中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 855-867 DOI: 10.7536/PC200634 Previous Articles   Next Articles

Special Issue: 锂离子电池

• Original article •

High-Voltage Electrolyte for Lithium-Ion Batteries

Guoyong Huang1, Xi Dong1, Jianwei Du1, Xiaohua Sun1, Botian Li1, Haimu Ye1,*()   

  1. 1 College of New Energy and Materials, State Key Laboratory of Heavy Oil, China University of Petroleum,Beijing 102249, China
  • Received: Revised: Online: Published:
  • Contact: Haimu Ye
  • Supported by:
    National Natural Science Foundation of China(51834008); Beijing Municipal Natural Science Foundation(2202047); Opening Project of State Key Laboratory of Advanced Chemical Power Sources(SKL-ACPS-C-20); Science Foundation of China University of Petroleum, Beijing(ZX20180416)
Richhtml ( 112 ) PDF ( 2260 ) Cited
Export

EndNote

Ris

BibTeX

As a kind of green rechargeable battery with high energy density and power density, lithium-ion batteries are the first choice of portable electronic products and are gradually applied in the field of power vehicles. In order to better meet application requirements, it is necessary to further improve the energy density of current lithium-ion batteries. Different from the rapid development of high-voltage anode materials, traditional electrolyte is easy to decompose under high working voltage, which greatly hinders the commercial application of high energy density lithium-ion batteries. As an important component of lithium-ion batteries, electrolyte has an important impact on performance of lithium-ion batteries in many aspects. Therefore, it is urgent to improve the working voltage of electrolyte to solve the problem of low energy density of lithium-ion batteries. In this paper, the research progress of high-voltage electrolyte at home and abroad in recent years is summarized from two aspects of new organic solvent and high-voltage additive, the effect of theoretical calculation on the design of high-voltage electrolyte is introduced, and the development and prospect of high-voltage electrolyte are summarized and forecast.

