Zhu B, Jin Y, Tan Y L, Zong L Q, Hu Y, Chen L, Chen Y B, Zhang Q, Zhu J. Nano Lett., 2015,15:5750.
[8]
Jin Y, Zhang S, Zhu B, Tan Y L, Hu X Z, Zong L Q, Zhu J. Nano Lett ., 2015,15:7742.
[9]
Drouiche N, Cuellar P, Kerkar F, Medjahed S, Boutouchent-Guer N ,Hamou M O. Renew. Sust. Energy Rev., 2014,32:936.
[10]
Huang T Y, Selvaraj B, Lin H Y, Sheu H S, Song Y F, Wang C C, Hwang B J ,Wu N L. ACS Sustainable Chem. Eng., 2016,4:5769.
[11]
Nagamori M, Malinsky I, Claveau A. Metall.Trans. B, 1986,17:503.
[12]
Liu N, Huo K F, McDowell M T, Zhao J, Cui Y. Scientific Reports, 2013,3:1919.
[13]
Sun L Y ,Gong K C. Ind. Eng. Chem. Res., 2001,40:5861.
[14]
Wang L, Gao B, Peng C J, Peng X, Fu J J, Chu P K, Huo K F . Nanoscale, 2015,7:13840.
[15]
Favors Z, Wang W, Bay H H, Mutlu Z, Ahmed K, Liu C, Ozkan M, Ozkan C S . Scientific Reports, 2014,4:5623.
[16]
Yoo J K, Kim J, Jung Y S, Kang K . Adv. Mater 2012,24:5452.
[17]
Gao H, Xiao L S, Plümel I, Xu G L, Ren Y, Zuo X B, Liu Y Z, Schulz C, Wiggers H, Amine K ,Chen Z H. Nano Lett, 2017,17:1512.
[18]
Zhang Z L, Wang Y H, Ren W F, Zhong Z Y ,Su F B. RSC Adv, 2014,4:55010.
[19]
Chae S, Ko M, Park S, Kim N, Ma J, Cho J. Energy Environ. Sci., 2016,9:1251.
[20]
Hao Q, Zhao D Y, Duan H M, Zhou Q X, Xu C X . Nanoscale, 2015,7:5320.
[21]
Chen Y, Qian J F, Cao Y L, Yang H X ,Ai X P. ACS Appl. Mater. Interfaces, 2012,4:3753.
[22]
Zhao J S, Wang L, He X M, Wan C R, Jiang C Y . Electrochimica Acta, 2008,53:7048.
[23]
Zhao J S, He X M, Wang L, Wan C R, Jiang C Y . J. New Mat. Electrochem. Systems, 2008,11:187.
[24]
Wu H, Cui Y . Nano Today, 2012,7:414.
[25]
Wilson A M, Way B M, Dahn J R, Vanbuuren T . J. Appl. Phys., 1995,77:2363.
[26]
Zhou S, Liu X H ,Wang D W. Nano Lett, 2010,10:860.
[27]
Gowda S R, Pushparaj V, Herle S, Girishkumar G, Gordon G J, Gullapall H, Zhan X B, Ajayan P M, ,Reddy A L M. Nano Lett., 2012,12:6060.
[28]
Wolf H, Pajkic Z, Gerdes T, Willert-Porada M . J. Power Sources, 2009,190:157. https://linkinghub.elsevier.com/retrieve/pii/S0378775308013815

doi: 10.1016/j.jpowsour.2008.07.035
[29]
Xue L G, Xu G J, Li Y, Li S L, Fu K, Shi Q ,Zhang X W. ACS Appl. Mater. Interfaces, 2013,5:21.
[30]
Zhao C S, Li S W, Luo X, Li B, Pan W, Wu H . J. Mater. Chem. A, 2015,3:10114.
[31]
Wang K, He X M, Wang L, Ren J G, Jiang C Y, Wan C R . Solid State Ionics, 2007,178:115.
