中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (1): 9-17 DOI: 10.7536/PC150748 Previous Articles   Next Articles

• Review and comments •

Fabrication and Application of Slippery Liquid-Infused Porous Surface

Wei Cunqian1, Yan Jie2, Tang Hao2, Zhang Qinghua1*, Zhan Xiaoli1, Chen Fengqiu1   

  1. 1. College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Zhejiang FeiJing New Materials Technology Co., Ltd., Zhoushan 316104, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476195, 21576236) and the Zhejiang Provincial Natural Science Foundation of China (No. Y14B060038).
PDF ( 1288 ) Cited
Export

EndNote

Ris

BibTeX

A new type of nepenthes pitcher plant-inspired materials called slippery liquid infused porous surfaces (SLIPS) has been introduced recently that exhibit special anti-wetting performances to many liquids. SLIPS materials are prepared by infusing rough micro/nanostructured substrates with non-covalent bound liquid films of lubricating liquids, such as perfluoropolyethers, silicone oil or ionic liquid, creating smooth liquid-infused surfaces at the molecular-level. These surfaces are demonstrated to possess advantages of low sliding angle and contact angle hysteresis to various and complex liquids. SLIPS materials have board applications in self-cleaning coatings, marine antifouling coatings and biomedical materials because of their omniphobicity, self-healing, good optical transparency, extreme temperature pressure stability, as well as effective against adhesion of a wide range of substances including crude oil, blood, ice and bacterial biofilms. In recent years, SLIPS materials attract much attention of scientists because of the special surface wetting properties. In this review, the research mechanism and progress of designing and fabricating of SLIPS are introduced, including impregnation and swelling methods. Furthermore, the latest development of SLIPSs serve as omniphobic materials capable of meeting needs in anti-fouling, enhancing dropwise condensation, anti-frosting, anti-icing and oil-water separation are reviewed. Finally, the prospective tendency of SLIPS materials is proposed based on the current challenges.

Contents
1 Introduction
2 Mechanism and fabrication of SLIPS
2.1 SLIPS fabricated from etching
2.2 SLIPS fabricated from porous polymer membrane
2.3 SLIPS fabricated from chemical deposition
2.4 SLIPS fabricated from sol-gel
2.5 SLIPS fabricated from layer-by-layer
2.6 SLIPS fabricated from polymer swelling
3 Applications of SLIPS
3.1 Antifouling
3.2 Enhancing condensation
3.3 Anti-frosting and anti-icing
3.4 Oil-water separation
3.5 Other applications
4 Conclusion and outlook

CLC Number: 

