中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 33-45 DOI: 10.7536/PC190606 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions

Fenya Guo1, Hongwei Li1, Mengzhe Zhou2, Zhengqi Xu2, Yueqing Zheng1, Tingting Li1,**()   

  1. 1. Chemistry Institute for Synthesis and Green Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
    2. Medical School, Ningbo University, Ningbo 315211, China
  • Received: Online: Published:
  • Contact: Tingting Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21603110)
Richhtml ( 62 ) PDF ( 1608 ) Cited
Export

EndNote

Ris

BibTeX

Ammonia is an important chemical for producing fertilizer and also an important carbon-free energy carrier. Haber-Bosch process is the main method to synthesize ammonia. However, it suffers from some severe problems, such as the high energy consumption, the massive emission of greenhouse gas CO2 and the poor catalytic efficiency. Recently, ammonia synthesis based on electrocatalytic nitrogen reduction reaction (NRR) by using renewable energy under mild reaction conditions has attracted wide research attention. In addition, the raw materials (N2 + H2O) are earth abundant. Although great advances have been achieved in electrocatalytic NRR field, some challenges including the high-cost of noble metal based electrocatalysts, the low ammonia yield and unsatisfactory Faradaic efficiency, as well as the unexplored catalytic mechanism of NRR still exist. In this review, we summarize the recent advances in electrocatalytic NRR field based on heterogeneous catalysts. Firstly, we discuss the catalytic thermodynamics and reaction mechanisms towards NRR. Secondly, a range of recently reported non-noble metal included catalysts are surveyed, including transition metal oxides/nitrides/sulfides, metal-free materials and single-metal-atom catalysts. Then, some promising strategies to enhance the catalytic activity, selectivity and efficiency are proposed, and the main methods for the determination of ammonia are also mentioned. Finally, the challenges remaining to be solved are summarized, and future perspectives are also presented.

