中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1665-1678 DOI: 10.7536/PC201215 Previous Articles   

• Review •

Carbon-Based Materials for Modification of Polyolefin Separators to Improve the Performance of Lithium-Sulfur Batteries

Xinye Liu1, Zhichao Liang1, Shanxing Wang1, Yuanfu Deng1(), Guohua Chen2   

  1. 1 The Key Laboratory of Fuel Cell for Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology,Guangzhou 510641, China
    2 Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Hom Kowloon, China
  • Received: Revised: Online: Published:
  • Contact: Yuanfu Deng
  • Supported by:
    NSFC-RGC Joint Research Scheme(21661162002); NSFC-RGC Joint Research Scheme(N_HKUST601/16); Guangdong Key R&D Program of China(2019B090908001)
Richhtml ( 58 ) PDF ( 581 ) Cited
Export

EndNote

Ris

BibTeX

Owing to their great theoretical energy density (2600 Wh·kg-1), lithium-sulfur (Li-S) batteries are one of the most promising candidates of the next generation energy storage devices. Moreover, the high theoretical specific capacity (1675 mAh·g-1), good eco-friendliness, abundant natural resource and low cost of cathode sulfur are also good for the cheap cost and low environmental pollution of Li-S batteries. However, the practical applications of Li-S batteries are severely impeded by several key challenges, such as the low practical specific capacities, low coulomb efficiencies and fast capacity decay, which resulting from the poor electronic conductivity of sulfur and final products Li2S2/Li2S, the shuttle effects of lithium polysulfides and the growth of lithium dendrite during the electrochemical cycling. It is noted that the modification of the polyolefin separators is one of the effective methods to obviously improve the performances of Li-S batteries. In particular, various carbons and their composites are widely used materials for separator modification because of their unique properties, also, many advancements have been achieved. Herein, the research progresses of the various carbons and their composites for separator modification are reviewed, which will provide guidance for the future research on improving the performance of Li-S batteries by separator modification method.

Contents

1 Introduction

2 Carbon materials for separator modification

3 Carbon-based composite materials for separator modification

4 Conclusion and outlook

Figure 1 (a) An ideal charge-discharge profile of Li-S batteries[5]. Copyright 2013, Royal Society of Chemistry. (b) Schematic illustration of the parasitic polysulfide shuttle effect in a liquid electrolyte based Li-S batteries[6]. Copyright 2014, Elsevier
Table 1 Detailed information of Li-S batteries with modified separators by carbon-based materials
Fig. 2 (a) Schematic configuration of a Li-S cell with a bifunctional microporous carbon interlayer inserted between the sulfur cathode and the separator[20]; Copyright 2012, Nature. (b) Schematic of the electrode configuration using an integrated structure of sulfur and G@PP separator and the corresponding battery assembly[26]; Copyright 2015, Wiley. (c) Schematic illustration of PG fabrication though methane CVD on porous MgO templates and schematic illustration of difference between PP and PG separators in effecting cathode/separator interfaces[27]; Copyright 2017, Elsevier. (d) Cycling stability of cell with different GO modified separator[34]; (e) Schematic illustration of the synthesis of the G@PC/PP separator in Li-S batteries[44]; Copyright 2018, Elsevier. (f) Synthesis of the N-MIMEC from crab shells and the LiPS-trapping mechanisms of the N-MIMEC-coated separator during discharge/charge process[53]. Copyright 2017, Royal Society of Chemistry
Fig. 3 (a) Schematic cell configuration of Li-S batteries using MTO-CNTs interlayer[63]; Copyright 2019, Elsevier. (b) The schematic Li-S cell with rGO@MoS2 coated separator, and SEM image of rGO@MoS2 composite[71]; Copyright 2017, Royal Society of Chemistry. (c) Schematic of LiPS conversion processes on TiN, TiO2 and the TiO2-TiN heterostructure surface[73]; Copyright 2016, Royal Society of Chemistry. (d) Schematic illustration of the preparation of Mo2C@NG nanocomposite[78]. Copyright 2020, Elsevier
Fig. 4 (a) Schematic illustration for the synthesis of N-Ti3C2/C nanosheets and the modified PP separator for Li-S batteries[81]; Copyright 2019, Elsevier. (b) Schematic illustration of the preparation of Ni@NG with the Ni-N4 sites[90]; Copyright 2016, Wiley. (c) Schematic illustration of bifunctional double layer rGO-PVDF/PVDF membrane separator[98]; Copyright 2017, Royal Society of Chemistry. (d) Schematic of cell configuration with a laminated structure g-C3N4/GS cathode interlayer[99]. Copyright 2019, Wiley
Table 2 Detailed information of Li-S batteries with modified separators by composite materials
[1]
Ma Z, Wang F F, Dou M, Yao Q N, Wu F, Kan E J. Appl. Surf. Sci., 2019, 495: 143534.

