中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (10): 1455-1461 DOI: 10.7536/PC160504 Previous Articles   Next Articles

Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots

Tang Zhijiao, Li Gongke*, Hu Yuling*   

  1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21675178, 21575168, 21475153), the Guangdong Provincial Natural Science Foundation of China (No. 2015A030311020), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036) and the Guangzhou Science and Technology Program of China(No. 201604020165).
PDF ( 2553 ) Cited
Export

EndNote

Ris

BibTeX

Fluorescent carbon dots (CDs) are inspiring intensive research interests because of their high chemical stability, low toxicity and customizable surface functionalization. However, there are still some limitations such as low quantum yield, less active sites and so on. As research continues, nitrogen-doped carbon dots (N-CDs) have recently become of great interest because it addresses the above problems of CDs to achieve promising applications for them in biochemical sensing, environmental detection and other fields. In the past five years, doping CDs with nitrogen as a principle way to tune the intrinsic properties of CDs has been considered as an effective strategy, and the procedures for preparing N-CDs have become increasingly green and facile. But the formation mechanism of N-CDs is still not clarified. To easily understand the mechanism and expand its application fields, we reviewed the discovery history, preparation methods and optical properties of N-CDs, especially in latest developments of analytical and bioanalytical applications in quantitative analysis. We also give perspectives on future opportunities and promising applications, which would provide the reference for the development of N-CDs in analytical chemistry.

Contents
1 Introduction
2 Preparation and properties of nitrogen-doped carbon dots
2.1 Preparation of nitrogen-doped carbon dots
2.2 Properties of nitrogen-doped carbon dots
3 Applications in Quantitative analysis of nitrogen-doped carbon dots
3.1 Detection of ions
3.2 Detection of molecules
4 Conclusion and outlook

CLC Number: 