Contents

1 Introduction

2 New solvents with wide electrochemical window

2.1 Fluorinated solvents

2.2 Nitrile-based solvents

2.3 Sulfone-based solvents

2.4 Ionic liquids

3 High-voltage electrolyte additives

3.1 Phosphorous additives

3.2 Boronated additives

3.3 Benzene and heterocyclic additives

3.4 Others

4 The effect of theoretical calculation on the preparation of high-voltage electrolyte

5 Conclusion and outlook

Fig. 1 The molecular structures of some fluorinated solvents
Fig. 2 The molecular structures of some nitrile-based solvents
Fig. 3 The molecular structures of some sulfone-based solvents
Fig. 4 The molecular structures of some ionic liquids
Table 1 Properties of different high-voltage solvents
Fig. 5 Film formation mechanism of different additives of NMC532/AG cells, and the different thicknesses and components in the corresponding SEI on the anode[58]
Fig. 6 The molecular structures of some phosphorous additives
Fig. 7 The molecular structures of some boronated additives
Fig. 8 The molecular structures of some benzene and heterocyclic additives
Fig. 9 The molecular structure of some additives
Table 2 Properties of different high-voltage additives
Solvent Components Oxidation potential Capacity retention rate/% ref
Phosphorous TMSP LNMO/MCMB, 1 mol/L LiDFOB-SL + 5 wt% TMSP 5.0 V 80.5(0.5 C, 300 cycles) 61
TPP NMC532/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 1 wt% TPP 6.5 V 58.3(1 C, 400 cycles,55 ℃) 62
TPPO NMC811/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 0.5 wt% TPPO 5.4 V 92.0(0.5 C, 100 cycles) 63
TPFPP LLO/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 0.5 wt% TPFPP 5.4 V 90.6(0.3 C, 200 cycles) 64
Boronated TIB NMC622/Li, 1 mol/L LiPF6-EC/EMC/DEC(1∶1∶1, wt%) + 1 wt% TIB >4.5 V 82.7(1 C, 300 cycles) 68
TMB LiCoO2/Li, 1 mol/L LiPF6-EC/DMC(1∶1, vol%) + 2 wt% TPFPP 5.5 V 81.0(0.1 C, 100 cycles) 69
TPFPB LNMO/Li, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 1 wt% TPFPB 5.6 V 90.0(0.5 C, 500 cycles) 70
LiBOB LNMO/Li, 1.3 mol/L LiPF6-EC/EMC/DMC(3∶4∶3, vol%) + 1 wt% LiBOB >4.6 V 78.7(0.5 C, 80 cycles, 60 ℃) 73
LiDFOB LiCoPO4/Li, 1 mol/L LiPF6-EC/PC/EMC(1∶1∶3, vol%) + 5 wt% LiDFOB 4.9 V 69.4(0.1 C, 40 cycles) 82
Benzene
Heterocyclic
4-ABA Li1.2Ni0.2Mn0.6O2/Li, 1 mol/L LiPF6-EC/DEC(1∶1, vol%) + 0.25 wt% 4-ABA >4.5 V 94.4(0.1 C, 100 cycles) 84
BzTz LiCoO2/graphite, 1 mol/L LiPF6-EC/DMC(3∶7, vol%) + 1 wt% BzTz 5.6 V 74.0(5 C, 100 cycles) 85
3THP LNMO/Li, 1 mol/L LiPF6-EC/DMC(1∶2, vol%) + 0.25 wt% 3THP 4.9 V 91.0(1 C, 350 cycles) 86
Others VC NMC532/graphite, 1 mol/L LiPF6-EC/DMC/PC(1∶3∶1, vol%) + 2 wt% VC 4.7 V 90.7(1 C, 120 cycles) 90
PS Li-rich-NMC/Li, 1 mol/L LiPF6-EC/EMC(1∶1, wt%) + 1 wt% PS 4.6 V 88.4(0.2 C, 240 cycles) 89
SA NMC811/Li, 1 mol/L LiPF6-EC/EMC(3∶7, wt%) + 3 wt% SA 5.6 V 93.8(1 C, 400 cycles) 91
BDTT NMC532/graphite, 1 mol/L LiPF6-EC/EMC(3∶7, vol%) + 1 wt% VC+2wt% BDTT 86.0(0.5 C, 200 cycles) 92
Table 3 HOMO and LUMO values of several solvents[21]
Fig. 10 (a) The calculated HOMO values of solvents and additive molecules and the organic molecules solvated with Li ions;(b) The calculated HOMO and LUMO values of different complexes with the number of solvent molecules coordinating with the BODFP[96]
Fig. 11 Solvent phase reaction energies(ΔG in kcal·mol-1) of TMSB and TMSB+ with a LiF molecule[97]
Fig. 12 Solvent phase reaction energies of TPP with a HF molecule[62]
Table 4 Advantages and disadvantages of various high-voltage solvents
[1]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5):252.

doi: 10.1016/j.mattod.2014.10.040
[2]
Zeng X Q, Li M, Abd El-Hady D, Alshitari W, Al-Bogami A S, Lu J, Amine K. Adv. Energy Mater., 2019, 9(27):1900161.

doi: 10.1002/aenm.v9.27
[3]
Pan H L, Han K S, Engelhard M H, Cao R G, Chen J Z, Zhang J G, Mueller K T, Shao Y Y, Liu J. Adv. Funct. Mater., 2018, 28(38):1707234.

doi: 10.1002/adfm.v28.38
[4]
Girishkumar G, McCloskey B, Luntz A C, Swanson S, Wilcke W. J. Phys. Chem. Lett., 2010, 1(14):2193.

doi: 10.1021/jz1005384
[5]
Tu S B, Chen X, Zhao X X, Cheng M R, Xiong P X, He Y W, Zhang Q, Xu Y H. Adv. Mater., 2018, 30(45):1804581.

doi: 10.1002/adma.v30.45
[6]
Zhao Z W, Huang J, Peng Z Q. Angew. Chem. Int. Ed., 2018, 57(15):3874.