doi: 10.1016/j.apsusc.2019.143534
[2]
Chung S H, Manthiram A. Adv. Mater., 2019, 31(27): 1901125.

doi: 10.1002/adma.v31.27
[3]
Shao Q J, Wu Z S, Chen J. Energy Storage Mater., 2019, 22: 284.
[4]
Cha E, Patel M, Bhoyate S, Prasad V, Choi W. Nanoscale Horiz., 2020, 5(5): 808.

doi: 10.1039/C9NH00730J
[5]
Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. J. Mater. Chem. A, 2013, 1(33): 9382.

doi: 10.1039/c3ta11045a
[6]
Busche M R, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J. J. Power Sources, 2014, 259: 289.

doi: 10.1016/j.jpowsour.2014.02.075
[7]
Hu Y X, Zhu X B, Wang L Z. ChemSusChem, 2020, 13(6): 1366.

doi: 10.1002/cssc.v13.6
[8]
Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8(6): 500.

doi: 10.1038/nmat2460
[9]
Wu Q P, Zhou X J, Xu J, Cao F H, Li C L. J. Energy Chem., 2019, 38: 94.

doi: 10.1016/j.jechem.2019.01.005
[10]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Nano Lett., 2016, 16(1): 519.

doi: 10.1021/acs.nanolett.5b04166 pmid: 26713782
[11]
Liang X, Wen Z Y, Liu Y, Wu M F, Jin J, Zhang H, Wu X W. J. Power Sources, 2011, 196(22): 9839.

doi: 10.1016/j.jpowsour.2011.08.027
[12]
Wang L N, Liu J Y, Yuan S Y, Wang Y G, Xia Y Y. Energy Environ. Sci., 2016, 9(1): 224.

doi: 10.1039/C5EE02837J
[13]
Ma L B, Chen R P, Hu Y, Zhang W J, Zhu G Y, Zhao P Y, Chen T, Wang C X, Yan W, Wang Y R, Wang L, Tie Z X, Liu J, Jin Z. Energy Storage Mater., 2018, 14: 258.
[14]
Yang H J, Guo C, Naveed A, Lei J Y, Yang J, Nuli Y N, Wang J L. Energy Storage Mater., 2018, 14: 199.
[15]
Deng N P, Liu Y, Li Q X, Yan J, Lei W W, Wang G, Wang L Y, Liang Y Y, Kang W M, Cheng B W. Energy Storage Mater., 2019, 23: 314.
[16]
Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. J. Am. Chem. Soc., 2012, 134(45): 18510.

doi: 10.1021/ja308170k
[17]
Zhang Z, Lai Y, Zhang Z, Li J. Solid State Ionics, 2015, 278:166.

doi: 10.1016/j.ssi.2015.06.018
[18]
Zhao D, Qian X Y, Jin L N, Yang X L, Wang S W, Shen X Q, Yao S S, Rao D W, Zhou Y Y, Xi X M. RSC Adv., 2016, 6(17): 13680.

doi: 10.1039/C5RA26476F
[19]
Feng J N, Qin X J, Ma Z P, Yang J, Yang W, Shao G J. Electrochimica Acta, 2016, 190: 426.

doi: 10.1016/j.electacta.2016.01.017
[20]
Su Y S, Manthiram A. Nat. Commun., 2012, 3: 1166.

doi: 10.1038/ncomms2163
[21]
Chung S H, Manthiram A. Adv. Funct. Mater., 2014, 24(33): 5299.

