中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 287-301 DOI: 10.7536/PC220727 Previous Articles   Next Articles

• Review •

Selective Recovery of Lithium from Spent Lithium-Ion Batteries

Guohui Zhu1,2, Hongxian Huan1,2, Dawei Yu1,2(), Xueyi Guo1,2, Qinghua Tian1,2   

  1. 1 School of Metallurgy and Environment, Central South University,Changsha 410083, China
    2 National and Regional Joint Engineering Research Centre of Nonferrous Metal Resource Recycling,Changsha 410083, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: dawei.yu@csu.edu.cn
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    Natural Science Foundation of Hunan Province(2021JJ30854); National Natural Science Foundation of China(52274413)
Richhtml ( 94 ) PDF ( 965 ) Cited
Export

EndNote

Ris

BibTeX

The transition towards electric vehicles (EVs) has resulted in a proliferating demand for lithium-ion batteries (LIBs). The continuous growth in the EV industry results in a colossal number of LIBs being discarded after reaching their end-of-life. Researchers have carried out numerous investigations on the extraction of valuable metals from spent LIBs. The recycling processes have mainly been concerned with the recovery of the valuable metals of cobalt and nickel, with less attention being placed on lithium recovery. With the imbalance of the supply and demand of lithium resources, research on selective recovery of lithium from spent LIBs has increased in recent years. This paper provides a comprehensive overview of the high-temperature selective conversion, selective leaching, mechanical and electrochemical recycling methods that facilitate selective lithium recovery. It provides recommendations for future research and development to enhance the selective extraction of lithium from spent LIBs.

Contents

1 Introduction

2 Selective lithium extraction from spent LIBs cathode material

2.1 High-temperature transition

2.2 Selective leaching

2.3 Mechanical/electrochemical extraction

2.4 Comparison of advantages and shortcomings of different treatments

2.5 Influence of impurities

3 Recovery of lithium from electrolyte

4 Conclusion and outlook

Table 1 Comparison of different types of cathode composition, structure, proportion of lithium, typical use, market share and recycling economic benefits[4,16,29]
Fig.1 Schematic diagram of selective lithium extraction from electrode material and lithium-bearing slag by high temperature transition
Fig.2 Solubility of lithium carbonate in water at different temperatures[37]
Fig.3 Schematic diagram of selective lithium extraction from LCO cathode by aluminothermic reduction[52], Copyright 2019, American Chemical Society
Table 2 Comparison of the decomposition temperatures of relevant nitrate compounds[58]
Fig.4 Schematic diagram of the selective chlorination of the NCM cathode using CaCl2[64]
Fig.5 Schematic diagram of selective lithium extraction from spent LCO batteries by sulfation roasting[68]. Copyright 2019, RSC
Fig.6 Process for recovering lithium from spent LFP by the H2O2-CH3COOH system[76]
Fig.7 Selective recovery of lithium from spent LFP by mechanical activation[80]
Fig.8 Schematic illustration of the selective recovery of Li from LFP by electrochemical treatment[82]. Copyright 2020, Elsevier
Fig.9 Comparison of high temperature processes for the treatment of different cathode materials with regard to the roasting temperature and required leaching conditions for the roasted products
Table 3 Comparison of leaching reagent and reduction/oxidation agent in selective leaching
Table 4 Comparision of various process treatments in terms of the required energy, reagent costs, exhaust gas emission, acid/alkaline leaching, and processing capacity
Fig.10 Flowsheet for lithium recovery from electrolyte
[1]
Nagaura T. Prog. Batter. Sol. Cells, 1990, 9: 209.
[2]
Fan E S, Li L, Wang Z P, Lin J, Huang Y X, Yao Y, Chen R J, Wu F. Chem. Rev., 2020, 120(14): 7020.

doi: 10.1021/acs.chemrev.9b00535
[3]
Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Nat. Energy, 2021, 6(2): 123.

doi: 10.1038/s41560-020-00748-8
[4]
Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Nature, 2019, 575(7781): 75.

doi: 10.1038/s41586-019-1682-5
[5]
Chen M Y, Zheng Z F, Wang Q, Zhang Y B, Ma X T, Shen C, Xu D P, Liu J, Liu Y T, Gionet P, O’Connor I, Pinnell L, Wang J, Gratz E, Arsenault R, Wang Y. Sci. Rep., 2019, 9: 1654.