doi: 10.1002/anie.201710156
[7]
Li J C, Ma C, Chi M F, Liang C D, Dudney N J. Adv. Energy Mater., 2015, 5(4):1401408.

doi: 10.1002/aenm.201401408
[8]
Santhanam R, Rambabu B. J. Power Sources, 2010, 195(13):4313.

doi: 10.1016/j.jpowsour.2010.01.016
[9]
Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn J R. ChemInform, 2010, 28(20):205.
[10]
Cherkashinin G, Sharath S U, Jaegermann W. Adv. Energy Mater., 2017, 7(13):1602321.

doi: 10.1002/aenm.201602321
[11]
Yim T, Woo S G, Lim S H, Cho W, Song J H, Han Y K, Kim Y J. J. Mater. Chem. A, 2015, 3(11):6157.

doi: 10.1039/C4TA06531J
[12]
Song Y M, Han J G, Park S, Lee K T, Choi N S. J. Mater. Chem. A, 2014, 2(25):9506.

doi: 10.1039/C4TA01129E
[13]
Flamme B, Rodriguez Garcia G, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A. Green Chem., 2017, 19(8):1828.

doi: 10.1039/C7GC00252A
[14]
Choi N S, Yew K H, Lee K Y, Sung M, Kim H, Kim S S. J. Power Sources, 2006, 161(2):1254.

doi: 10.1016/j.jpowsour.2006.05.049
[15]
Mogi R, Inaba M, Jeong S K, Iriyama Y, Abe T, Ogumi Z. J. Electrochem. Soc., 2002, 149(12):A1578.

doi: 10.1149/1.1516770
[16]
Hu L B, Zhang Z C, Amine K. Electrochem. Commun., 2013, 35:76.

doi: 10.1016/j.elecom.2013.08.009
[17]
Xia L, Xia Y G, Wang C S, Hu H S, Lee S, Yu Q, Chen H C, Liu Z P. ChemElectroChem, 2015, 2(11):1707.

doi: 10.1002/celc.201500286
[18]
Smart M C, Ratnakumar B V, Whitcanack L D, Chin K B, Surampudi S, Croft H, Tice D, Staniewicz R. J. Power Sources, 2003, 119/121:349.

doi: 10.1016/S0378-7753(03)00154-X
[19]
Matsuda Y, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Fluor. Chem., 2011, 132(12):1174.

doi: 10.1016/j.jfluchem.2011.07.019
[20]
He M N, Hu L B, Xue Z, Su C C, Redfern P, Curtiss L A, Polzin B, von Cresce A, Xu K, Zhang Z C. J. Electrochem. Soc., 2015, 162(9):A1725.

doi: 10.1149/2.0231509jes
[21]
Zheng X, Liao Y, Zhang Z R, Zhu J P, Ren F C, He H J, Xiang Y X, Zheng Y Z, Yang Y. J. Energy Chem., 2020, 42:62.

doi: 10.1016/j.jechem.2019.05.023
[22]
Kim C K, Shin D S, Kim K E, Shin K, Woo J J, Kim S, Hong S Y, Choi N S. ChemElectroChem, 2016, 3(6):913.

doi: 10.1002/celc.201600025
[23]
Xia L, Yu L P, Hu D, Chen Z G. Acta Chim. Sinica, 2017, 75(12):1183.

doi: 10.6023/A17060284
[24]
Xia L, Lee S, Jiang Y B, Li S Q, Liu Z P, Yu L P, Hu D, Wang S H, Liu Y T, Chen G Z. ChemElectroChem, 2019, 6(14):3747.

doi: 10.1002/celc.v6.14
[25]
Zhang L L, Ma Y L, Du C Y, Yin G P. Prog. Chem., 2014, 26:553.
( 张玲玲, 马玉林, 杜春雨, 尹鸽平, 化学进展, 2014, 26:553.).

doi: 10.7536/PC130816
[26]
Ue M, Takeda M, Takehara M, Mori S. J. Electrochem. Soc., 1997, 144(8):2684.