doi: 10.1002/adfm.v24.33
[22]
Zhao D. Master's Dissertation of Jiangsu University, 2017.
(赵迪. 江苏大学硕士论文, 2017.).
[23]
Xu H, Deng Y F, Shi Z C, Qian Y X, Meng Y Z, Chen G H. J. Mater. Chem. A, 2013, 1(47): 15142.

doi: 10.1039/c3ta13541a
[24]
Zhou G M, Pei S F, Li L, Wang D W, Wang S G, Huang K, Yin L C, Li F, Cheng H M. Adv. Mater., 2014, 26(4): 625.

doi: 10.1002/adma.201302877
[25]
Du Z Z, Guo C K, Wang L J, Hu A J, Jin S, Zhang T M, Jin H C, Qi Z K, Xin S, Kong X H, Guo Y G, Ji H X, Wan L J. ACS Appl. Mater. Interfaces, 2017, 9(50): 43696.

doi: 10.1021/acsami.7b14195
[26]
Zhou G M, Li L, Wang D W, Shan X Y, Pei S F, Li F, Cheng H M. Adv. Mater., 2015, 27(4): 641.

doi: 10.1002/adma.201404210
[27]
Zhai P Y, Peng H J, Cheng X B, Zhu L, Huang J Q, Zhu W C, Zhang Q. Energy Storage Mater., 2017, 7: 56.
[28]
Ji L W, Rao M M, Zheng H M, Zhang L, Li Y C, Duan W H, Guo J H, Cairns E J, Zhang Y G. J. Am. Chem. Soc., 2011, 133(46): 18522.

doi: 10.1021/ja206955k
[29]
Song M K, Zhang Y G, Cairns E J. Nano Lett., 2013, 13(12): 5891.

doi: 10.1021/nl402793z
[30]
Zeng Q R, Leng X, Wu K H, Gentle I R, Wang D W. Carbon, 2015, 93: 611.

doi: 10.1016/j.carbon.2015.05.095
[31]
Du X Y, Zhang X L, Guo J L, Zhao S P, Zhang F X. J. Alloy. Compd., 2017, 714: 311.

doi: 10.1016/j.jallcom.2017.04.258
[32]
Shaibani M, Akbari A, Sheath P, Easton C D, Banerjee P C, Konstas K, Fakhfouri A, Barghamadi M, Musameh M M, Best A S, Rüther T, Mahon P J, Hill M R, Hollenkamp A F, Majumder M. ACS Nano, 2016, 10(8): 7768.

doi: 10.1021/acsnano.6b03285
[33]
Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12(3): 381.

doi: 10.1002/smll.201503133
[34]
Zhu P, Zang J, Zhu J D, Lu Y, Chen C, Jiang M J, Yan C Y, Dirican M, Selvan R K, Kim D, Zhang X W. Carbon, 2018, 126: 594.

doi: 10.1016/j.carbon.2017.10.063
[35]
Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L. J. Power Sources, 2016, 303: 317.

doi: 10.1016/j.jpowsour.2015.11.018
[36]
Pang Q, Liang X, Kwok C Y, Nazar L F. Nat. Energy, 2016, 1(9): 16132.

doi: 10.1038/nenergy.2016.132
[37]
Xu H, Deng Y F, Zhao Z X, Xu H J, Qin X S, Chen G H. Chem. Commun., 2014, 50(72): 10468.

doi: 10.1039/C4CC04868G
[38]
Zhou X Y, Liao Q C, Bai T, Yang J. J. Electroanal. Chem., 2017, 791: 167.

doi: 10.1016/j.jelechem.2017.03.004
[39]
Zhang Z A, Wang G C, Lai Y Q, Li J, Zhang Z Y, Chen W. J. Power Sources, 2015, 300: 157.

doi: 10.1016/j.jpowsour.2015.09.067
[40]
Zhou X Y, Liao Q C, Tang J J, Bai T, Chen F, Yang J. J. Electroanal. Chem., 2016, 768: 55.

doi: 10.1016/j.jelechem.2016.02.037
[41]
Zhang L L, Wan F, Wang X Y, Cao H M, Dai X, Niu Z Q, Wang Y J, Chen J. ACS Appl. Mater. Interfaces, 2018, 10(6): 5594.

