中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 190-203 DOI: 10.7536/PC190613 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Synthesis and Properties of Microporous Organic Polymers Based on Adamantane

Li Liangjun, Jianhui Deng, Jianwei Guo**(), Hangbo Yue**()   

  1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
  • Received: Online: Published:
  • Contact: Jianwei Guo, Hangbo Yue
  • About author:
    ** e-mail: (Jianwei Guo);
  • Supported by:
    National Natural Science Foundation of China(21476051); National Natural Science Foundation of China(21706039); Natural Science Foundation of Guangdong Province(2017A030310300); Natural Science Foundation of Guangdong Province(2016A030310349); Science and Technology Program of Guangzhou City(201704030075); Degree and Graduate Education Reform Research Program of Guangdong Province(2017QTLXXM12)
Richhtml ( 9 ) PDF ( 1276 ) Cited
Export

EndNote

Ris

BibTeX

Microporous organic polymers(MOPs) is one of the most promising new materials for many applications, such as gas capture and storage, gas separation, organic vapor adsorption, heterogeneous catalyst carrier, water treatment, functional materials and so on, making them to be a research hotspot. This is due to the fact that MOPs have shown many advantages in, for example, excellent thermal stability, chemical stability, low density, high specific surface area, and molecular pore size architecture. Generally, molecular building blocks, particularly being symmetrical in plane or space, are the core architecture in the synthesis of MOPs. Among various building molecules, multi-substituted adamantane, has been reported as a new molecular "knot" candidate for the creation of MOPs, by connecting with a "linkage" molecule, thanks to its highly stereoscopic symmetrical structure and structural rigidity. In addition, the adamantane-based MOPs have shown many advantageous and interesting properties in terms of synthetic yield, structural stability, pore size distribution, gas/vapor adsorption and separation. This mini review focuses on recent progress in the synthesis and interesting properties of the MOPs with adamantane incorporated(MOP-Ad). The MOP-Ad polymers are classified into phenyl-linkage, Schiff base linkage, imide linkage, and nitrogen-rich(benzimidazole and triazine) categories. Special attention is paid to the similarities and differences with comparison in the synthetic route, structural characteristics, stability and adsorption properties. Besides, some emerging new types of Ad-polymers are briefly introduced and an outlook is also proposed for the MOP-Ad.