[1] Samaha M, Gad-El-Hak M. Polymers, 2014, 6(5): 1266.
[2] 阎映弟(Yan Y D), 罗能镇(Luo N Z), 相咸高(Xiang X G),徐义明(Xu M Y), 张庆华(Zhang Q H), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2014, 26(1): 214.
[3] 赵宁(Zhao N), 卢晓英(Lu X Y), 张晓艳(Zhang X Y), 刘海云(Liu H Y), 谭帅霞(Tan S X), 徐坚(Xu J). 化学进展(Progress in Chemistry), 2007, 19(6): 860.
[4] 徐建海(Xu H J), 李梅(Li M), 赵燕(Zhao Y), 路庆华(Lu Q H). 化学进展(Progress in Chemistry), 2006, 18(11): 1425.
[5] Kota A K, Li Y, Mabry J M, Tuteja A. Adv. Mater., 2012, 24(43): 5838.
[6] Tuteja A, Choi W, Mabry J M, Mckinley G H, Cohen R E. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(47): 18200.
[7] Tuteja A, Choi W, Ma M, Mabry J M, Mazzella S A, Rutledge G C, Mckinley G H, Cohen R E. Science, 2007, 318(5856): 1618.
[8] Zhan X L, Yan Y D, Zhang Q H, Chen F Q. J. Mater. Chem. A, 2014,(2): 9390.
[9] Zhang Q H, Wang Q Y, Jiang J X, Zhan X L, Chen F Q. Langmuir, 2015, 31(16): 4752.
[10] Tang Y Q, Zhang Q H, Zhan X L, Chen F Q. Soft Matter, 2015, 11(22): 4540.
[11] Deng X, Mammen L, Butt H, Vollmer D. Science, 2012, 335: 67.
[12] Pokroy B, Epstein A K, Persson-Gulda M C M, Aizenberg J. Adv. Mater., 2009, 21(4): 463.
[13] Zhou Y N, Li J J, Zhang Q, Luo Z H. AIChE J., 2014, 60(12): 4211.
[14] Zhang T, Wang J M, Chen L, Zhai J, Song Y L, Jiang L. Angew. Chem. Int. Ed., 2011, 50(23): 5311.
[15] Mazumder S, Falkinham J R, Dietrich A M, Puri I K. Biofouling, 2010, 26(3): 333.
[16] Sigal G B, Mrksich M, Whitesides G M. J. Am. Chem. Soc., 1998, 120(14): 3464.
[17] Nhung Nguyen T P, Brunet P, Coffinier Y, Boukherroub R. Langmuir, 2010, 26(23): 18369.
[18] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347(6226): 1129.
[19] Liu Y Y, Chen X Q, Xin J H. J. Mater. Chem., 2009, 19(31): 5602.
[20] Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Nat. Commun., 2013, 4:2176.
[21] Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.
[22] Rykaczewski K, Paxson A T, Staymates M, Walker M L, Sun X D, Anand S, Srinivasan S, Mckinley G H, Chinn J, Scott J H J, Varanasi K K. Sci. Rep., 2014, 4: 4158.
[23] Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R T E, Mckinley G H, Varanasi K K. Soft Mater, 2013,(9): 1772.
[24] Lafuma A, Quére D. Europhys.Lett., 2011, 96: 56001.
[25] Boreyko J B, Polizos G, Datskos P G, Sarles S A, Collier C P. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(21): 7588.
[26] Khalil K S, Mahmoudi S R, Abu-Dheir N, Varanasi K K. Appl. Phys. Lett., 2014, 105(4): 41604.
[27] Anand S, Rykaczewski K, Subramanyam S B, Beysens D, Varanasi K K. Soft Matter, 2015, 11: 69.
[28] Rykaczewski K, Anand S, Subramanyam S B, Varanasi K K. Langmuir, 2013, 29(17): 5230.
[29] Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir, 2013, 29(44): 13414.
[30] Li J S, Kleintschek T, Rieder A, Cheng Y, Baumbach T, Obst U, Schwartz T, Levkin P A. ACS Appl. Mat. Interfaces, 2013, 5(14): 6704.
[31] Xiao L L, Li J S, Mieszkin S, Di Fino A, Clare A S, Callow M E, Callow J A, Grunze M, Rosenhahn A, Levkin P A. ACS Appl. Mat. Interfaces, 2013, 5(20): 10074.
[32] Okada I, Shiratori S. ACS Appl. Mat. Interfaces, 2014, 6(3): 1502.
[33] Lalia B S, Anand S, Varanasi K K, Hashaikeh R. Langmuir, 2013, 29(42): 13081.
[34] Miranda D F, Urata C, Masheder B, Dunderdale G J, Yagihashi M, Hozumi A. APL Materials, 2014, 2(5): 56108.
[35] Jacquemin J, Husson P, Padua A A H, Majer V. Green Chem., 2006, 8(2): 172.