doi: 10.1149/1.1837882
[27]
Duncan H, Salem N, Abu-Lebdeh Y. J. Electrochem. Soc., 2013, 160(6):A838.

doi: 10.1149/2.088306jes
[28]
Rohan R, Kuo T C, Lin J H, Hsu Y C, Li C C, Lee J T. J. Phys. Chem. C, 2016, 120(12):6450.

doi: 10.1021/acs.jpcc.6b00980
[29]
Abu-Lebdeh Y, Davidson I. J. Electrochem. Soc., 2009, 156(1):A60.

doi: 10.1149/1.3023084
[30]
Abu-Lebdeh Y, Davidson I. J. Power Sources, 2009, 189(1):576.

doi: 10.1016/j.jpowsour.2008.09.113
[31]
Farhat D, Lemordant D, Jacquemin J, Ghamouss F. J. Electrochem. Soc., 2019, 166(14):A3487.

doi: 10.1149/2.1261914jes
[32]
Hilbig P, Ibing L, Winter M, Cekic-Laskovic I. Energies, 2019, 12(15):2869.

doi: 10.3390/en12152869
[33]
Zhang W L, Lan X Y, Shi Z W, Li C L. Chem. Bull., 2017, 80:1021.
( 张文林, 兰晓艳, 史紫薇, 李春利, 化学通报, 2017, 80:1021.).
[34]
Cao G Z. Sci. China Mater., 2018, 61(10):1360.

doi: 10.1007/s40843-018-9296-y
[35]
Flamme B, Rodriguez Garcia G, Weil M, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A. Green Chem., 2017, 19(8):1828.

doi: 10.1039/C7GC00252A
[36]
Xue L G, Ueno K, Lee S Y, Angell C A. J. Power Sources, 2014, 262:123.

doi: 10.1016/j.jpowsour.2014.03.099
[37]
Wu F, Zhou H, Bai Y, Wang H L, Wu C. ACS Appl. Mater. Interfaces, 2015, 7(27):15098.

doi: 10.1021/acsami.5b04477
[38]
Hess S, Wohlfahrt-Mehrens M, Wachtler M. J. Electrochem. Soc., 2015, 162(2):A3084.

doi: 10.1149/2.0121502jes
[39]
Sun X G, Angell C A. Electrochem. Commun., 2005, 7(3):261.

doi: 10.1016/j.elecom.2005.01.010
[40]
Lewandowski A, Kurc B, Swiderska-Mocek A, Kusa N. J. Power Sources, 2014, 266:132.

doi: 10.1016/j.jpowsour.2014.04.083
[41]
Alvarado J, Schroeder M A, Zhang M H, Borodin O, Gobrogge E, Olguin M, Ding M S, Gobet M, Greenbaum S, Meng Y S, Xu K. Mater. Today, 2018, 21(4):341.

doi: 10.1016/j.mattod.2018.02.005
[42]
Zhang T, Porcher W, Paillard E. J. Power Sources, 2018, 395:212.

doi: 10.1016/j.jpowsour.2018.05.077
[43]
Flamme B, Haddad M, Phansavath P, Ratovelomanana-Vidal V, Chagnes A. ChemElectroChem, 2018, 5(16):2279.

doi: 10.1002/celc.201701343
[44]
MacFarlane D R, Tachikawa N, Forsyth M, Pringle J M, Howlett P C, Elliott G D, Davis J H, Watanabe M, Simon P, Angell C A. Energy Environ. Sci., 2014, 7(1):232.

doi: 10.1039/C3EE42099J
[45]
Watanabe M, Thomas M L, Zhang S G, Ueno K, Yasuda T, Dokko K. Chem. Rev., 2017, 117(10):7190.

doi: 10.1021/acs.chemrev.6b00504
[46]
Zhang S G, Zhang J H, Zhang Y, Deng Y Q. Chem. Rev., 2017, 117(10):6755.

doi: 10.1021/acs.chemrev.6b00509
[47]
Eftekhari A, Liu Y, Chen P. J. Power Sources, 2016, 334:221.