doi: 10.1038/s41598-018-38238-3
[6]
Swain B. Sep. Purif. Technol., 2017, 172: 388.

doi: 10.1016/j.seppur.2016.08.031
[7]
Sonoc A, Jeswiet J, Soo V K. Procedia CIRP, 2015, 29: 752.

doi: 10.1016/j.procir.2015.02.039
[8]
Jiang C X, Chen B L, Zhang D Y, Ge L, Wang Y M, Xu T W. CIESC J., 2022(2): 481.
(蒋晨啸, 陈秉伦, 张东钰, 葛亮, 汪耀明, 徐铜文. 化工学报, 2022(2): 481.).
[9]
Zhang X F, Tan X M, Liu W Z, Wang W, Zhang Z L. Conservation and Utillization of Mineral Resources, 2020, 40(5): 17.
(张秀峰, 谭秀民, 刘维燥, 王威, 张利珍. 矿产保护与利用, 2020, 40(5): 17.).
[10]
Dessemond C, Lajoie-Leroux F, Soucy G, Laroche N, Magnan J F. Minerals, 2019, 9(6): 334.

doi: 10.3390/min9060334
[11]
Su T, Guo M, Liu Z, Li Q. J Salt Lake Res, 2019, 27(3): 104.
(苏彤, 郭敏, 刘忠, 李权. 盐湖研究, 2019, 27(3): 104.).
[12]
Liu C W, Lin J, Cao H B, Zhang Y, Sun Z. J. Clean. Prod., 2019, 228: 801.

doi: 10.1016/j.jclepro.2019.04.304
[13]
Zhang H J, Chen X, Zou X, Liu W K, Zheng S L, Zhang Y, Li P. Chin. J. Process. Eng., 2020, 20(5): 503.
(张贺杰, 陈兴, 邹兴, 刘文科, 郑诗礼, 张懿, 李平. 过程工程学报, 2020, 20(5): 503.).
[14]
Liu G F, Lin J C, Tian T T. China Resour. Compr. Util., 2020, 38(1): 96.
(刘光富, 林锦灿, 田婷婷. 中国资源综合利用, 2020, 38(1): 96.).
[15]
Baum Z J, Bird R E, Yu X, Ma J. ACS Energy Lett., 2022, 7(2): 712.

doi: 10.1021/acsenergylett.1c02602
[16]
Yang Y, Okonkwo E G, Huang G Y, Xu S M, Sun W, He Y H. Energy Storage Mater., 2021, 36: 186.
[17]
Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V. Curr. Opin. Green Sustain. Chem., 2020, 24: 26.
[18]
Al-Thyabat S, Nakamura T, Shibata E, Iizuka A. Miner. Eng., 2013, 45: 4.

doi: 10.1016/j.mineng.2012.12.005
[19]
Chen X P, Cao L, Kang D Z, Li J Z, Zhou T, Ma H R. Waste Manag., 2018, 80: 198.

doi: 10.1016/j.wasman.2018.09.013
[20]
Zhu S G, He W Z, Li G M, Zhou X, Zhang X J, Huang J W. Trans. Nonferrous Met. Soc. China, 2012, 22(9): 2274.

doi: 10.1016/S1003-6326(11)61460-X
[21]
Yang Y, Lei S Y, Song S L, Sun W, Wang L S. Waste Manag., 2020, 102: 131.

doi: 10.1016/j.wasman.2019.09.044
[22]
Cao N, Zhang Y L, Chen L L, Chu W, Huang Y G, Jia Y, Wang M. J. Power Sources, 2021, 483: 229163.

doi: 10.1016/j.jpowsour.2020.229163
[23]
Arshad F, Li L, Amin K, Fan E S, Manurkar N, Ahmad A, Yang J B, Wu F, Chen R J. ACS Sustainable Chem. Eng., 2020, 8(36): 13527.