doi: 10.1021/acsami.7b18894
[42]
Yuan X Q, Wu L S, He X L, Zeinu K, Huang L, Zhu X L, Hou H J, Liu B C, Hu J P, Yang J K. Chem. Eng. J., 2017, 320: 178.

doi: 10.1016/j.cej.2017.03.022
[43]
Han P, Manthiram A. J. Power Sources, 2017, 369: 87.

doi: 10.1016/j.jpowsour.2017.10.005
[44]
Pei F, Lin L L, Fu A, Mo S G, Ou D H, Fang X L, Zheng N F. Joule, 2018, 2(2): 323.

doi: 10.1016/j.joule.2017.12.003
[45]
Yuan H D, Liu T F, Liu Y J, Nai J W, Wang Y, Zhang W K, Tao X Y. Chem. Sci., 2019, 10(32): 7484.

doi: 10.1039/C9SC02743B
[46]
Li S Q, Ren G F, Hoque M N F, Dong Z H, Warzywoda J, Fan Z Y. Appl. Surf. Sci., 2017, 396: 637.

doi: 10.1016/j.apsusc.2016.10.208
[47]
Liu T, Sun S M, Song W, Sun X L, Niu Q H, Liu H, Ohsaka T, Wu J F. J. Mater. Chem. A, 2018, 6(46): 23486.

doi: 10.1039/C8TA08521H
[48]
Huang Y, Zheng M B, Lin Z X, Zhao B, Zhang S T, Yang J Z, Zhu C L, Zhang H, Sun D P, Shi Y. J. Mater. Chem. A, 2015, 3(20): 10910.

doi: 10.1039/C5TA01515D
[49]
Li S Q, Mou T, Ren G F, Warzywoda J, Wei Z D, Wang B, Fan Z Y. J. Mater. Chem. A, 2017, 5(4): 1650.

doi: 10.1039/C6TA09841J
[50]
Yang J, Chen F, Li C, Bai T, Long B, Zhou X Y. J. Mater. Chem. A, 2016, 4(37): 14324.

doi: 10.1039/C6TA06250D
[51]
Wang S X, Zou K X, Qian Y X, Deng Y F, Zhang L, Chen G H. Carbon, 2019, 144: 745.

doi: 10.1016/j.carbon.2018.12.113
[52]
Wang S X, Liu X Y, Zou K X, Deng Y F, Chen G H. J. Electroanal. Chem., 2020, 858: 113797.

doi: 10.1016/j.jelechem.2019.113797
[53]
Shao H Y, Ai F, Wang W K, Zhang H, Wang A B, Feng W, Huang Y Q. J. Mater. Chem. A, 2017, 5(37): 19892.

doi: 10.1039/C7TA05192A
[54]
Majumder S, Shao M H, Deng Y F, Chen G H. J. Electrochem. Soc., 2019, 166(3): A5386.

doi: 10.1149/2.0501903jes
[55]
Majumder S, Shao M H, Deng Y F, Chen G H. J. Power Sources, 2019, 431: 93.

doi: 10.1016/j.jpowsour.2019.05.045
[56]
Yang L Q, Li G C, Jiang X, Zhang T R, Lin H B, Lee J Y. J. Mater. Chem. A, 2017, 5(24): 12506.

doi: 10.1039/C7TA01352C
[57]
Xu G Y, Yuan J R, Tao X Y, Ding B, Dou H, Yan X H, Xiao Y, Zhang X G. Nano Res., 2015, 8(9): 3066.

doi: 10.1007/s12274-015-0812-0
[58]
Xu Q, Hu G C, Bi H L, Xiang H F. Ionics, 2015, 21(4): 981.

doi: 10.1007/s11581-014-1263-4
[59]
Luo Y F, Luo N N, Kong W B, Wu H C, Wang K, Fan S S, Duan W H, Wang J P. Small, 2018, 14(8): 1702853.

doi: 10.1002/smll.201702853
[60]
Yan L J, Luo N N, Kong W B, Luo S, Wu H C, Jiang K L, Li Q Q, Fan S S, Duan W H, Wang J P. J. Power Sources, 2018, 389: 169.

doi: 10.1016/j.jpowsour.2018.04.015
[61]
Xiang M W, Wu H, Liu H, Huang J, Zheng Y F, Yang L, Jing P, Zhang Y, Dou S X, Liu H K. Adv. Funct. Mater., 2017, 27(37):1702573.