[32]
Cui Q W, Cao J, Fang M L J J, Lian F, He X M . J. New Mat. Electrochem. Systems, 2014,17:219.
[33]
Park H, Lee S, Yoo S, Shin M, Kim J, Chun M, Choi N S, Park S. ACSAppl. Mater. Interfaces, 2014,6:16360.
[34]
Li Y Z, Yan K, Lee H W, Lu Z D, Liu N, Cui Y . Nature Energy, 2016,1:15029.
[35]
Zhang L Y, Zhang L, Zhang J, Hao W W, Zheng H H . J. Mater. Chem. A, 2015,3:15432.
[36]
Zhu G B, Gu Y Y, Wang Y, Qu Q T, Zhen H H . J. Alloys Compd., 2019,787:928. https://linkinghub.elsevier.com/retrieve/pii/S0925838819306425

doi: 10.1016/j.jallcom.2019.02.186
[37]
Zhao J S, He X M, Wan C R, Jiang C Y . Rare Metal Materials and Engineering, 2007,36:1490.
[38]
Liu Y, Hudak N S, Huber D L, Limmer S J, Sullivan J P ,Huang J Y. Nano Lett, 2011,11:4188.
[39]
Karki K, Epstein E, Cho J H, Jia Z, Li T, Picraux S T, Wang C, Cumings J. Nano Lett., 2012 12:1392.
[40]
Li X L, Meduri P, Chen X L, Qi W, Engelhard M H, Xu W, Ding F, Xiao J, Wang W, Wang C M, Zhang J G, Liu J . J. Mater. Chem., 2012,22:11014.
[41]
Li P, Zhao G Q, Zheng X B, Xu X, Yao C H, Sun W T, Dou S X . Energy Storage Materials, 2018, DOI: 10.1016/j.ensm.2018.07.014.
[42]
Sun Z, Song X F, Peng Zhang P, Gao L. RSC Adv ., 2014,4:20814.
[43]
Tian H, Tan X, Xin F, Wang C, Han W . Nano Energy, 2015,11:490.
[44]
He X M, Pu W H, Ren J G, Wang L, Jiang C Y, Wan C R . Ionics, 2007,13:51.
[45]
Fang S, Shen L, Xu G, Nie P, Wang J, Dou H ,Zhang X. ACS Appl. Mater. Inter, 2014,6:6497.
[46]
Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu H K, Dou S X, Zhao D . Adv. Mater 2017,29:1700523.
[47]
Wu H, Yu G, Pan L, Liu N, McDowell M T, Bao Z N, Cui Y. Nat. Commun., 2013,4:1943.
[48]
Chew S, Guo Z, Wang J, Chen J, Munroe P, Ng S, Zhao L, Liu H . Electrochem. Commun 2007,9:941.
[49]
Luo W, Wang Y X, Chou S L, Xu Y F, Li W, Kong B, Dou S X, Liu H K, Yang J P . Nano Energy, 2016,27:255.
[50]
Yu B C, Hwa Y, Park C M, Kim J H ,Sohn H J. RSC Adv, 2013,3:9408.
[51]
He Y, Piper D M, Gu M, Travis J J, George S M, Lee S H, Genc A, Pullan L, Liu J, Mao S X, Zhang J G, Ban C L, Wang C M . ACS Nano, 2014,8:11816.
[52]
Gao Y, Yi R, Li Y G C, Song J C, Chen D, Huang Q Q, Mallouk T E, Wang D H . J. Am. Chem. Soc., 2017,139:17359. https://www.ncbi.nlm.nih.gov/pubmed/29083176

doi: 10.1021/jacs.7b07584 pmid: 29083176
[53]
Li Y S ,Shi J L. Adv. Mater, 2014,26:3176.
[54]
Qi J, Lai X X, Wang J Y, Tang H J, Ren H, Yang Y, Jin Q, Zhang L J, Yu R B, Ma G H, Su Z G, Zhao H J ,Wang D. Chem. Soc. Rev, 2015,44:6749.
[55]
Lai X Y, Halpert J E, Wang D. EnergyEnviron. Sci., 2012,5:5604.