doi: 10.1016/j.jpowsour.2016.10.025
[48]
Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Mita Y, Terada N, Charest P, Guerfi A, Zaghib K. J. Phys. Chem. C, 2008, 112(42):16708.

doi: 10.1021/jp805403e
[49]
Yue Z, Dunya H, Mei X Y, McGarry C, Mandal B K. Ionics, 2019, 25(12):5979.

doi: 10.1007/s11581-019-03133-y
[50]
Bordes E, Douce L, Quitevis E L, Pádua A A H, Costa Gomes M. J. Chem. Phys., 2018, 148(19):193840.

doi: 10.1063/1.5010604
[51]
Le L T M, Vo T D, Ngo K H P, Okada S, Alloin F, Garg A, Le P M L. J. Mol. Liq., 2018, 271:769.

doi: 10.1016/j.molliq.2018.09.068
[52]
Wu C J, Rath P C, Patra J, Bresser D, Passerini S, Umesh B, Dong Q F, Lee T C, Chang J K. ACS Appl. Mater. Interfaces, 2019, 11(45):42049.

doi: 10.1021/acsami.9b12915
[53]
Zhang S J, Li J H, Jiang N Y, Li X Q, Pasupath S, Fang Y X, Liu Q B, Dang D. Chem. Asian J., 2019, 14(16):2810.
[54]
Liang F X, Yu J L, wang D, Dong L, Ma C C, Chen J H, Yang B B, Zhu C Z, Gao Y, Li C H. Electrochimica Acta, 2019, 307:83.

doi: 10.1016/j.electacta.2019.03.110
[55]
Xu K, von Cresce A. J. Mater. Chem., 2011, 21(27):9849.

doi: 10.1039/c0jm04309e
[56]
Kang X. Chem. Rev., 2014, 114(23):11503.

doi: 10.1021/cr500003w
[57]
Tsurumaki A, Branchi M, Rigano A, Poiana R, Panero S, Navarra M A. Electrochimica Acta, 2019, 315:17.

doi: 10.1016/j.electacta.2019.04.190
[58]
Qian Y X, Hu S G, Zou X S, Deng Z H, Xu Y Q, Cao Z Z, Kang Y Y, Deng Y F, Shi Q, Xu K, Deng Y H. Energy Storage Mater., 2019, 20:208.
[59]
Hofmann A, Höweling A, Bohn N, Müller M, Binder J R, Hanemann T. ChemElectroChem, 2019, 6(20):5255.

doi: 10.1002/celc.v6.20
[60]
Xu G J, Pang C G, Chen B B, Ma J, Wang X, Chai J C, Wang Q F, An W Z, Zhou X H, Cui G L, Chen L Q. Adv. Energy Mater., 2018, 8(9):1870038.

doi: 10.1002/aenm.v8.9
[61]
Lu D, Xu G J, Hu Z W, Cui Z L, Wang X, Li J D, Huang L, Du X F, Wang Y T, Ma J, Lu X L, Lin H J, Chen C T, Nugroho A A, Tjeng L H, Cui G L. Small Methods, 2019, 3(10):1900546.

doi: 10.1002/smtd.v3.10
[62]
Zhao W M, Zheng B Z, Liu H D, Ren F C, Zhu J P, Zheng G R, Chen S J, Liu R, Yang X R, Yang Y. Nano Energy, 2019, 63:103815.

doi: 10.1016/j.nanoen.2019.06.011
[63]
Beltrop K, Klein S, Nölle R, Wilken A, Lee J J, Köster T K J, Reiter J, Tao L, Liang C D, Winter M, Qi X, Placke T. Chem. Mater., 2018, 30(8):2726.

doi: 10.1021/acs.chemmater.8b00413
[64]
Yue H Y, Dong Z Y, Yang Y G, Han Z L, Wang L, Zhang H S, Yin Y H, Zhang X G, Zhang Z T, Yang S T. J. Colloid Interface Sci., 2020, 559:236.