[1] Yao J, Yang M, Duan Y. Chem. Rev., 2014, 114(12):6130.
[2] Howes P D, Chandrawati R, Stevens M M. Science, 2014, 346(6205):1247390.
[3] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P G, Yang H, Kose M E, Chen B, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128(24):7756.
[4] Cao L, Wang X, Meziani M J, Lu F S, Wang H F, Luo P G, Lin Y, Harruff B A, Veca L M, Murray D, Xie S Y, Sun Y P. J. Am. Chem. Soc., 2007, 129(37):11318.
[5] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Science, 2008, 320(18):356.
[6] Pan D Y, Zhang J C, Li Z, Wu M H. Adv. Mater., 2010, 22(6):734.
[7] Benítez-Martínez S, Valcárcel M. Trends Anal. Chem., 2015, 72:93.
[8] 黄启同(Huang Q T), 林小凤(Lin X F),李飞明(Li F M),翁文(Weng W),林丽萍(Lin L P),胡世荣(Hu S R).化学进展(Progress in Chemistry), 2015, 27(11):1604.
[9] Niu W J, Li Y, Zhu R H, Shan D, Fan Y R, Zhang X J. Sensor. Actuat. B, 2015, 218:229.
[10] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1):362.
[11] 姚秋虹(Yao Q H), 林丽萍(Lin L P),赵婷婷(Zhao T T), 陈曦(Chen X). 化学进展(Progress in Chemistry), 2015, 27(11):1523.
[12] Norris D J, Efros A L, Erwin S C. Science, 2008, 319(5871):1776.
[13] Wang X W, Sun G Z, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20):7067.
[14] Du Y, Guo S J. Nanoscale, 2016, 8(5):2532.
[15] Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1):15.
[16] 唐志姣(Tang Z J),李攻科(Li G K),胡玉玲(Hu Y L). 分析测试学报(J. Instrum. Anal.), 2015, 34(8):970.
[17] Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30):7800.
[18] Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83:173.
[19] Sun H J, Ji H W, Ju E G, Guan Y J, Ren J S, Qu X G. Chem. Eur. J., 2015, 21(9):3791.
[20] Gong Y Q, Yu B, Yang W, Zhang X L. Biosens. Bioelectron., 2016, 79:822.
[21] Li F, Liu C J, Yang J, Wang Z, Liu W G, Tian F. RSC Adv., 2014, 4(7):3201.
[22] Wu W T, Zhan L Y, Fan W Y, Song J Z, Li X M, Li Z T, Wang R Q, Zhang J Q, Zheng J T, Wu M B, Zeng H B. Angew. Chem. Int. Ed., 2015, 54(22):6540.
[23] Kundu S, Yadav R M, Narayanan T N, Shelke M V, Vajtai R, Ajayan P M, Pillai V K. Nanoscale, 2015, 7(27):11515.
[24] Arcudi F, Ðor?evi D? L, Prato M. Angew. Chem. Int. Ed., 2016, 55(6):2107.
[25] Ju J, Chen W. Biosens. Bioelectron., 2014, 58:219.
[26] Zhang B X, Gao H, Li X L. New J. Chem., 2014, 38(9):4615.
[27] Wang J Q, Zhang P F, Huang C, Liu G, Leung K C, Wang Y X J. Langmuir, 2015, 31(29):8063.
[28] Hao Y N, Guo H L, Tian L, Kang X F. RSC Adv., 2015, 5(54):43750.
[29] Sarkar S, Sudolská M, Dubeck Dý M, Reckmeier C J, Rogach A L, Zbo?il R, Otyepka M. J. Phys. Chem. C, 2016, 120(2):1303.
[30] Dai Y Q, Long H, Wang X T, Wang Y M, Gu Q, Jiang W, Wang Y C, Li C C, Zeng T Y H, Sun Y M, Zeng J. Part. Part. Syst. Charact., 2014, 31(5):597.
[31] Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016, 10(1):484
[32] Qu D, Zheng M, Zhang L G, Zhao H F, Xie Z G, Jing X B, Haddad R E, Fan H Y, Sun Z C. Sci. Rep., 2014, 4:5294.
[33] Liu Q, Guo B D, Rao Z Y, Zhang B H, Gong J R. Nano Lett., 2013, 13(6):2436.
[34] Guo Y M, Zhang L F, Zhang S S, Yang Y, Chen X H, Zhang M C. Biosens. Bioelectron., 2015, 63:61.
[35] Shi B F, Zhang L L, Lan C Q, Zhao J J, Su Y B, Zhao S L. Talanta, 2015, 142:131.
[36] Zhao D, Chen C X, Lu L X, Yang F, Yang X R. Analyst, 2015, 140(24):8157.
[37] Cai Z W, Li F M, Wu P, Ji L J, Zhang H, Cai C X, Gervasio D F. Anal. Chem., 2015, 87(23):11803.
[38] Deng J H, Lu Q J, Hou Y X, Liu M L, Li H T, Zhang Y Y, Yao S Z. Anal. Chem., 2015, 87(4):2195.
[39] Zhang H J, Chen Y L, Liang M J, Xu L F, Qi S D, Chen H L, Chen X G. Anal. Chem., 2014, 86(19):9846.
[40] Liu Y, Liu Y N, Park S J, Zhang Y F, Kim T, Chae S, Park M, Kim H. J. Mater. Chem. A, 2015, 3(34):17747.