[56]
Wang Z Y, Zhou L ,Lou X W. Adv. Mater, 2012,24:1903.
[57]
Zhang Q, Wang W S, Goebl J, Yin Y D . Nano Today, 2009,4:494.
[58]
Hu J, Chen M, Fang X S ,Wu L W. Chem. Soc. Rev, 2011,40:5472.
[59]
Cheng F, Tao Z, Liang J, Chen J . Chem. Mater 2008,20:667.
[60]
Song M S, Chang G, Jung D W, Kwon M S, Li P, Ku J H, Choi J M, Zhang K, Yi G R, Cui Y ,Park J H. ACS Energy Lett, 2018,3:2252.
[61]
Joo J B, Dahl M, Li N, Zaera F ,Yin Y D. Energy Environ. Sci., 2013,6:2082.
[62]
Dubal D P, Ayyad O, Ruiz V ,Gomez-Romero P. Chem. Soc. Rev, 2015,44:1777.
[63]
Jiao Y, Zheng Y, Jaroniec M T ,Qiao S Z. Chem. Soc. Rev, 2015,44:2060.
[64]
Ma T Y, Dai S, Qiao S Z . Mater. Today, 2016,19:265.
[65]
Manthiram A, Fu Y Z, Chung S H, Zu C X ,Su Y S. Chem. Rev, 2014,114:11751.
[66]
Reddy M V, Rao G V S, Chowdari B V R . Chem. Rev., 2013,113:5364.
[67]
Simon P, Gogotsi Y . Nat. Mater 2008,7:845.
[68]
Xia X H, Wang Y, Ruditskiy A ,Xia Y N. Adv. Mater, 2013,25:6313.
[69]
Zhang Q F, Uchaker E, Candelaria S L ,Cao G Z. Chem. Soc. Rev, 2013,42:3127.
[70]
Yuan C Z, Wu H B, Xie Y ,Lou X W. Angew. Chem. Int. Ed., 2014,53:1488.
[71]
Liu C, Li F, Ma L P ,Cheng H M. Adv. Mater, 2010,22, E28.
[72]
Wang X J, Feng J, Bai Y C, Zhang Q ,Yin Y D. Chem. Rev, 2016,116:10983.
[73]
An K, Hyeon T . Nano Today, 2009,4:359.
[74]
You B, Yang J, Sun Q S ,Su Q D. Chem. Commun, 2011,47:12364.
[75]
Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Lett., 2012,12:3315.
[76]
赵云(Zhao Y), 金玉红(Jin Y H), 王莉(Wang L), 田光宁(Tian G Y), 何向明(He X M) . 化学进展(Progress in Chemistry), 2018,30:1761.
[77]
Zhang B, Yu Y, Huang Z, He Y B, Jang D, Yoon W S, Mai Y W, Kang F ,Kim J K. Energy Environ. Sci., 2012,5:9895.
[78]
Wang T, Zhu J, Chen Y, Yang H G, Qin Y, Li F, Cheng Q F, Yu X Z, Xu Z, Lu B A . J. Mater. Chem. A, 2017,5:4809.
[79]
Chan C K, Peng H L, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2008,3:31.
[80]
Cho J H ,Picraux S T. Nano Lett, 2014,14:3088.
[81]
Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009,9:3370.
[82]
Chan C K, Ruffo R, Hong S S, Huggins R A, Cui Y . J. Power Sources, 2009,189:34.
[83]
Kim H, Cho J. NanoLett., 2009,9:3688.
[84]
Yao Y, Liu N ,McDowell M T, asta M, Cui Y Energy Environ. Sci., 2012,5:7927.
[85]
Han X, Chen H X, Li X, Lai S M, Xu Y H, Li C, Chen S Y, Yang Y. ACS Appl . Mater. Interfaces, 2016,8:673.
[86]
Xia F, Kwon S, Lee W W, Liu Z M, Kim S H, Song T, Choi K J, Paik U ,Park W I. Nano Lett, 2015,15:6658.