Fig. 1 The mechanism of electrochemical N2 reduction reaction based on heterogeneous catalysts[10]
Fig. 2 (a) The HR-TEM image of Cr2O3 microspheres; (b) The i~t plots obtained from different applied potentials; (c) The corresponding UV-Vis spectra obtained after long-term tests; (d) The durability test for Cr2O3 microspheres[56]
Fig. 3 (a) The SEM image of VN nanoparticles; (b) The electrocatalytic NRR performance; (c) The electrocatalytic mechanism and corresponding deactivation pathway[63]
Fig. 4 (a) SEM image for defect-rich MoS2 nanoflower; (b) The corresponding UV-Vis spectra obtained after long-term tests; (c) The corresponding NH3 yields under different potentials; (d) Calculated free energy profile for NRR process on MoS2 basal plane[67]
Fig. 5 (a) Schematic illustration of NRR over B-doped graphene; (b) Percentages of different B doping configurations in three B-doped graphene samples; (c) The Faradaic efficiency values of BG-1, BOG, BG-2 and G at different applied potentials[76]
Fig. 6 (a) Scheme of the synthetic procedure for Ru/N-C; (b~e) Comparison of electrocatalytic NRR performance for Ru/N-C and Ru nanoparticles[84]
Fig. 7 (a) Atomic level surface structures of Au THH NR; (b) Geometric models of an Au THH NR and exposed {730} facet; (c) Schematic for electrocatalytic NRR; (d) Yield rate of ammonia, hydrazine hydrate formation, and Faradic efficiency at each given potential[91]
Fig. 8 (a) Schematic for electrocatalytic NRR based on MoN nanosheet array; (b) The corresponding SEM image; (c,d) The electrocatalytic performance under various applied potential[92]
Fig. 9 (a) The SEM image for BCN materials; (b) Schematic of the computational models. Gray (black), pink, red, blue, and green balls represent C, B, O, N, and H atoms, respectively; (c) The corresponding electrocatalytic NRR performance based on different catalysts[97]
Table 1 Summary of recently reported NRR electrocatalysts
Catalyst Electrolyte NH3 yield rate Faraday efficiency(%) Ref
Noble metalcatalyst Au nanocage 0.5 M LiClO4 3.9 μg·h-1·cm-2 (-0.5 V vs. RHE) 30.2 25
Au nanorod 0.1 M KOH 1.648 μg·h-1·cm-2 (-0.2 V vs. RHE) 4 91
Ru/C 2 M KOH 0.21 μg·h-1·cm-2 (-1.1 V vs. Ag/AgCl) 0.28 27
RuPt/C 18.36 μg·h-1·cm-2 (0.123 V vs. RHE) 13.2 28
Rh ultrathin nanosheet 0.1 M KOH 23.88 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 0.217 31
Pt/C H+/Li+/N H 4 + 47.2 μg·h-1·cm-2 (1.2 V) 0.83 32
Non-noble metal catalyst Fe2O3/CNT dilute KHCO3 solution 0.22 μg·h-1·cm-2 (-0.2 V vs. Ag/AgCl) 0.15 49
Fe2O3-rGO 0.5 M LiClO4 22.13 μg·h-1·m g cat - 1 (-0.50 V vs. RHE) 5.89 51
Fe2O3- x /CNT 0.1 M KOH 0.46 μg·h-1·cm-2 (-0.9 V vs. Ag/AgCl) 6.0 52
Fe3O4/Ti 0.1 M Na2SO4 5.6×10-11 mol·s-1·cm-2 (-0.4 V vs. RHE) 2.6 53
Hollow Cr2O3 mircometer
ball
0.1 M Na2SO4 25.3 μg·h-1·m g cat - 1 (-0.9 V vs. RHE) 6.78 56
Mo2N 0.1 M HCl 78.4 μg·h-1·m g cat - 1 (-0.3 V vs. RHE) 4.5 62
VN 0.05 M H2SO4 20.2 μg·h-1·cm-2 (-0.1 V vs. RHE) 6 63
MoS2 0.1 M Na2SO4 8.08×10-11 mol·s-1·cm-2 (-0.5 V vs. RHE) 1.17 66
Defect-rich MoS2 nanoflower 0.1 M Na2SO4 29.28 μg·h-1·m g cat - 1 (-0.4 V vs. RHE) 8.34 67
MoS2/graphene 0.1 M LiClO4 24.82 μg·h-1·m g cat - 1 (-0.45 V vs. RHE) 4.58 68
CoS x /NS-G 0.05 M H2SO4 25.0 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 25.9
(-0.05 V vs.RHE)
69
MoN nanosheet array 0.1 M HCl 3.01×10-10 mol·s-1·cm-2 (-0.3 V vs. RHE) 1.15 92
Bi nanosheet array 0.1 M HCl 6.89 × 10-11 mol·s-1·cm-2 (-0.5 V vs. RHE) 10.26 93
Bi4V2O11/CeO2 0.1 M HCl 23.21 μg·h-1·mg-1 (-0.2 V vs. RHE) 10.16 96
Metal-free catalyst Oxidized carbonnanotube 0.1 M LiClO4 32.33 μg·h-1·m g cat - 1 (-0.4 V vs. RHE) 12.50 73
N-doped Carbon 0.1 M KOH 3.4×10-6 mol·h-1·cm-2(-0.4 V vs. RHE) 10.2 75
B-doped graphene 0.05 M H2SO4 9.8 μg·h-1·cm-2 (-0.5 V vs. RHE) 10.8 76
N, P-codoped porous carbon 0.1 M HCl 0.97 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 4.2 77
BCN 0.1 M HCl 7.75 μg·h-1·mgcat.-1 (-0.2 V vs. RHE) 13.79 97
nitrogen-decifient polymeric carbon nitride 0.1 M HCl 8.09 μg·h-1·m g cat - 1 (-0.2 V vs. RHE) 11.59 98
S-CNS 0.1 M Na2SO4 19.07 μg·h-1·m g cat - 1 (-0.7 V vs. RHE) 7.47 99
single metal atom catalyst Au/C3N4 0.05 M H2SO4 1.3 mg·h-1·m g Au - 1 (-0.1 V vs. RHE) 11.1 83
Ru/N-C 0.05 M H2SO4 120.9 μg·h-1·mg-1 (-0.2 V vs. RHE) 29.6 84
Ru/N-C 0.1 M HCl 3.665 m g N H 3 ·h-1·m g Ru - 1 (-0.21 V) 21 (-0.11 V) 85
[1]
蒋德军 (Jiang D J). . 现代化工(Modern Chemical Industry), 2005,8:9.
[2]
刘华中 (Liu H Z) . 化工进展(Chemical Industry and Engineering Progress), 2017,32:1995.
[3]
Horrocks S M . Technol. Cult., 2002,43:622.
[4]
Erisman J W , Sutton M A , Galloway J , Klimont Z , Winiwarter W . Nat. Geosci., 2008,1:636.
[5]
Deng J , Iniguez J A , Liu C . Joule, 2018,2:846.
[6]
Foster S L , Perez Bakovic S I , Duda R D , Maheshwari S , Milton R D , Minteer S D , Janik M J , Renner J N , Greenlee L F . Nat. Catal., 2018,1:490. https://doi.org/10.1038/s41929-018-0092-7