doi: 10.1016/j.jcis.2019.10.002
[65]
Zuo X X, Fan C J, Liu J S, Xiao X, Wu J H, Nan J M. J. Power Sources, 2013, 229:308.

doi: 10.1016/j.jpowsour.2012.12.056
[66]
Yu Q P, Chen Z T, Xing L D, Chen D R, Rong H B, Liu Q F, Li W S. Electrochimica Acta, 2015, 176:919.

doi: 10.1016/j.electacta.2015.07.058
[67]
Wang Z S, Xing L D, Li J H, Xu M Q, Li W S. J. Power Sources, 2016, 307:587.

doi: 10.1016/j.jpowsour.2015.11.091
[68]
Qin Z M, Hong S, Hong B, Duan B Y, Lai Y Q, Feng J. J. Electroanal. Chem., 2019, 854:113506.

doi: 10.1016/j.jelechem.2019.113506
[69]
Liu Q Y, Yang G J, Liu S, Han M, Wang Z X, Chen L Q. ACS Appl. Mater. Interfaces, 2019, 11(19):17435.

doi: 10.1021/acsami.9b03417
[70]
Yue H Y, Yang Y G, Xiao Y, Dong Z Y, Cheng S G, Yin Y H, Ling C, Yang W G, Yu Y H, Yang S T. J. Mater. Chem. A, 2019, 7(2):594.

doi: 10.1039/C8TA09380F
[71]
Dong Y N, Young B T, Zhang Y Z, Yoon T, Heskett D R, Hu Y F, Lucht B L. ACS Appl. Mater. Interfaces, 2017, 9(24):20467.

doi: 10.1021/acsami.7b01481
[72]
Shkrob I A, Zhu Y, Marin T W, Abraham D P. J. Phys. Chem. C, 2013, 117(45):23750.

doi: 10.1021/jp407714p
[73]
Ha S Y, Han J G, Song Y M, Chun M J, Han S I, Shin W C, Choi N S. Electrochimica Acta, 2013, 104:170.

doi: 10.1016/j.electacta.2013.04.082
[74]
Xu M Q, Zhou L, Dong Y N, Chen Y J, Garsuch A, Lucht B L. J. Electrochem. Soc., 2013, 160(11):A2005.

doi: 10.1149/2.053311jes
[75]
Pieczonka N P W, Yang L, Balogh M P, Powell B R, Chemelewski K, Manthiram A, Krachkovskiy S A, Goward G R, Liu M H, Kim J H. J. Phys. Chem. C, 2013, 117(44):22603.

doi: 10.1021/jp408717x
[76]
Larush-Asraf L, Biton M, Teller H, Zinigrad E, Aurbach D. J. Power Sources, 2007, 174(2):400.

doi: 10.1016/j.jpowsour.2007.06.171
[77]
Zhang S S. Electrochem. Commun., 2006, 8:1423.

doi: 10.1016/j.elecom.2006.06.016
[78]
Zhang S S. J. Power Sources, 2007, 163(2):713.

doi: 10.1016/j.jpowsour.2006.09.040
[79]
Liu J, Chen Z H, Busking S, Amine K. Electrochem. Commun., 2007, 9(3):475.

doi: 10.1016/j.elecom.2006.10.022
[80]
Li J, Xie K Y, Lai Y Q, Zhang Z A, Li F Q, Hao X, Chen X J, Liu Y X. J. Power Sources, 2010, 195(16):5344.

doi: 10.1016/j.jpowsour.2010.03.038
[81]
Xu M Q, Zhou L, Hao L S, Xing L D, Li W S, Lucht B L. J. Power Sources, 2011, 196(16):6794.

doi: 10.1016/j.jpowsour.2010.10.050
[82]
Hu M, Wei J P, Xing L Y, Zhou Z. J. Appl. Electrochem., 2012, 42(5):291.

doi: 10.1007/s10800-012-0398-0
[83]
Xia L, Lee S, Jiang Y B, Xia Y G, Chen G Z, Liu Z P. ACS Omega, 2017, 2(12):8741.