doi: 10.1002/adfm.v27.37
[62]
Yang Y B, Zhang L T, Xu H, Qin X S, Deng Y F, Chen G H. ACS Sustainable Chem. Eng., 2018, 6(12): 17099.

doi: 10.1021/acssuschemeng.8b04468
[63]
Li N, Chen Z X, Chen F, Hu G J, Wang S G, Sun Z H, Sun X D, Li F. Carbon, 2019, 143: 523.

doi: 10.1016/j.carbon.2018.11.064
[64]
Liu T, Sun S M, Hao J L, Song W, Niu Q H, Sun X L, Wu Y, Song D P, Wu J F. ACS Appl. Mater. Interfaces, 2019, 11(17): 15607.

doi: 10.1021/acsami.9b02136
[65]
Yang Y B, Xu H, Wang S X, Deng Y F, Qin X Y, Qin X S, Chen G H. Electrochimica Acta, 2019, 297: 641.

doi: 10.1016/j.electacta.2018.12.009
[66]
Fang D, Wang Y, Liu X, Yu J, Qian C, Chen S, Wang X, Zhang S. ACS Nano, 2019, 13:1563.
[67]
Sun W, Ou X G, Yue X Y, Yang Y X, Wang Z H, Rooney D, Sun K N. Electrochimica Acta, 2016, 207: 198.

doi: 10.1016/j.electacta.2016.04.135
[68]
Hu N N, Lv X, Dai Y, Fan L L, Xiong D B, Li X F. ACS Appl. Mater. Interfaces, 2018, 10(22): 18665.

doi: 10.1021/acsami.8b03255
[69]
Xiao Z B, Yang Z, Wang L, Nie H G, Zhong M E, Lai Q Q, Xu X J, Zhang L J, Huang S M. Adv. Mater., 2015, 27(18): 2891.

doi: 10.1002/adma.v27.18
[70]
Yi R W, Liu C G, Zhao Y C, Hardwick L J, Li Y Q, Geng X W, Zhang Q, Yang L, Zhao C Z. Electrochimica Acta, 2019, 299: 479.

doi: 10.1016/j.electacta.2019.01.015
[71]
Tan L, Li X H, Wang Z X, Guo H J, Wang J X. ACS Appl. Mater. Interfaces, 2018, 10(4): 3707.

doi: 10.1021/acsami.7b18645
[72]
He J R, Hartmann G, Lee M, Hwang G S, Chen Y F, Manthiram A. Energy Environ. Sci., 2019, 12(1): 344.

doi: 10.1039/C8EE03252A
[73]
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Energy Environ. Sci., 2017, 10(7): 1694.

doi: 10.1039/C7EE01430A
[74]
Fan Y, Yang Z, Hua W X, Liu D, Tao T, Rahman M M, Lei W W, Huang S M, Chen Y. Adv. Energy Mater., 2017, 7(13): 1602380.

doi: 10.1002/aenm.v7.13
[75]
Zhou T H, Zhao Y, Zhou G M, Lv W, Sun P J, Kang F Y, Li B H, Yang Q H. Nano Energy, 2017, 39: 291.

doi: 10.1016/j.nanoen.2017.07.012
[76]
Babu G, Masurkar N, Al Salem H, Arava L M R. J. Am. Chem. Soc., 2017, 139(1): 171.

doi: 10.1021/jacs.6b08681
[77]
Wei Y H, Wang Y C, Zhang X M, Wang B Y, Wang Q, Wu N T, Zhang Y, Wu H. ACS Appl. Mater. Interfaces, 2020, 12(31): 35058.

doi: 10.1021/acsami.0c10047
[78]
Yu B, Chen D J, Wang Z G, Qi F, Zhang X J, Wang X Q, Hu Y, Wang B, Zhang W L, Chen Y F, He J R, He W D. Chem. Eng. J., 2020, 399: 125837.

doi: 10.1016/j.cej.2020.125837
[79]
Ma Q Y, Hu M F, Yuan Y, Pan Y K, Chen M Q, Zhang Y Y, Long D H. J. Colloid Interface Sci., 2020, 566: 11.