Fig.1 Different molecular knots and rods for MOP-Ad synthesis
Table 1 Properties of MOP-Ad for different linkage types
Type Material Knots & Rods BET surface
area(m2·g-1)
Pore size
(nm)
H2 uptake
(wt%)
Special Properties ref
Phenyl CMP-3 K1+K1 3108 1.4 2.34a SABET=3108 m2·g-1 23
-linkage MOP-Ad-1 K1+R1 974 0.74 1.07a Thermal stability:≈520 ℃ 28
MOP-Ad-2 K1+R2 653 0.55 0.92a Thermal stability:≈520 ℃ 28
MOP-Ad-3 K1+R3 282 0.52 0.49a Thermal stability:≈520 ℃ 28
TBPAd-T K1+R4 654 0.87 0.60a Thermal stability:≈500 ℃ 29
Trandafir’s COF K2+R5 577 0.8 0.05b Au or Pd carrier for catalyst; Thermal stability:≈300 ℃ 30
HBPBA-1 K3+R6 742 0.4~0.6 1.11~1.16a Hexaphenylbiadamantane-based unit; Thermal
stability:≈480 ℃
31
HBPBA-2 K3+R7 760 0.4~0.6 1.11~1.16a Hexaphenylbiadamantane-based unit; Thermal stability:≈480 ℃ 31
HBPBA-3 K3+R8 891 0.4~0.6 1.11~1.16a Hexaphenylbiadamantane-based unit; Thermal stability:≈480 ℃ 31
HBPBA-D K3+R9 488 0.92~1.1 - Hexaphenylbiadamantane-based unit; Thermal stability:≈480 ℃ 37
TBBPA-D K4+R9 395 0.42 - Eight-arm tetraphenyl “knots”; Thermal stability:≈372 ℃ 37
CMF-Ad-1 K4+R1 907 0.73 1.44a Eight-arm tetraphenyl “knot”; π-conjugated skeleton; high yield=95.1% 32
CMF-Ad-2 K4+R2 765 0.51 1.15a Eight-arm tetraphenyl “knot”; π-conjugated skeleton; high yield=90.8% 32
CMF-Ad-3 K4+R3 604 0.86 1.22a Eight-arm tetraphenyl “knot”; π-conjugated skeleton; high yield=87.7% 32
Type Material Knots & Rods BET surface
area(m2·g-1)
Pore size
(nm)
H2 uptake
(wt%)
Special Properties ref
Schiff base
linkage
PSN-1 K5+R10 1045 0.7 1.26a Structure-directing effect of isomers; Pore volume=0.86 cm3·g-1 40
PSN-2 K5+R11 376 2.2 0.90a Structure-directing effect of isomers; Pore size=2.2 nm 40
PSN-3 K5+K6 865 0.6 1.32a Benzene=80.5 wt%c; Cyclohexane=
63.7 wt%c; Pore volume=0.83 cm3·g-1
41
COF-MA K5+K6 813 0.57 - Long range order 42
Imide sPI-1 K6+R12 1108 0.60 2.50a CO2=23.7 wt%e, Benzene=159.7 wt%c 51
linkage PI-ADPM K6+R13 862 1.06~1.34 1.27a Benzene=99.2 wt%c; Cyclohexane
=59.7 wt%c
49
PI-ADNT K6+R14 774 0.75 - Thermal stability:=621 ℃ 50
PI-NO2-1,2,3 K6+R14 286(max) 0.57~0.75 - Nitration modification; Max selectivity
(CO2/CH4)=21f
50
Nitrogen-rich
Benzimidazole PBI-Ad-1 K5+R15 1023 0.58 1.60a Selectivity:(CO2/N2)=71f; Benzene=
98 wt%d; Cyclohexane=53.6 wt%d
36
PBI-Ad-2 K5+R16 926 0.60 1.30a Selectivity:(CO2/N2)=70f; Benzene=
76.5 wt%d; Cyclohexane=46.3 wt%d
36
Triazine PCTF-5 K7+K7 1183 1 1.24a Thermal stability: ≈500 ℃ 55
PCN-AD K8+K8 843 0.78 1.49a Selectivity:(CO2/N2)=112f; Benzene=
98 wt%c; Cyclohexane=57.4 wt%c
54
Other types Adamantane-based oxacyclophanes K9+R17 - - - Macrocyclic framework 67
TDA K10+R18 - - - Carrier for small molecules: CH3Cl, n-hexane, ethanol, etc. 68
TKDPAd K10+R19 - - - Flame retardants; PC/TKDPAd(8 wt%) UL-94 V-0 70
Fig.2 (a) Synthesis of MOP-Ad networks and (b) cartoon 3D representations of the networks in each case[28].(i) Tetrakis(triphenylphosphine) palladium(0) and K2CO3(aq.) were added, degassed by purging argon, and stirred at 150 ℃ for 72 h. Copyright 2017, RSC
Fig.3 Synthesis of (a) dual-adamantane frameworks with static-determined structure(HBPBA) [31] and (b) adamantane-based frameworks with conjugated π-electron skeletons(CMF-Ad)[32]. Copyright 2017&2018, Elsevier
Fig.4 Synthesis of Schiff base PSN-1、PSN-2、PSN-3[40,41]
Fig.5 Synthesis of adamatane-based polyimide[49,50,51]
Fig.6 Synthesis of the microporous polybenzimidazole networks(PBI-Ad)[36]. Copyright 2015, ACS
Fig.7 Synthesis of porous covalent triazine-based frameworks PCTF-3 to PCTF-7[55]. Copyright 2013, RSC
Table 2 Performance comparison on MOP-Ad incorporating nitrogen
Fig.8 Synthetic procedure of disubstituted adamantine-based oxacyclophanes[67]. Copyright 2015, ACS
Fig.9 Synthesis of tetrasubstituted adamantanes and process of incorporating small molecules[68]. Copyright 2015, Wiley
Fig.10 Structure of multi-substituted diphenylphosphate adamantane[70]
[1]
林益军(Lin Y J), 朱云龙(Zhu Y L), 旷桂超(Kuang G C), 喻桂朋(Yu G M), 金日光(Jin R G) . 化学进展 (Progress in Chemistry), 2017,29(7):766.
[2]
Ding S Y, Wang W . Chemical Society Reviews, 2013,44(2):548.
[3]
Diercks C S, Yaghi O M . Science, 2017,355(6328):923
[4]
Mendoza J L, El-Kaderi H M, Hunt J R, Côté A P, Yaghi O M . Chemical Society Reviews, 2007,41(18):6010. https://www.ncbi.nlm.nih.gov/pubmed/22821129