doi: 10.1021/acsomega.7b01196
[84]
Zhuang Y, Lei Y Q, Guan M Y, Du F H, Cao H S, Dai H, Zhou Q, Adkins J, Zheng J W. Electrochimica Acta, 2020, 331:135465.

doi: 10.1016/j.electacta.2019.135465
[85]
Hamenu L, Madzvamuse A, Mohammed L, Lee Y M, Ko J M, Bon C Y, Kim S J, Cho W I, Baek Y G, Park J. J. Ind. Eng. Chem., 2017, 53:241.

doi: 10.1016/j.jiec.2017.04.031
[86]
Tu W Q, Xia P, Li J H, Zeng L Z, Xu M Q, Xing L D, Zhang L P, Yu L, Fan W Z, Li W S. Electrochimica Acta, 2016, 208:251.

doi: 10.1016/j.electacta.2016.05.029
[87]
Xia J, Harlow J E, Petibon R, Burns J C, Chen L P, Dahn J R. J. Electrochem. Soc., 2014, 161(4):A547.

doi: 10.1149/2.049404jes
[88]
Birrozzi A, Laszczynski N, Hekmatfar M, von Zamory J, Giffin G A, Passerini S. J. Power Sources, 2016, 325:525.

doi: 10.1016/j.jpowsour.2016.06.054
[89]
Pires J, Timperman L, Castets A, Peña J S, Dumont E, Levasseur S, Dedryvère R, Tessier C, Anouti M. RSC Adv., 2015, 5(52):42088.

doi: 10.1039/C5RA05650K
[90]
Hekmatfar M, Hasa I, Eghbal R, Carvalho D V, Moretti A, Passerini S. Adv. Mater. Interfaces, 2020, 7(1):1901500.

doi: 10.1002/admi.v7.1
[91]
Shi C G, Shen C H, Peng X X, Luo C X, Shen L F, Sheng W J, Fan J J, Wang Q, Zhang S J, Xu B B, Xian J J, Wei Y M, Huang L, Li J T, Sun S G. Nano Energy, 2019, 65:104084.

doi: 10.1016/j.nanoen.2019.104084
[92]
Park E J, Kwon Y G, Yoon S, Cho K Y. J. Power Sources, 2019, 441:126668.

doi: 10.1016/j.jpowsour.2019.05.074
[93]
Xiang F Y, Wang P P, Cheng H. Energy Technol., 2020, 8(5):1901277.

doi: 10.1002/ente.v8.5
[94]
Liu Q, Xu H L, Wu F, Mu D B, Shi L L, Wang L, Bi J Y, Wu B R. ACS Appl. Energy Mater., 2019, 2(12):8878.

doi: 10.1021/acsaem.9b01917
[95]
Wu B R, Liu Q, Mu D B, Xu H L, Wang L, Shi L L, Gai L, Wu F. RSC Adv., 2016, 6(57):51738.

doi: 10.1039/C6RA09480E
[96]
Yang T X, Zeng H N, Wang W L, Zhao X Y, Fan W Z, Wang C Y, Zuo X X, Zeng R H, Nan J M. J. Mater. Chem. A, 2019, 7(14):8292.

doi: 10.1039/C9TA01293A
[97]
Han Y K, Yoo J, Yim T. Electrochimica Acta, 2016, 215:455.

doi: 10.1016/j.electacta.2016.08.131
[98]
Zhang G, Musgrave C B. J. Phys. Chem. A, 2007, 111(8):1554.

pmid: 17279730
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Guohui Zhu, Hongxian Huan, Dawei Yu, Xueyi Guo, Qinghua Tian. Selective Recovery of Lithium from Spent Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(2): 287-301.
[5] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[6] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[7] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[8] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[9] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[10] Qi Huang, Zhenyu Xing. Advances in Lithium Selenium Batteries [J]. Progress in Chemistry, 2022, 34(11): 2517-2539.
[11] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[12] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[13] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[14] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[15] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.