[87]
Jouybari Y H, Berkemeier F . Electrochimica Acta, 2016,217:171.
[88]
Kim C, Ko M, Yoo S, Chae S, Choi S, Lee E H, Ko S, Lee S Y, Cho J, Park S . Nanoscale, 2014,6:10604.
[89]
Liu J Y, Li N, Goodman M D, Zhang H G, Epstein E S, Huang B, Pan Z, Kim J, Choi J H, Huang X J, Liu J H, Hsia K J, Dillon S J, Braun P V . ACS Nano, 2015,9:1985.
[90]
Liu X H, Zhang J, Si W P, Xi L X, Eichler B, Yan C L, Schmidt O G . ACS Nano, 2015,9:1198.
[91]
Song T, Xia J L, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y G, Hwang K C, Rogers J A, Paik U . Nano Lett, 2010,10:1710.
[92]
Wu H, Chan G, Choi J W, Ryu I, Yao Y, McDowell M T, Lee S W, Jackson A, Yang Y, Hu L B, Cui Y. Nature Nanotech., 2012,7:310.
[93]
任建国(Ren J G), 王科(Wang K), 何向明(He X M), 姜长印(Jiang C Y), 万春荣(Wan C R), 蒲微华(Pu W H) . 化学进展(Progress In Chemistry), 2005,17:597.
[94]
Wang G X, Sun L, Bradhurst D H, Zhong S, Dou S X, Liu H K . J. Power Sources, 2000,88:278. https://linkinghub.elsevier.com/retrieve/pii/S0378775300003852

doi: 10.1016/S0378-7753(00)00385-2
[95]
Park A R, Kim J S, Kim K S, Zhang K, Park J, Park J H, Lee J K ,Yoo P J . ACS Appl. Mater. Interfaces, 2014,6:1702.
[96]
Wang P, Tong L, Wang R F, Chen A R Fang W Z, Yue K, Sun T, Yang Y. RSC Adv., 2018,8:41404.
[97]
Chae S J, Ko M S, Park S K, Kim N H, Ma J Y ,Cho J P. Energy Environ. Sci., 2016,9:1251.
[98]
Ming H, Ming J, Qiu J Y, Zhang W F, Zhang S T, Cao G P . Energy Storage Science and Technology, 2017,6:223.
[99]
Zhao J, Lu Z D, Liu N, Lee H W, McDowell M T, Cui Y. . Nat. Commun., 2014,5:5088.
[100]
Zhao J, Lu Z D, Wang H T, Liu W, Lee H W, Yan K, Zhuo D, Lin D C, Liu N, Cui Y . J. Am. Chem. Soc., 2015,137:8372. https://www.ncbi.nlm.nih.gov/pubmed/26091423

doi: 10.1021/jacs.5b04526 pmid: 26091423
[101]
Ma R J, Liu Y F, He Y P, Gao M X, Pan H G . J. Phys. Chem. Lett., 2012,3:3555. https://www.ncbi.nlm.nih.gov/pubmed/26290987

doi: 10.1021/jz301762x pmid: 26290987
[102]
Obrovac M N, Christensen L . Electrochem. Solid-State Lett., 2004,7:A93.
[103]
Liu N, Hu L B, McDowell M T, Jackson A, Cui Y. ACS Nano, 2011,5:6487.
[104]
Zhao J, Zhou G M, Yan K, Xie J, Li Y Z, Liao L, Jin Y, Liu K, Hsu P C, Wang J Y, Cheng H M, Cui Y . Nature Nanotech 2017,12:993.
[105]
Liu Z H, Yu Q, Zhao Y L, He R H, Xu M, Feng S H, Li S D, Zhou L ,Mai L Q. Chem. Soc. Rev, 2019,48:285.
[106]
Chen T, Wu J, Zhang Q L, Su X . J. Power Sources, 2017,363:126.