doi: 10.1038/s41929-018-0092-7
[7]
Li X B , Tung C H , Wu L Z ,. Angew. Chem. Int. Ed., 2019,58:10804. https://www.ncbi.nlm.nih.gov/pubmed/30821022

doi: 10.1002/anie.201901267 pmid: 30821022
[8]
Appl M . Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley VCH, 2006.
[9]
Liu H . Chin. J. Catal. 2014,35:1619.
[10]
van der Ham C J M , Koper M T M , Hetterscheid D G H . Chem. Soc. Rev., 2014,43:5183. https://www.ncbi.nlm.nih.gov/pubmed/24802308

doi: 10.1039/c4cs00085d pmid: 24802308
[11]
Eady R R . Chem. Rev., 1996,96:3013. https://www.ncbi.nlm.nih.gov/pubmed/11848850

doi: 10.1021/cr950057h pmid: 11848850
[12]
Burgess B K , Lowe D J . Chem. Rev., 1996,96:2983. https://www.ncbi.nlm.nih.gov/pubmed/11848849

doi: 10.1021/cr950055x pmid: 11848849
[13]
Macleod K C , Holland P L . Nat. Chem., 2013,5:559. https://www.ncbi.nlm.nih.gov/pubmed/23787744

doi: 10.1038/nchem.1620 pmid: 23787744
[14]
Jia H P , Quadrelli E A . Chem. Soc. Rev., 2014,43:547. https://www.ncbi.nlm.nih.gov/pubmed/24108246

doi: 10.1039/c3cs60206k pmid: 24108246
[15]
Rittle J , Peters J C . J. Am. Chem. Soc., 2016,138:4243. https://www.ncbi.nlm.nih.gov/pubmed/26937584

doi: 10.1021/jacs.6b01230 pmid: 26937584
[16]
Cui X Y , Tang C , Zhang Q . Adv. Energy Mater., 2018,8:1800369. http://doi.wiley.com/10.1002/aenm.v8.22

doi: 10.1002/aenm.v8.22
[17]
Wan Y , Xu J , Lv R . Materials Today, 2019,27:69.
[18]
Chen G F , Ren S , Zhang L , Cheng H , Luo Y , Zhu K , Ding L X , Wang X . Small Methods, 2018,26:1800337.
[19]
Guo X , Du H , Qu F , Li J . J. Mater. Chem. A, 2019,7:3531.
[20]
Shilov A E . Russ. Chem. Bull., 2003,52:2555.
[21]
Montoya J H , Tsai C , Vojvodic A , Norskov J K . ChemSusChem, 2015,8:2180. https://www.ncbi.nlm.nih.gov/pubmed/26097211

doi: 10.1002/cssc.201500322 pmid: 26097211
[22]
Shi M M , Bao D , Wulan B R , Li Y H , Zhang Y F , Yan J M , Jiang Q . Adv. Mater., 2017,29:1606550.
[23]
Li S J , Bao D , Shi M M , Wulan B R , Yan J M , Jiang Q . Adv. Mater., 2017,29:1700001.
[24]
Jiang Y , Su J , Yang Y , Jia Y , Chen Q , Xie Z , Zheng L . Nano Res., 2016,9:849.
[25]
Nazemi M , Panikkanvalappil S R , El-Sayed M A . Nano Energy, 2018,49:316.
[26]
Wang Z , Li Y , Yu H , Xu Y , Xue H , Li X , Wang H , Wang L . ChemSusChem, 2018,11:3480. https://www.ncbi.nlm.nih.gov/pubmed/30109915