doi: 10.1021/acssuschemeng.0c04940
[24]
Zheng Z. Advanced Materials Industry, 2020, (06): 49.
(郑洲. 新材料产业, 2020, (06): 49.).
[25]
Yi T F, Yue C B, Zhu Y R, Zhu R S, Hu X G. Rare Met. Mater. Eng., 2009, 38(9): 1687.
(伊廷锋, 岳彩波, 朱彦荣, 诸荣孙, 胡信国. 稀有金属材料与工程, 2009, 38(9): 1687.).
[26]
Makuza B, Tian Q H, Guo X Y, Chattopadhyay K, Yu D W. J. Power Sources, 2021, 491: 229622.

doi: 10.1016/j.jpowsour.2021.229622
[27]
Zhao L, Yin J, Gong J H, Li S, Liu R Y, Gao T. Environ Protec Chem Ind, 2021, 41(3): 255.
(赵磊, 殷进, 龚佳豪, 李硕, 刘瑞勇, 高婷. 化工环保, 2021, 41(3): 255.).
[28]
Kumar J, Neiber R R, Park J, Ali Soomro R, Greene G W, Ali Mazari S, Young Seo H, Jin H, Shon M, Wook Chang D, Yong Cho K. Chem. Eng. J., 2022, 431: 133993.

doi: 10.1016/j.cej.2021.133993
[29]
Jin S, Mu D Y, Lu Z A, Li R H, Liu Z, Wang Y, Tian S, Dai C S. J. Clean. Prod., 2022, 340: 130535.

doi: 10.1016/j.jclepro.2022.130535
[30]
Li T, Luo Y H, Liu C. Dianchi, 2021, 51(04): 425.
(李涛, 骆艳华, 刘晨. 电池, 2021, 51(04): 425.).
[31]
Recycling of Spent Lithium-Ion Batteries: Processing Methods and Environmental Impacts. Ed.: An L. Cham: Springer International Publishing, 2019.
[32]
Hendrickson T P, Kavvada O, Shah N, Sathre R, D Scown C. Environ. Res. Lett., 2015, 10(1): 014011.

doi: 10.1088/1748-9326/10/1/014011
[33]
Dang H, Li N, Chang Z D, Wang B F, Zhan Y F, Wu X, Liu W B, Ali S, Li H D, Guo J H, Li W J, Zhou H L, Sun C Y. Sep. Purif. Technol., 2020, 233: 116025.

doi: 10.1016/j.seppur.2019.116025
[34]
Dang H, Chang Z D, Wu X, Ma S H, Zhan Y F, Li N, Liu W B, Li W J, Zhou H L, Sun C Y. Chin. J. Chem. Eng., 2022, 41: 294.

doi: 10.1016/j.cjche.2021.09.008
[35]
Ren G X, Xiao S W, Xie M Q, Pan B, Fan Y Q, Wang F G, Xia X.,. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Cham: Springer International Publishing, 2016: 211.
[36]
Wang Y, Zheng X H, Tao T Y, Liu X Q, Li L, Sun Z. Chem. Ind. Eng. Prog, 2022, 41(08):4530.
(王玥, 郑晓洪, 陶天一, 刘秀庆, 李丽, 孙峙. 化工进展, 2022, 41(08):4530.).
[37]
Wang B, Deng X C, Shi Y F, Dong C C, Fan F Y, Zhu C L, Fan J. Inorganic Chemicals Industry, 2021, 53(07): 73.
(王斌, 邓小川, 史一飞, 董超超, 樊发英, 朱朝梁, 樊洁. 无机盐工业, 2021, 53(07): 73.).
[38]
Makuza B, Yu D W, Huang Z, Tian Q H, Guo X Y. Resour. Conserv. Recycl., 2021, 174: 105784.

doi: 10.1016/j.resconrec.2021.105784
[39]
Liu P C, Xiao L, Tang Y W, Chen Y F, Ye L G, Zhu Y R. J. Therm. Anal. Calorim., 2019, 136(3): 1323.

doi: 10.1007/s10973-018-7732-7
[40]
Hu J T, Zhang J L, Li H X, Chen Y Q, Wang C Y. J. Power Sources, 2017, 351: 192.