[107]
Liu Z H, Guan D D, Yu Q, Xu L, Zhuang Z C, Zhu T, Zhao D Y, Zhou L, Mai L Q . Energy Storage Materials , DOI: 10.1016/j.ensm.2018.01.004.
[108]
Liu Z H, Zhao Y L, He R H, Luo W, Meng J S, Yu Q, Zhao D Y, Zhou L, Mai L Q . Energy Storage Materials, DOI: 10.1016/j.ensm.2018.10.011.
[109]
Xu Q, Sun J K, Yin Y X ,Guo Y G. Adv. Funct. Mater, 2018,28:1705235
[110]
Yu X H, Yang H Y, Meng H W, Sun Y L, Zheng J, Ma D Q ,Xu X H. ACS Appl. Mater. Interfaces, 2015,7:15961.
[111]
Liu Y J, Tai Z X, Zhou T F, Sencadas V, Zhang J, Zhang L, Konstantinov K, Guo Z P ,Liu H K. Adv. Mater, 2017,29:1703028.
[112]
Choi S, Kwon T W, Coskun A, Choi J W . Science, 2017,357:279.
[113]
Xu Z X, Yang J, Zhang T, Nuli Y N, Wang J L, Hirano S I . Joule, 2018,2:950.
[114]
Wei L M, Chen C X, Hou Z Y, Wei H . Scientific Reports, 2016,6:19583.
[115]
Ryou M H, Kim J, Lee I, Kim S, Jeong Y K, Hong S, Ryu J H, Kim T S, Park J K, Lee H ,Choi J W. Adv. Mater, 2013,25:1571.
[116]
Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G . Science, 2011,334:75.
[117]
Chockla A M, Bogart T D, Hessel C M, Klavetter K C, Mullins C B, Korgel B A . J. Phys. Chem. C, 2012,116:18079.
[118]
Russo R, Malinconico M, Santagata G . Biomacromolecules, 2007,8:3193.
[119]
Liu J, Zhang Q, Wu Z Y, Wu J H, Li J T, Huang L ,Sun S G. Chem. Commun, 2014,50:6386.
[120]
Zhang L, Zhang L Y, Chai L L, Xue P, Hao W W, Zheng H H . J. Mater. Chem. A, 2014,2:19036.
[121]
Chen D, Yi R, Chen S R, Xu T, Gordin M L, Wang D H . Solid State Ionics, 2014,254:65.
[122]
Jeong Y K, Kwon T W, Lee I, Kim T S, Coskun A ,Choi J W. Nano Lett, 2014,14:864.
[123]
Kwon T W, Jeong Y K, Deniz E, Aiqaradawi S Y, Choi J W, Coskun A . ACS Nano, 2015,9:11317.
[124]
Magasinski A Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner C F, Fuller T F, Luzinov I, Yushin G . ACS Appl. Mater. Interfaces, 2010,2:3004.
[125]
Han Z J, Yamagiwa K, Yabuuchi N, Son J Y, Cui Y T, Oji H, Kogure A, Harada T, Ishikawa S, Aoki Y ,Komaba S. Phys. Chem. Chem. Phys., 2015,17:3783.
[126]
Han Z J, Yabuuchi N, Shimomura K, Murase M, Yui H, Komaba S . Energy Environ. Sci., 2012,5:9014.
[127]
Yim T, Choi S J, Park J H, Cho W, Jo Y N, Kim T H, Kim Y . J. Phys. Chem. Chem. Phys., 2015,17:2388. https://www.ncbi.nlm.nih.gov/pubmed/25490705

doi: 10.1039/c4cp04723k pmid: 25490705
[128]
Jeena M T, Lee J I, Kim S H, Kin C, Kim J Y, Park S ,Ryu J H. ACS Appl. Mater. Interfaces, 2015,6:18001.
[129]
Jeena M T, Bok T, Kim S H, Park S, Kim J Y, Park S, Ryu J H . Nanoscale, 2016,8:9245.
[130]
Koo B, Kim H, Cho Y, Lee K T, Choi N S ,Cho J. Angew. Chem. Int. Ed., 2012,124:8892.