doi: 10.1039/c2cs35157a pmid: 22821129
[5]
El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, Côté A P, Taylor R E, O’Keeffe M, Yaghi O M . Science, 2007,316(5822):268. https://www.ncbi.nlm.nih.gov/pubmed/17431178

doi: 10.1126/science.1139915 pmid: 17431178
[6]
Hunt J R, Doonan C J, Levangie J D, Côté A P, Yaghi O M . Journal of the American Chemical Society, 2008,130(36):11872. https://www.ncbi.nlm.nih.gov/pubmed/18707184

doi: 10.1021/ja805064f pmid: 18707184
[7]
Uriberomo F J, Hunt J R, Furukawa H, Klöck C, O’Keeffe M, Yaghi O M . Journal of the American Chemical Society, 2009,131(13):4570. https://www.ncbi.nlm.nih.gov/pubmed/19281246

doi: 10.1021/ja8096256 pmid: 19281246
[8]
LuW G, Yuan D Q, Zhao D, Schilling C I, Plietzsch O, Muller T, Bräse S, Guenther J, Blümel J, Krishna R, Li Z, Zhou H C . Chemistry of Materials, 2010,22(21):5964. https://pubs.acs.org/doi/10.1021/cm1021068

doi: 10.1021/cm1021068
[9]
Yuan D Q, Lu W G, Zhao D, Zhou H C . Advanced Materials, 2011,23(32):3723. 915a4c52-33ca-471e-b837-237e2fcc432b http://dx.doi.org/10.1002/adma.201101759

doi: 10.1002/adma.201101759
[10]
Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W H, Xu J, Den F, Simmons J M, Qiu S L, Zhu G S . Angewandte Chemie, 2009,48(50):9457. https://www.ncbi.nlm.nih.gov/pubmed/19921728

doi: 10.1002/anie.200904637 pmid: 19921728
[11]
Ren H, Ben T, Wang E, Jing X F, Xue M, Liu B B, Cui Y, Qiu S L, Zhu G S . Chemical Communications, 2010,46(2):291. https://www.ncbi.nlm.nih.gov/pubmed/20024355

doi: 10.1039/b914761f pmid: 20024355
[12]
Wang W, Ren H, Sun F X, Cai K, Ma H P, Du J S, Zhao H J, Zhu G S . Dalton Transactions, 2012,41(14):3933. https://www.ncbi.nlm.nih.gov/pubmed/22327171

doi: 10.1039/c2dt11996j pmid: 22327171
[13]
Ben T, Pei C Y, Zhang D L, Xu J, Deng F, Jing X F, Qiu S L . Energy & Environmental Science, 2011,4(10):3991.
[14]
Lu W G, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C . Angewandte Chemie International Edition, 2012,51(30):7480. https://www.ncbi.nlm.nih.gov/pubmed/22715127

doi: 10.1002/anie.201202176 pmid: 22715127
[15]
Jing X F, Zou D L, Cui P, Ren H, Zhu G . Journal of Materials Chemistry A, 2013,1(44):13926.
[16]
Lu W G, Verdegaal W M, Yu J M, Balbuena P B, Jeong H K, Zhou H C . Energy & Environmental Science, 2013,6(12):3559.
[17]
Li G, Wang Z . Journal of Physical Chemistry C, 2015,117(46):24428.
[18]
Yue H B, Guo J W, Fu S Q, Li X, Wen W Q, Jiang W Z, Tong R, Haranczyk M . Chemical Engineering Journal, 2018,335:887.
[19]
白蕾(Bai L), 王艳凤(Wang Y F), 霍淑慧(Huo S H), 卢小泉(Lu X Q) . 化学进展 (Progress in Chemistry), 2019,31(1):191.
[20]
Wu J, Xu F, Li S M, Ma P W, Zhang X C, Liu Q H, Fu R W, Wu D C . Advanced Materials, 2018,31(4):1802922. https://www.ncbi.nlm.nih.gov/pubmed/30345562