doi: 10.1002/cssc.201801444 pmid: 30109915
[27]
Kordali V , Kyriacou G , Lambrou C . Chem. Commun., 2000,17:1673.
[28]
Manjunatha R , Schechter A . Electrochem. Commun., 2018,90:96.
[29]
Sheets B L , Botte G G . Chem. Commun., 2018,54:4250. https://www.ncbi.nlm.nih.gov/pubmed/29521392

doi: 10.1039/c8cc00657a pmid: 29521392
[30]
Lan R , Tao S . RSC Adv., 2013,3:18016.
[31]
Liu H , Han S , Zhao Y , Zhu Y , Tian X , Zeng J , Jiang J , Xia B Y , Chen Y . J. Mater. Chem. A, 2018,6:3211.
[32]
Lan R , Irvine J T S , Tao S . Sci. Rep., 2013,3:1145. https://www.ncbi.nlm.nih.gov/pubmed/23362454

doi: 10.1038/srep01145 pmid: 23362454
[33]
Zhan C G , Nichols J A , Dixon D A . J. Phys. Chem. A, 2003,107:4184.
[34]
Bazhenova T A , Shilov A E . Coord. Chem. Rev., 1995,144:69.
[35]
Bratsch S G . J. Phys. Chem. Ref. Data., 1989,18:1. http://aip.scitation.org/doi/10.1063/1.555839

doi: 10.1063/1.555839
[36]
Jones G , Bligaard T , Abild-Pedersen, Nørskov J K . J. Phys.: Condens. Matter., 2008,20:064239. https://www.ncbi.nlm.nih.gov/pubmed/21693900

doi: 10.1088/0953-8984/20/6/064239 pmid: 21693900
[37]
Gottle A J , Koper M T M , . Chem. Sci., 2017,8:458. https://www.ncbi.nlm.nih.gov/pubmed/28451193

doi: 10.1039/c6sc02984a pmid: 28451193
[38]
Kumar C V S , Subramanian V . Phys. Chem. Chem. Phys., 2017,19:15377. https://www.ncbi.nlm.nih.gov/pubmed/28574553

doi: 10.1039/c7cp02220d pmid: 28574553
[39]
Skúlason E , Bligaard T , Gudmundsdottir S , Studt F , Rossmeisl J , Abild-Pedersen F , Vegge T , Jonsson H , Norskov J K . Phys. Chem. Chem. Phys., 2012,14:1235. https://www.ncbi.nlm.nih.gov/pubmed/22146855

doi: 10.1039/c1cp22271f pmid: 22146855
[40]
Zhou Q Q , Li T T , Wang J Y , Guo F Y , Zheng Y Q . Electrochim. Acta, 2019,296:1035. https://linkinghub.elsevier.com/retrieve/pii/S0013468618326677

doi: 10.1016/j.electacta.2018.11.183
[41]
Zhou Q Q , Li T T , Qian J J , Hu Y , Guo F Y , Zheng Y Q . J. Mater. Chem. A, 2018,6:14431. http://xlink.rsc.org/?DOI=C8TA03120G

doi: 10.1039/C8TA03120G
[42]
Zhou Q Q , Li T T , Guo F Y , Zheng Y Q . ACS Sustain. Chem. Eng., 2018,6:11303. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b00802

doi: 10.1021/acssuschemeng.8b00802
[43]
Zhou Q Q , Li T T , Qian J J , Xu W , Hu Y , Zheng Y Q . ACS Appl. Energy Mater., 2018,1:1364. https://pubs.acs.org/doi/10.1021/acsaem.8b00076

doi: 10.1021/acsaem.8b00076
[44]
Li T T , Zhou Q Q , Qian J J , Hu Y , Zheng Y Q . Electrochim. Acta, 2019,307:92. https://linkinghub.elsevier.com/retrieve/pii/S0013468619306140

doi: 10.1016/j.electacta.2019.03.183
[45]
Li T T , Qian J J , Zhou Q Q , Lin J L , Zheng Y Q . Dalton Trans., 2017,46:13020. https://www.ncbi.nlm.nih.gov/pubmed/28936507