[131]
Kim C, Jang J Y, Choi N S, Park S. . RSCAdv 2014,4:3070.
[132]
Jeena M T, Lee J I, Kim S H, Kim C, Kim J Y, Park S ,Ryu J H. ACS Appl. Mater. Interfaces, 2014,6:18001.
[133]
Song J X, Zhou M J, Yi R, Xu T, Gordin M L, Tang D H, Yu Z X, Regula M ,Wang D H. Adv. Funct. Mater, 2014,24:5904.
[134]
Choi J, Kim K, Jeong J, Cho K Y, Ryou M H ,Lee Y M. ACS Appl. Mater. Interfaces, 2015,7:14851.
[135]
Choi N S, Yew K H, Choi W U, Kim S S . J. Power Sources, 2008,177:590.
[136]
Yang H S, Kim S H, Kannan A G, Kim S K, Park C, Kim D W . Langmuir, 2016,32:3300.
[137]
Wang C, Wu H, Chen Z , McDowell M T, Cui Y, Bao Z N . Nat. Chem., 2013,5:1042.
[138]
Chen Z, Wang C, Lopez J, Lu Z D, Cui Y ,Bao Z N. Adv. Energy Mater, 2015,5:1401826.
[139]
Lopez J, Chen Z, Wang C, Andrews S C, Cui Y ,Bao Z N. ACS Appl. Mater. Interfaces, 2016,8:2318.
[140]
Sun Y M, Lopez J, Lee H W, Liu N, Zheng G Y, Wu C L, Sun J, Liu W, Chung J W, Bao Z N, Cui Y . Adv. Mater 2016,28:2455.
[141]
Zhao H, Wei Y, Wang C, Qiao R M, Yang W L, Messersmith P B, Liu G . ACS Appl. Mater. Interfaces, 2018, 10, 6:5440.
[142]
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G . Nat. Mater 2010,9:353.
[143]
Zhao H, Yuan W, Liu G . Nano Today, 2015,10:193.
[144]
Courtel F M, Niketic S, Duguay D, Abu-Lebdeh Y, Davidson I J . J. Power Sources, 2011,196:2128.
[145]
Roncali J, Blanchard P, Frere P . J. Mater. Chem., 2005,15:1589.
[146]
Lipomi D J, Lee J A, Vosgueritchian M , Tee B C K, Bolander J A, Bao Z. Chem. Mater., 2012,24:373.
[147]
Higgins T M, Park S H, King P J, Zhang C F, , McEvoy N, Berner N C, Daly D, Shmeiov A, Khan U, Duesberg G, Nicolosi V, Colemanm J N . ACS Nano, 2016,10:3702.
[148]
Ling M, Qiu J X, Li S, Yan C, Kiefel M J, Liu G ,Zhang S Q. Nano Lett, 2015,15:4440.
[149]
Liu G, Xun S D, Vukmirovic N Song X Y, Olalde-Velasco P, Zheng H H, Battaglia V S, Wang L W, Yang W L. Adv. Mater., 2011,23:4679.
[150]
Wu M Y, Xiao X C, Vukmirovic N, Xun S D, Das P, Song X Y, Olalde-Velasco P, Wang D D, Weber A Z, Wang L W, Battaglia V S, Yang W L, Liu G . J. Am. Chem. Soc., 2013,135:12048. https://www.ncbi.nlm.nih.gov/pubmed/23855781

doi: 10.1021/ja4054465 pmid: 23855781
[151]
Wu M Y, Song X Y, Liu X S, Battaglia V, Yang W L, Liu G . J. Mater. Chem. A, 2015,3:3651.
[152]
Zhao H, Wang Z H, Lu P, Jiang M, Shi F F, Song X Y, Zheng Z Y, Zhou X, Fu Y B, Abdelbast G, Xiao X C, Liu Z, Battaglia V S, Zaghib K, Liu G. Nano Lett, 2014,14:6704.