[41] Zhao A D, Zhao C Q, Li M, Ren J S, Qu X G. Anal. Chim. Acta, 2014, 809:128.
[42] Yang T T, Cai F, Zhang X D, Huang Y M. RSC Adv., 2015, 5(130):107340.
[43] Wang H, Wang Y, Guo J, Su Y, Sun C, Zhao J, Luo H M, Dai X, Zou G F. RSC Adv., 2015, 5(17):13036.
[44] Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Jiang Y Q, Wang Y R, Chen X. Nanoscale, 2015, 7(37):10307.
[45] Zhang L, Peng D, Liang R P, Qiu J D. Anal. Chem., 2015, 87(21):10894.
[46] Liu S, Tian J Q, Wang L, Zhang Y W, Qin X Y, Luo Y L, Asiri A M, Al-Youbi A O, Sun X P. Adv. Mater., 2012, 24(15):2037.
[47] Wang Z, Lu Y X, Yuan H, Ren Z H, Xu C, Chen J. Nanoscale, 2015, 7(48):20743.
[48] Tabaraki R, Nateghi A. J. Fluoresc., 2016, 26(1):297.
[49] Cai F, Liu X D, Liu S, Liu H, Huang Y M. RSC Adv., 2014, 4(94):52016.
[50] Wang C X, Xu Z Z, Cheng H, Lin H H, Humphrey M G, Zhang C. Carbon, 2015, 82:87.
[51] Chen S F, Song Y, Li Y, Liu Y L, Su X G, Ma Q. New J. Chem., 2015, 39(10):8114.
[52] Yuan H, Yu J, Feng S L, Gong Y J. RSC Adv., 2016, 6(18):15192.
[53] Yuan H R, Li D N, Liu Y, Xu X Z, Xiong C X. Analyst, 2015, 140(5):1428.
[54] Lin L P, Rong M C, Lu S S, Song X H, Zhong Y X, Yan J W, Wang Y R, Chen X. Nanoscale, 2015, 7(5):1872.
[55] Shi B F, Su Y B, Zhao J J, Liu R J, Zhao Y, Zhao S L. Nanoscale, 2015, 7(41):17350.
[56] Wang C Q, Qian J, Wang K, Hua M J, Liu Q, Hao N, You T Y, Huang X Y. ACS Appl. Mater. Interfaces, 2015, 7(48):26865.
[57] Liu Y, Yan K, Okoth O K, Zhang J D. Biosens. Bioelectron., 2015, 74:1016.
[58] Ju J, Zhang R Z, He S J, Chen W. RSC Adv., 2014, 4(94):52583.
[59] Zhu X H, Zhao T B, Nie Z, Miao Z, Liu Y, Yao S Z. Nanoscale, 2016, 8(4):2205.
[60] Li H, Kong W Q, Liu J, Liu N Y, Huang H, Liu Y, Kang Z H. Carbon, 2015, 91:66.
[61] Li X, Zhu S J, Xu B, Ma K, Zhang J H, Yang B, Tian W J. Nanoscale, 2013, 5(17):7776.
[1] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[2] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[3] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[4] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[5] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[6] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[7] Li Dan, Liu Yurong, Lin Baoping, Sun Ying, Yang Hong, Zhang Xueqin. Graphene/Metal Oxide Composites as Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2015, 27(4): 404-415.
[8] Yao Qiuhong, Lin Liping, Zhao Tingting, Chen Xi. Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots [J]. Progress in Chemistry, 2015, 27(11): 1523-1530.
[9] Zhang Weihong, Huang Yi, Tian Wei. Polymer-Based Hollow Microspheres:Preparation Methods and Applications [J]. Progress in Chemistry, 2013, 25(11): 1951-1961.
[10] Tao Qin, Dong Jian, Qian Weiping*. Quantitative Analysis of Surface-Enhanced Raman Spectroscopy [J]. Progress in Chemistry, 2013, 25(06): 1031-1041.
[11] Wang Jiaojiao, Feng Miao, Zhan Hongbing*. Advances in Preparation of Graphene Quantum Dots [J]. Progress in Chemistry, 2013, 25(01): 86-94.
[12] L? Jitao, Zhang Shuzhen* . Methods for Separation and Analysis of Nanomaterials in the Environment [J]. Progress in Chemistry, 2012, 24(12): 2374-2383.
[13] Chu Daobao, Li Jian, Yuan Ximei, Li Zilong, Wei Xu, Wan Yong. Tin-Based Alloy Anode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2012, 24(08): 1466-1476.
[14] Tang Jingjing, Di Feng, Xu Xiao, Xiao Yinghong, Che Jianfei. Transparent Conductive Graphene Films [J]. Progress in Chemistry, 2012, 24(04): 501-511.
[15] Li Gang, Li Xiaohong, Zhang Zhijun. Preparation Methods of Copper Nanomaterials [J]. Progress in Chemistry, 2011, 23(8): 1644-1656.