doi: 10.1002/adma.201802922 pmid: 30345562
[21]
Cao L P, Wang P P, Miao X, Dong Y H, Wang H, Duan H H, Yu Y, Li X P, Stang P . Journal of the American Chemical Society, 2018,140(22):7005. https://www.ncbi.nlm.nih.gov/pubmed/29746782

doi: 10.1021/jacs.8b03856 pmid: 29746782
[22]
Cao L P, Wang P P, Miao X R, Duan H H . Inorganic Chemistry, 2019,58(9):6268. https://www.ncbi.nlm.nih.gov/pubmed/31002495

doi: 10.1021/acs.inorgchem.9b00484 pmid: 31002495
[23]
Holst J R, Stöckel E, Adams D J, Cooper A I . Macromolecules, 2010,43(20):8531
[24]
Jing J X, Su F B, Trewin A, Wood C D, Campbell N L, Niu H G, Dicknson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, Cooper A I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595 pmid: 17899616
[25]
Jiang J X, Su F B, Trewin A, Wood C D, Niu H J, Jones J, Khimyak Y Z, Cooper A I . Journal of the American Chemical Society, 2008,130(24):7710. https://www.ncbi.nlm.nih.gov/pubmed/18500800

doi: 10.1021/ja8010176 pmid: 18500800
[26]
Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I . Macromolecules, 2010,43(20):8524.
[27]
Dawson R, Laybourn A, Clowes R, Khimyak Y Z, Adams D J, Cooper A I . Macromolecules, 2009,42(22):8809.
[28]
Li X, Guo J W, Yue H B, Wang J W, Topham P D . RSC Advances, 2017,7(26):16174 http://xlink.rsc.org/?DOI=C6RA28833B

doi: 10.1039/C6RA28833B
[29]
傅淑琴(Fu S Q) . 广东工业大学博士论文 (Doctoral Dissertation of Guangdong University of Technology), 2016
[30]
Trandafir M M, Pop L, Hădade N D, Florea M, Neațu F, Teodorescu C M, Duraki b, Vanbokhoven J A, Grosu I, Pârvulescu V I, García H . Catalysis Science & Technology, 2016,6(24):8344
[31]
Guo J W, Lai X F, Fu S Q, Yue H B, Wang J W, Topham P D . Materials Letters, 2017,187:76.
[32]
Guo J W, Li X, Fu S Q, Tong R, Topham P D, Wang J W . Microporous and Mesoporous Materials, 2018,267:80.
[33]
Teng B, Li Y Q, Zhu L K, Zhang D L, Cao D P, Xiang Z H, Yao X D, Qiu S L . Energy & Environmental Science, 2012,5(8):8370.
[34]
Furukawa H, Yaghi O M . Journal of the American Chemical Society, 2009,131(25):8875. https://www.ncbi.nlm.nih.gov/pubmed/19496589

doi: 10.1021/ja9015765 pmid: 19496589
[35]
Dawson R, Stöckel E, Holst J R, Adams D J, Copper A I . Energy & Environmental Science, 2011,4(10):4239.
[36]
Zhang B, Li G Y, Yan J, Wang Z G . Journal of Physical Chemistry C, 2015,119(23):13080.
[37]
Jiang W Z, YueH B, ShuttleworthP, Xie P B, Li S J, Guo J W . Polymers, 2019,11(3):486. https://www.mdpi.com/2073-4360/11/3/486

doi: 10.3390/polym11030486
[38]
Uribe-Romo F J, Hunt J R, Furukawa H, Klöck C, O'Keeffe M, Yaghi O M . Journal of the American Chemical Society, 2009,131(13):4570. https://www.ncbi.nlm.nih.gov/pubmed/19281246