[153]
Park S J, Zhao H, Ai G, Wang C, Song X Y, Yuca N, Battaglia V S, Yang W L, Liu G . J. Am. Chem. Soc., 2015,137:2565. https://www.ncbi.nlm.nih.gov/pubmed/25646659

doi: 10.1021/ja511181p pmid: 25646659
[154]
Zhao H, Wei Y, Qiao R M, Zhu C H, Zheng Z Y, Ling M Jia Z, Bai Y, Fu Y B, Lei J L, Song X Y, Battaglia V S, Yang W L, Messersmith P B. Liu G. Nano Lett., 2015,15:7927.
[155]
Sethuraman V A, Kowolik K, Srinivasan V . J. Power Sources, 2011,196:393.
[156]
Lin Y M, Klavetter K C, Abel P R, Davy N C, Snider J L, Heller A ,Mullins C B. Chem. Commun, 2012,48:7268.
[157]
Etacheri V, Haik O, Goffer Y, Roberts G A, Stefan I C, Fasching R, Aurbach D . Langmuir, 2012,28:965.
[158]
Chen X L, Li X L, Mei D H, Feng J, Hu M Y, Hu J Z, Engelhard M, Zheng J M, Xu W, Xiao J, Liu J, Zhang J G . ChemSusChem, 2014,7:549.
[159]
Jin Y T, Kneusels N J H, Marbella L E, Castillo-Martínez E, Magusin P C M M, Weatherup R S, Jonsson E, Liu T, Paul S, Grey C P. J. Am. Chem. Soc., 2018,140:9854. https://www.ncbi.nlm.nih.gov/pubmed/29979869

doi: 10.1021/jacs.8b03408 pmid: 29979869
[160]
Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y ,Yamin H J. Electrochem. Soc, 1995,142:2882.
[161]
Xu K, Zhuang G R V,Allen J L, Lee U, Zhang S S, Ross P N, Jow T R. J. Phys. Chem. B, 2006,110, 7708.
[162]
Jin Y T, Kneusels N J H, Magusin P C M M, Kim G, Castillo-Martinez E, Marbella L E, Kerber R N, Howe D J, Paul S, Liu T, Grey C P . J. Am. Chem. Soc., 2017,139:14992. https://www.ncbi.nlm.nih.gov/pubmed/28933161

doi: 10.1021/jacs.7b06834 pmid: 28933161
[163]
Xiao Y, Hao D, Chen H X, Gong Z L, Yang Y. ACS Appl . Mater. Interfaces, 2013,5:1681.
[164]
Profatilova I A, Stock C, Schmitz A, Passerini S, Winter M . J. Power Sources, 2013,222:140.
[165]
Philippe B, Dedryvère R, Gorgoi M, Rensmo H, Gonbeau D, Edström K . J. Am. Chem. Soc., 2013,135:9829. https://www.ncbi.nlm.nih.gov/pubmed/23763546

doi: 10.1021/ja403082s pmid: 23763546
[166]
Shobukawa H, Shin J W, Alvarado J, Rustomjia C S, Meng Y S . J. Mater. Chem. A, 2016,4:15117.
[167]
Gruber T, Thomas D, Röder C, Mertens F, Kortus J . J. Raman Spectrosc., 2013,44:934.
[168]
Shimizu M, Usui H, Suzumura T, Sakaguchi H . J. Phys. Chem. C, 2015,119:2975.
[169]
Lee J K, Oh C, Kim N, Hwang J Y, Sun Y K . J. Mater. Chem. A, 2016,4:5366.
[170]
Xu Q, Li J Y, Sun J K, Yin Y X, Wan L J ,Guo Y G. Adv. Energy Mater, 2016,7:1601481.
[171]
Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y, Cho J . Nat. Energy, 2016,1:16113.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[7] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[8] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[9] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[10] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[11] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[12] Guoyong Huang, Xi Dong, Jianwei Du, Xiaohua Sun, Botian Li, Haimu Ye. High-Voltage Electrolyte for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(5): 855-867.
[13] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[14] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[15] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.