[36] Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interface Sci., 2015, 444: 81.
[37] Wang P, Lu Z, Zhang D. Corros. Sci., 2015, 93: 159.
[38] Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6(8): 6569.
[39] Kim P, Kreder M J, Alvarenga J, Aizenberg J. Nano Lett., 2013: 1082505526.
[40] Tadanaga K, Katata N, Minami T. J. Am. Ceram. Soc., 1997, 4(80): 1040.
[41] Ma W, Higaki Y, Otsuka H, Takahara A. Chem. Commun., 2013, 49: 597.
[42] He M, Zhou X, Zeng X P, Cui D P, Zhang Q L, Chen J, Li H L, Wang J J, Cao Z X, Song Y L, Jiang L. Soft Matter, 2012, 8(25): 6680.
[43] Shillingford C, Maccallum N, Wong T S, Kim P, Aizenberg J. Nanotechnology, 2014, 25(1): 14019.
[44] Sunny S, Vogel N, Howell C, Vu T L, Aizenberg J. Adv. Funct. Mater., 2014, 24(42): 6658.
[45] Huang X Y, Chrisman J D, Zacharia N S. ACS Macro Lett., 2013, 2(9): 826.
[46] Zhang J P, Wu L, Li B C, Li L X, Seeger S, Wang A Q. Langmuir, 2014, 30(47): 14292.
[47] Zhang J P, Wang A Q, Seeger S. Adv. Funct. Mater., 2014, 24(8): 1074.
[48] Howell C, Vu T L, Johnson C P, Hou X, Ahanotu O, Alvarenga J, Leslie D C, Uzun O, Waterhouse A, Kim P, Super M, Aizenberg M, Ingber D E, Aizenberg J. Chem. Mater., 2015, 27(5): 1792.
[49] Mruetusatorn P Y, Boreyko J B, Venkatesan G A, Sarles S A, Hayes D O G, Collier C P. Soft Matter, 2014, 10: 2530.
[50] Zhu L, Xue J, Wang Y Y, Chen Q M, Ding J F, Wang Q J. ACS Appl. Mat. Interfaces, 2013, 5(10): 4763.
[51] Eifert A, Paulssen D, Varanakkottu S N, Baier T, Hardt S. Adv. Mater. Interfaces, 2014, 1(3): 1300138.
[52] Maccallum N, Howell C, Kim P, Sun D, Friedlander R, Ranisau J, Ahanotu O, Lin J J, Vena A, Hatton B, Wong T S, Aizenberg J. ACS Biomater. Sci. Eng., 2015, 1(1): 43.
[53] Yao X, Dunn S S, Kim P, Duffy M, Alvarenga J, Aizenberg J. Angew. Chem. Int. Ed., 2014, 53(17): 4418.
[54] Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Appl. Mat. Interfaces, 2014, 6(15): 13299.
[55] Wu W, Deconinck A, Lewis J A. Adv. Mater., 2011, 23(24): H178.
[56] Urata C, Dunderdale G J, England M W, Hozumi A. J. Mater. Chem. A, 2015, 3:12626.
[57] Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30(36): 10970.
[58] Lee C, Kim H, Nam Y. Langmuir, 2014, 30(28): 8400.
[59] Carlson A, Kim P, Amberg G, Stone H A. Europhys. Lett.,2013, 104: 34008.
[60] Damle V G, Tummala A, Chandrashekar S, Kido C, Roopesh A, Sun X, Doudrick K, Chinn J, Lee J R, Burgin T P, Rykaczewski K. ACS Appl. Mat. Interfaces, 2015, 7(7): 4224.
[61] Manabe K, Kyung K, Shiratori S. ACS Appl. Mat. Interfaces, 2015, 7(8): 4763.
[62] Manna U, Lynn D M. Advanced Materials, 2015,27(19): 3007.
[63] Epstein A K, Hong D, Kim P, Aizenberg J. New J. Phys., 2013(15): 95018.
[64] Epstein A K, Wong T S, Belisle R A, Boggs E M, Aizenberg J. Proc. Natl. Acad. Sci.U.S.A., 2012, 33(109): 13182.
[65] Grinthal A, Aizenberg J. Chem. Mater., 2014, 26(1): 698.
[66] Anand S, Paxson A T, Dhiman R, Smith J D, Varanasi K K. ACS Nano, 2012, 6(11): 10122.
[67] Xiao R, Miljkovic N, Enright R, Wang E N. Sci. Rep., 2013, 3:1998.
[68] Quéré D. Annu. Rev. Mater. Res., 2008, 38(1): 71.
[69] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4(12): 7699.
[70] Cao L L, Jones A K, Sikka V K, Wu J Z, Gao D. Langmuir, 2009, 25(21): 12444.
[71] Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D. Langmuir, 2011, 27(6): 3059.