doi: 10.1016/j.jpowsour.2017.03.093
[41]
Liao C B, Ren G X, Xiao S W. Nonferrous Met. Extr. Metall., 2020, (12): 42.
(廖财斌, 任国兴, 肖松文. 有色金属(冶炼部分), 2020, (12): 42.).
[42]
Zhao W, Hu X, Wang M, Li C, Gao J, Yang L, Xu C.CN 109672002B, 2020.
[43]
Konishi M, Arai T.JP 2019039028A, 2019.
[44]
Wang H B, Deng C Q, Li S L, Qin S C, Zheng Z C, Li Q.CN 113913606A, 2022.
[45]
Ghamouss F, Mallouki M, Bertolotti B, Chikh L, Vancaeyzeele C, Alfonsi S, Fichet O. J. Power Sources, 2012, 197: 267.

doi: 10.1016/j.jpowsour.2011.09.052
[46]
Lide D. CRC handbook of chemistry and physics on CD-ROM, 2000. 85.
[47]
Liu F P, Peng C, Ma Q X, Wang J L, Zhou S L, Chen Z M, Wilson B P, Lundström M. Sep. Purif. Technol., 2021, 259: 118181.

doi: 10.1016/j.seppur.2020.118181
[48]
Liu C, Dong A G, Chen S X, Fu Y F, Wang W W, Chen X G, Sun N L. China Nonferrous Metall., 2020, 49(4): 69.
(刘诚, 董爱国, 陈宋璇, 付云枫, 王玮玮, 陈学刚, 孙宁磊. 中国有色冶金, 2020, 49(4): 69.).
[49]
Huang Z, Liu F, Makuza B, Yu D W, Guo X Y, Tian Q H. ACS Sustainable Chem. Eng., 2022, 10(2): 756.

doi: 10.1021/acssuschemeng.1c05721
[50]
Pinegar H, Marthi R, Yang P L, Smith Y R. ACS Sustainable Chem. Eng., 2021, 9(22): 7447.

doi: 10.1021/acssuschemeng.0c08695
[51]
Guo M M, Xi X L, Zhang Y H, Yu S W, Long X L, Jiang Z K, Nie Z R, Xu K H. Chin. J. Nonferrous Met., 2020, 30(6): 1415.
(郭苗苗, 席晓丽, 张云河, 余顺文, 龙小林, 蒋振康, 聂祚仁, 许开华. 中国有色金属学报, 2020, 30(6): 1415.).
[52]
Wang W, Zhang Y, Liu X, Xu S. ACS Sustain. Chem. Eng., 2019, 7(14): 12222.
[53]
Wang W Q, Zhang Y C, Zhang L, Xu S M. J. Clean. Prod., 2020, 249: 119340.

doi: 10.1016/j.jclepro.2019.119340
[54]
Markevich E, Salitra G, Aurbach D. Electrochem. Commun., 2005, 7(12): 1298.

doi: 10.1016/j.elecom.2005.09.010
[55]
Zhang S C, Kenta Oi. Ion Exch. Adsorpt., 1992, 8(4): 305.
(张绍成, 大井健太. 离子交换与吸附, 1992, 8(4): 305.).
[56]
Patnaik P. Handbook of inorganic chemicals. McGraw-Hill New York, 2003, 529.
[57]
Peng C, Liu F P, Wang Z L, Wilson B P, Lundström M. J. Power Sources, 2019, 415: 179.

doi: 10.1016/j.jpowsour.2019.01.072
[58]
Yuvaraj S, Lin F Y, Tsong-Huei C, Chuin-Tih Y. J. Phys. Chem. B, 2003, 107(4): 1044.

doi: 10.1021/jp026961c
[59]
Jung Y, Yoo B, Park S, Kim Y, Son S. Metals, 2021, 11(9): 1336.

doi: 10.3390/met11091336
[60]
Burgess J. Metal ions in solution. Chichester: Horwood [u.a.], 1978. 481.
[61]
Barrios O C, González Y C, Barbosa L I, Orosco P. Miner. Eng., 2022, 176: 107321.

doi: 10.1016/j.mineng.2021.107321
[62]
Fan E S, Li L, Lin J, Wu J W, Yang J B, Wu F, Chen R J. ACS Sustainable Chem. Eng., 2019, 7(19): 16144.