doi: 10.1021/ja8096256 pmid: 19281246
[39]
Lin S, Diercks C S, Zhang Y B, Kornienko N, Nichols E M, Zhao Y B, Paris A R, Kim D, Yang P D, Yaghi O M, Chang C J . Science, 2015,349(6253):1208. https://www.ncbi.nlm.nih.gov/pubmed/26292706

doi: 10.1126/science.aac8343 pmid: 26292706
[40]
Li G Y, Zhang B, Yan J, Wang Z G . Chemical Communications, 2014,50(15):1897. https://www.ncbi.nlm.nih.gov/pubmed/24406818

doi: 10.1039/c3cc48593e pmid: 24406818
[41]
Li G Y, Zhang B, Wang Z G . Macromolecular Rapid Communications, 2014,35(10):971. https://www.ncbi.nlm.nih.gov/pubmed/24596274

doi: 10.1002/marc.201400013 pmid: 24596274
[42]
闫骏(Yan J) . 大连理工大学博士论文 (Doctoral Dissertation of Dalian University of Technology), 2018.
[43]
Farha O K, Spokoyny A M, Hauser B G, Bae Y S, Brown S E, Snurr R Q, Mirkin C A, Hupp J T . Chemistry of Materials, 2009,21(14):3033.
[44]
Farha O K, Bae Y S, Hauser B G, Spokoyny A M, Snurr R Q, Mirkin C A, Hupp J T . Chemical Communications, 2010,46(7):1056. https://www.ncbi.nlm.nih.gov/pubmed/20126711

doi: 10.1039/b922554d pmid: 20126711
[45]
Shultz A M, Farha O K, Hupp J T, Nguyen S T . Chemical Science, 2011,2(4):686.
[46]
Wang Z G, Zhang B F, Yu H, Sun L X, Jiao C L, Liu W S . Chemical Communications, 2010,46(41):7730. https://www.ncbi.nlm.nih.gov/pubmed/20852805

doi: 10.1039/c0cc02489a pmid: 20852805
[47]
Wang Z G, Zhang B F, Yu H, Li G Y, Bao Y J . Soft Matter, 2011,7(12):5723.
[48]
Li G Y, Wang Z G . Macromolecules, 2013,46(8):3058.
[49]
Shen C J, Bao Y, Wang Z G . Chemical Communications, 2013,49(32):3321. https://www.ncbi.nlm.nih.gov/pubmed/23493785

doi: 10.1039/c3cc41012a pmid: 23493785
[50]
Shen C J, Wang Z G . Journal of Physical Chemistry C, 2014,118(31):17585.
[51]
Yan J, Zhang B, Wang Z G . Polymer Chemistry, 2016,7(47):7295.
[52]
Zhu Y, Long H, Zhang W . Chemistry of Materials, 2013,25(9):1630.
[53]
$\dot{I}$slamoğlu T, Rabbani M G, El-Kaderi H M . Journal of Materials Chemistry A, 2013,1(35):10259.
[54]
Shen C J, Yu H, Wang Z G . Chemical Communications, 2014,50(76):11238. https://www.ncbi.nlm.nih.gov/pubmed/25116703

doi: 10.1039/c4cc05021e pmid: 25116703
[55]
Bhunia A, Boldog I, Moller A, Janiak C . Journal of Materials Chemistry A, 2013,1(47):14990.
[56]
李雄(Li X) . 广东工业大学博士论文 (Doctoral Dissertation of Guangdong University of Technology), 2018.
[57]
Ma T Q, Kapustin E A, Yin S X, Liang L, Zhou Z Y, Niu J, Li L H, Wang Y Y, Su J, Li J, Wang X G, Wang W D, Wang W, Sun J L, Yaghi O M . Science, 2018,361(6397):48. https://www.ncbi.nlm.nih.gov/pubmed/29976818

doi: 10.1126/science.aat7679 pmid: 29976818
[58]
Zeng S Z, Guo L M, Cui F M, Gao Z, Zhou J, Shi J L . Materials Letters, 2010,64(5):625. https://linkinghub.elsevier.com/retrieve/pii/S0167577X09009574