doi: 10.1016/j.jcis.2020.01.066
[80]
Du M, Li Q, Zhao Y, Liu C S, Pang H. Coord. Chem. Rev., 2020, 416: 213341.

doi: 10.1016/j.ccr.2020.213341
[81]
Jiang G Y, Zheng N, Chen X, Ding G Y, Li Y H, Sun F G, Li Y S. Chem. Eng. J., 2019, 373: 1309.

doi: 10.1016/j.cej.2019.05.119
[82]
Song C L, Li G H, Yang Y, Hong X J, Huang S, Zheng Q F, Si L P, Zhang M, Cai Y P. Chem. Eng. J., 2020, 381: 122701.

doi: 10.1016/j.cej.2019.122701
[83]
Skoda D, Kazda T, Munster L, Hanulikova B, Styskalik A, Eloy P, Debecker D P, Vyroubal P, Simonikova L, Kuritka I. J. Mater. Sci., 2019, 54(22): 14102.

doi: 10.1007/s10853-019-03871-4
[84]
Zhou, Li, Fang , Zhao , Wang , Zhang , Zhou ,. Nanomaterials, 2019, 9(11): 1574.

doi: 10.3390/nano9111574
[85]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095
[86]
Li Z, Ji S F, Liu Y W, Cao X, Tian S B, Chen Y J, Niu Z Q, Li Y D. Chem. Rev., 2020, 120(2): 623.

doi: 10.1021/acs.chemrev.9b00311
[87]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2019, 141(9): 3977.

doi: 10.1021/jacs.8b12973
[88]
Li Y J, Wu J B, Zhang B, Wang W, Zhang G Q, Seh Z W, Zhang N, Sun J, Huang L, Jiang J J, Zhou J, Sun Y M. Energy Storage Mater., 2020, 30: 250.
[89]
Shi H D, Ren X M, Lu J M, Dong C, Liu J, Yang Q H, Chen J, Wu Z S. Adv. Energy Mater., 2020, 10(39): 2002271.

doi: 10.1002/aenm.v10.39
[90]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40): 1903955.

doi: 10.1002/adma.v31.40
[91]
Li Y J, Lin S Y, Wang D D, Gao T T, Song J W, Zhou P, Xu Z K, Yang Z H, Xiao N, Guo S J. Adv. Mater., 2020, 32(8): 1906722.

doi: 10.1002/adma.v32.8
[92]
Zhang K, Chen Z X, Ning R Q, Xi S B, Tang W, Du Y H, Liu C B, Ren Z Y, Chi X, Bai M H, Shen C, Li X, Wang X W, Zhao X X, Leng K, Pennycook S J, Li H P, Xu H, Loh K P, Xie K Y. ACS Appl. Mater. Interfaces, 2019, 11(28): 25147.

doi: 10.1021/acsami.9b05628
[93]
Chung S H, Manthiram A. Adv. Mater., 2014, 26(43): 7352.

doi: 10.1002/adma.v26.43
[94]
Zhuang T Z, Huang J Q, Peng H J, He L Y, Cheng X B, Chen C M, Zhang Q. Small, 2016, 12(3): 381.

doi: 10.1002/smll.201503133
[95]
Chang C H, Chung S H, Manthiram A. J. Mater. Chem. A, 2015, 3(37): 18829.

doi: 10.1039/C5TA05053G
[96]
Wang A X, Xu G Y, Ding B, Chang Z, Wang Y, Dou H, Zhang X G. ChemElectroChem, 2017, 4(2): 362.

doi: 10.1002/celc.201600579
[97]
Fu X W, Wang Y, Scudiero L, Zhong W H. Energy Storage Mater., 2018, 15: 447.
[98]
Zhu P, Zhu J D, Zang J, Chen C, Lu Y, Jiang M J, Yan C Y, Dirican M, Kalai Selvan R, Zhang X W. J. Mater. Chem. A, 2017, 5(29): 15096.

doi: 10.1039/C7TA03301J
[99]
Qu L, Liu P, Yi Y K, Wang T, Yang P, Tian X L, Li M T, Yang B L, Dai S. ChemSusChem, 2019, 12(1): 213.

doi: 10.1002/cssc.v12.1
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[13] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.