doi: 10.1021/acssuschemeng.9b03054
[63]
Qu X, Xie H W, Chen X, Tang Y Q, Zhang B L, Xing P F, Yin H Y. ACS Sustainable Chem. Eng., 2020, 8(16): 6524.

doi: 10.1021/acssuschemeng.0c01205
[64]
Huang Y, Shao P H, Yang L M, Zheng Y F, Sun Z, Fang L L, Lv W G, Yao Z W, Wang L H, Luo X B. Resour. Conserv. Recycl., 2021, 174: 105757.

doi: 10.1016/j.resconrec.2021.105757
[65]
Xiao J F, Niu B, Song Q M, Zhan L, Xu Z M. J. Hazard. Mater., 2021, 404: 123947.

doi: 10.1016/j.jhazmat.2020.123947
[66]
Wang D H, Zhang X D, Chen H J, Sun J Y. Miner. Eng., 2018, 126: 28.

doi: 10.1016/j.mineng.2018.06.023
[67]
Lin J, Li L, Fan E S, Liu C W, Zhang X D, Cao H B, Sun Z, Chen R J. ACS Appl. Mater. Interfaces, 2020, 12(16): 18482.

doi: 10.1021/acsami.0c00420
[68]
Lin J, Liu C W, Cao H B, Chen R J, Yang Y X, Li L, Sun Z. Green Chem., 2019, 21(21): 5904.

doi: 10.1039/C9GC01350D
[69]
Tao S D, Li J, Wang L H, Hu L S, Zhou H M. Ionics, 2019, 25(12): 5643.

doi: 10.1007/s11581-019-03070-w
[70]
Jie Y F, Yang S H, Li Y, Zhao D Q, Lai Y Q, Chen Y M. Minerals, 2020, 10(11): 949.

doi: 10.3390/min10110949
[71]
Liao Y P, Zhou Y L, Zhang G H, Lin W J, Dai H M, Yi P F, Wang Y, Liu M. CN109095481A, 2018.
[72]
Xu P, Chen Q, Zhang X H, Cao H B, Wang J W, Zhang Y, Sun S. Chin. J. Process. Eng., 2019, 19(5): 853.
(徐平, 陈钦, 张西华, 曹宏斌, 王景伟, 张懿, 孙峙. 过程工程学报, 2019, 19(5): 853.).
[73]
Li H, Xing S Z, Liu Y, Li F J, Guo H, Kuang G. ACS Sustainable Chem. Eng., 2017, 5(9): 8017.

doi: 10.1021/acssuschemeng.7b01594
[74]
Chen X P, Ma H R, Luo C B, Zhou T. J. Hazard. Mater., 2017, 326: 77.

doi: 10.1016/j.jhazmat.2016.12.021
[75]
Zeng X L, Li J H, Shen B Y. J. Hazard. Mater., 2015, 295: 112.

doi: 10.1016/j.jhazmat.2015.02.064
[76]
Yang Y X, Meng X Q, Cao H B, Lin X, Liu C M, Sun Y, Zhang Y, Sun Z. Green Chem., 2018, 20(13): 3121.

doi: 10.1039/C7GC03376A
[77]
Zhang J L, Hu J T, Liu Y B, Jing Q K, Yang C, Chen Y Q, Wang C Y. ACS Sustainable Chem. Eng., 2019, 7(6): 5626.

doi: 10.1021/acssuschemeng.9b00404
[78]
Li H G. Metallurgical Principles (2nd Edition). Science Press, 2018, 296.
(李洪桂. 冶金原理第二版. 科学出版社, 2018, 296.).
[79]
Wang M M, Zhang C C, Zhang F S. Waste Manag., 2017, 67: 232.

doi: 10.1016/j.wasman.2017.05.013
[80]
Liu K, Liu L L, Tan Q Y, Li J H. Green Chem., 2021, 23(3): 1344.

doi: 10.1039/D0GC03683H
[81]
Fan M C, Wozny J, Gong J, Kang Y Q, Wang X S, Zhang Z X, Zhou G M, Zhao Y, Li B H, Kang F Y. Rare Met., 2022, 41(6): 1843.

doi: 10.1007/s12598-021-01918-7
[82]
Li Z, Liu D F, Xiong J C, He L H, Zhao Z W, Wang D Z. Waste Manag., 2020, 107: 1.