doi: 10.1016/j.matlet.2009.12.024
[59]
Trewin A, Cooper A I . CrystEngComm, 2009,11(9):1819.
[60]
李青音(Li Q Y) . 华中科技大学博士论文 (Doctoral Dissertation of Huazhong University of Science and Technology), 2018.
[61]
邓杲阳(Deng G Y) . 大连理工大学博士论文 (Doctoral Dissertation of Dalian University of Technology), 2018.
[62]
Wang K K, Tang Y Z, Jiang Q, Lan Y S, Huang H J, Liu D H, Zhong C L , Journal of Energy Chemistry, 2017,26(5):902. https://linkinghub.elsevier.com/retrieve/pii/S2095495617303856

doi: 10.1016/j.jechem.2017.07.007
[63]
Ren S J, Bojdys M J, Dawson R, Laybourn A, KhimyakY Z, Adams D J, Cooper A I . Advanced Materials, 2012,24(17):2357. https://www.ncbi.nlm.nih.gov/pubmed/22488602

doi: 10.1002/adma.201200751 pmid: 22488602
[64]
Zhu X, Tian C C, Mahurin S M, Chai S H, Wang C M, Brown S, Veith G M, Luo H M, Liu H, Dai S . Journal of the American Chemical Society, 2012,134(25):10478. https://www.ncbi.nlm.nih.gov/pubmed/22631446

doi: 10.1021/ja304879c pmid: 22631446
[65]
Notario R . Strong Chemical Bonds. Spain. John Wiley & Sons, Inc., 2016. 11.
[66]
Hou S S, Tan B E . Macromolecules, 2018,51(8):2923.
[67]
Tominaga M, Kunitomi N, Katagiri K, Itoh T . Organic Letters, 2015,17(4):786. https://www.ncbi.nlm.nih.gov/pubmed/25658904

doi: 10.1021/ol503466e pmid: 25658904
[68]
Schwenger A, Frey W, Richert C . Chemistry-A European Journal, 2015,21(24):8781. https://www.ncbi.nlm.nih.gov/pubmed/25925766

doi: 10.1002/chem.201406568 pmid: 25925766
[69]
Guo J W, Wang Y Q, Feng L J, Zhong X, Yang C F, Liu S, Cui Y D . Polymer(Korea), 2013,37(4):437.
[70]
Fu S Q, Guo J W, Zhu D Y, Yang Z, Yang C F, Xian J X, Li X . RSC Advances, 2015,5(82):67054.
[71]
Kundu S K, Bhaumik A . ACS Sustainable Chemistry & Engineering, 2016,4(7):3697.
[72]
Jiang J X, Laybourn A, Clowes R, Khimyak Y Z, Bacsa J, Higgins S J, Adams D J, Cooper A I . Macromolecules, 2010,43(18):7577. https://pubs.acs.org/doi/10.1021/ma101468r

doi: 10.1021/ma101468r
[73]
Jing J X, Su F B, Trewin A, Wood C D, Campbell N L, Niu H J, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, CooperA I . Angewandte Chemie International Edition, 2007,46(45):8574. https://www.ncbi.nlm.nih.gov/pubmed/17899616

doi: 10.1002/anie.200701595 pmid: 17899616
[74]
Chen R F, Shi J L, Ma Y, Lin G Q, Lang X J, Wang C . Angewandte Chemie, 2019,131(19):6430.
[75]
Kawahata M, Matsuura M, Tominaga M, Katagiri K, Yamaguchi K . Journal of Molecular Structure, 2018,1164:116. https://linkinghub.elsevier.com/retrieve/pii/S0022286018302941

doi: 10.1016/j.molstruc.2018.03.011
[76]
Lee D W, Jo J, Jo D, Kim J, Min J J, Yang D H, Hyun H . Journal of Industrial and Engineering Chemistry, 2018,57:37.
[77]
Elamin K M, Yamashita Y, Higashi T, Motoyama K, Arima H . Chemical & Pharmaceutical Bulletin, 2018,66(3):277. https://www.ncbi.nlm.nih.gov/pubmed/29269686

doi: 10.1248/cpb.c17-00824 pmid: 29269686
[78]
Li M, Guo J W, Wen W Q, Chen J K . Nanomaterials, 2019,9(4):547.
[79]
Yang H, Guo J, Tong R, Yang C F, Chen J K . Polymers, 2018,10(4):443.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[14] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[15] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.