[72] Wilson P W, Lu W Z, Xu H J, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Phys. Chem. Chem. Phys., 2013, 15(2): 581.
[73] Stone H A. ACS Nano, 2012, 6(8): 6536.
[74] Liu Q, Yang Y, Huang M, Zhou Y X, Liu Y Y, Liang X D. Appl. Surf. Sci., 2015, 346: 68
[75] Lv J, Song Y L, Jiang L, Wang J J. ACS Nano, 2014, 8(4): 3152.
[76] Chen L Q, Geissler A, Bonaccurso E, Zhang K. ACS Appl. Mat. Interfaces, 2014, 6(9): 6969.
[77] Yin X Y, Zhang Y, Wang D A, Liu Z L, Liu Y P, Pei X W, Yu B, Zhou F. Adv. Funct. Mater., 2015, 25(27): 4237.
[78] Chen J, Dou R M, Cui D P, Zhang Q L, Zhang Y F, Xu F J, Zhou X, Wang J J, Song Y L, Jiang L. ACS Appl. Mat. Interfaces, 2013, 5(10): 4026.
[79] Chen J, Luo Z Q, Fan Q R, Lv J Y, Wang J J. Small, 2014, 10(22): 4693.
[80] Dou R, Chen J, Zhang Y F, Wang X P, Cui D P, Song Y L, Jiang L, Wang J J. ACS Appl. Mat. Interfaces, 2014, 6(10): 6998.
[81] Sun X D, Damle V G, Liu S L Z, Rykaczewski K. Adv. Mater. Interfaces, 2015, 2(5):1400479.
[82] Chen P P, Xu Z K. Sci. Rep., 2013, 3: 2776.
[83] Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J. Nature, 2015, 519(7541): 70.
[84] Yao X, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nat. Mater., 2013, 12(6): 529.
[85] You I, Lee T G, Nam Y S, Lee H. ACS Nano, 2014, 8(9): 9016.
[1] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[2] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[3] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[4] Jinkai Xu, Qianqian Cai, Zhanjiang Yu, Zhongxu Lian, Jiwen Tian, Huadong Yu. Fabrication and Application of Metal-Based Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2021, 33(6): 958-974.
[5] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.
[6] Cuiping Zhou, Qiming Liu, Xuan Zhao, Chunsheng Li, Hui Li, Shuxiang Zhang. The Preparation and Anti-Icing Properties of Flexible Surfaces [J]. Progress in Chemistry, 2019, 31(7): 1056-1066.
[7] Rui Hou, Guiqun Li, Yan Zhang, Mingjun Li, Guiming Zhou, Xiaoming Chai. Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs [J]. Progress in Chemistry, 2019, 31(5): 690-698.
[8] Long Cheng, Dajiang Yu, Jiajian You, Teng Long, Susu Chen, Chuanjian Zhou. Silicone Self-Healing Materials [J]. Progress in Chemistry, 2018, 30(12): 1852-1862.
[9] Xiaoli Zhan, Biyu Jin, Qinghua Zhang*, Fengqiu Chen. Design and Applications of Multifunctional Super-Wetting Materials [J]. Progress in Chemistry, 2018, 30(1): 87-100.
[10] Na Niu, Zhiying Li, Tingting Gao, Yudong Liu, Xiaoli Liu, Fengqi Liu*. Hydrophobic Association Hydrogel [J]. Progress in Chemistry, 2017, 29(7): 757-765.
[11] Guo Kun, Zhang Dali, Zhang Sheng, Li Bangjing. Research Progress and Applications of Self-Healing Conductive Materials [J]. Progress in Chemistry, 2015, 27(6): 633-640.
[12] An Guangming, Ling Shiquan, Wang Zhiwei, Luan Lin, Wu Tianzhun. Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure [J]. Progress in Chemistry, 2015, 27(12): 1705-1713.
[13] Li Sichao, Han Peng, Xu Huaping. Self-Healing Polymeric Materials [J]. Progress in Chemistry, 2012, 24(07): 1346-1352.
[14] Qi Hengzhi, Zhao Yunhui, Zhu Kongying, Yuan Xiaoyan. Research Progresses in Self-Healing Polymer Materials [J]. Progress in Chemistry, 2011, 23(12): 2560-2567.
[15] Wang Haiping, Rong Minzhi, Zhang Mingqiu. Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules [J]. Progress in Chemistry, 2010, 22(12): 2397-2407.