doi: 10.1016/j.wasman.2020.03.017
[83]
Yu J Z, Wang X, Zhou M Y, Wang Q. Energy Environ. Sci., 2019, 12(9): 2672.

doi: 10.1039/C9EE01478K
[84]
Gao H, Wu Q, Hu Y X, Zheng J P, Amine K, Chen Z H. J. Phys. Chem. Lett., 2018, 9(17): 5100.

doi: 10.1021/acs.jpclett.8b02229
[85]
Li M, Cheng L L, Yang Y M, Niu F, Zhang X L, Liu D H. Chin. J. Rare Met., 2022, 46(3): 349.
(李棉, 程琍琍, 杨幼明, 牛飞, 张小林, 刘东辉. 稀有金属, 2022, 46(3): 349.).
[86]
Yang C, Zhang J L, Yu B Y, Huang H, Chen Y Q, Wang C Y. Sep. Purif. Technol., 2021, 267: 118609.

doi: 10.1016/j.seppur.2021.118609
[87]
Li D F, Wang C Y, Yin F, Chen Y Q, Jie X W, Yang Y Q, Wang J. Chin. J. Process Eng., 2009, 9(02): 264.
(李敦钫, 王成彦, 尹飞, 陈永强, 揭晓武, 杨永强, 王军. 过程工程学报, 2009, 9(02): 264.).
[88]
Chen Y M, Shi P F, Chang D, Jie Y F, Yang S H, Wu G Q, Chen H Y, Zhu J N, Hu F, Wilson B P, Lundstrom M. Sep. Purif. Technol., 2021, 258: 118078.

doi: 10.1016/j.seppur.2020.118078
[89]
Xu P, Liu C W, Zhang X H, Zheng X H, Lv W G, Rao F, Yao P F, Wang J W, Sun Z. ACS Sustainable Chem. Eng., 2021, 9(5): 2271.

doi: 10.1021/acssuschemeng.0c08213
[90]
Li L P, Huang K Q. Guangzhou Chem., 2022, 47(4): 1.
(李立平, 黄铿齐. 广州化学, 2022, 47(4): 1.).
[91]
Li H B, Li M C, Li Y H, Tian H Y, Yang L, Zhou M, Gao J, He X. CN109573974A, 2019.
[92]
Mu D Y, Liu Z, Jin S, Liu Y L, Tian S, Dai C S. Prog. Chem., 2020, 32(7): 950.
(穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 化学进展, 2020, 32(7): 950.).
[93]
Lai Y Q, Zhang Z A, Yan X L, Fang J, Hong B, Zhang K, Li J.CN 106684487A, 2017.
[94]
Chen S, Ruan D S, Zhou Y, Li Q. Battery Bimon., 2022, 52 (1): 114.
(陈嵩, 阮丁山, 周游, 李强. 电池, 2022, 52(1): 114.).
[95]
Zhang Y Y, Xiang W Q, Zhao W J, Chen M Y, Sheng N, Dai J L, Xu W G. Zhejiang Chem. Ind., 2018, 49(8): 12.
(张勇耀, 项文勤, 赵卫娟, 陈明炎, 盛楠, 戴佳亮, 徐卫国. 浙江化工, 2018, 49(8): 12.).
[96]
Zhou L S, Liu H G, Ye X H, Guo X F, Liu D F, Zhang H Y.CN 102496752A, 2012.
[97]
Lu J W, Pan Y L, Zheng L X, Qian S Y, Zhen A G, Kong F Z, Zhan W, Zheng H J. Zhejiang Chem. Ind., 2021, 52(10): 40.
(陆剑伟, 潘曜灵, 郑灵霞, 钱舜尧, 甄爱钢, 孔繁振, 詹稳, 郑华均. 浙江化工, 2021, 52(10): 40.).
[98]
Zhu H S, Li G, Chen Z Y, Chen X, Liu J C.CN 108682914A, 2018.
[1] Guange Wang, Huaning Zhang, Tong Wu, Borui Liu, Qing Huang, Yuefeng Su. Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials [J]. Progress in Chemistry, 2020, 32(12): 2064-2074.