doi: 10.1039/c7dt03033a pmid: 28936507
[46]
Li T T , Zheng Y Q . Dalton Trans., 2016,45:12685. https://www.ncbi.nlm.nih.gov/pubmed/27445118

doi: 10.1039/c6dt01891b pmid: 27445118
[47]
Nguyen M T , Seriani N , Gebauer R . Phys. Chem. Chem. Phys., 2015,17:14317. https://www.ncbi.nlm.nih.gov/pubmed/25482262

doi: 10.1039/c4cp04308a pmid: 25482262
[48]
Licht S , Cui B , Wang B , Li F F , Lau J , Liu S . Science, 2014,345:637. https://www.ncbi.nlm.nih.gov/pubmed/25104378

doi: 10.1126/science.1254234 pmid: 25104378
[49]
Chen S , Perathoner S , Ampelli C , Mebrahtu C , Su D , Centi G . Angew. Chem. Int. Ed., 2017,56:2699. https://www.ncbi.nlm.nih.gov/pubmed/28128489

doi: 10.1002/anie.201609533 pmid: 28128489
[50]
Chen S M , Perathoner S , Ampelli C , Mebrahtu C , Su D S , Centi G . ACS Sustain. Chem. Eng., 2017,5:7393. https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.7b01742

doi: 10.1021/acssuschemeng.7b01742
[51]
Li J , Zhu X , Wang T , Luo Y , Sun X . Inorg. Chem. Front., 2019, DOI: 10.1039/C9QI00968J.
[52]
Hu L , Khaniya A , Wang J , Chen G , Kaden W E , Feng X . ACS Catal., 2018,8:9312. https://pubs.acs.org/doi/10.1021/acscatal.8b02585

doi: 10.1021/acscatal.8b02585
[53]
Liu Q , Zhang X , . Nanoscale, 2018,10:14386. https://www.ncbi.nlm.nih.gov/pubmed/30027985

doi: 10.1039/c8nr04524k pmid: 30027985
[54]
Han J , Liu Z , Ma Y , Cui G , Xie F , Wang F , Wu Y , Gao S , Xu Y , Sun X . Nano Energy, 2018,52:264. https://linkinghub.elsevier.com/retrieve/pii/S2211285518305330

doi: 10.1016/j.nanoen.2018.07.045
[55]
Han J , Ji X , Ren X , Cui G , Li L , Xie F , Wang H , Li B , Sun X . J. Mater. Chem. A, 2018,6:12974. http://xlink.rsc.org/?DOI=C8TA03974G

doi: 10.1039/C8TA03974G
[56]
Zhang Y , Qiu W , Ma Y , Luo Y , Tian Z , Cui G , Xie F , Chen L , Li T , Sun X . ACS Catal., 2018,8:8540.
[57]
Abghoui Y , Garden A L , Hlynsson V F , Bjorgvinsdottir S , Olafsdottir H , Skúlason E . Phys. Chem. Chem. Phys., 2015,17:4909. https://www.ncbi.nlm.nih.gov/pubmed/25446373

doi: 10.1039/c4cp04838e pmid: 25446373
[58]
Abghoui Y , Skúlasson E . Procedia Computer Sci., 2015,51:1897.
[59]
Abghoui Y , Garden A L , Howalt J G , Vegge T , Skúlason E . ACS Catal., 2016,6:635.
[60]
Abghoui Y , Skúlason E . Catal. Today, 2017,286:78.
[61]
Abghoui Y , Skúlason E . J. Phys. Chem. C, 2017,121:6141.
[62]
Ren X , Cui G , Chen L , Xie F , Wei Q , Tian Z , Sun X . Chem. Commun., 2018,54:8474. https://www.ncbi.nlm.nih.gov/pubmed/30003198

doi: 10.1039/c8cc03627f pmid: 30003198
[63]
Yang X , Nash J , Anibal J , Dunwell M , Kattel S , Stavitski E , Attenkofer K , Chen G J , Yan Y S , Xu B . J. Am. Chem. Soc., 2018,140:13387. https://www.ncbi.nlm.nih.gov/pubmed/30244579

doi: 10.1021/jacs.8b08379 pmid: 30244579
[64]
Du H L , Gengenbach T R , Hodgetts R MacFarlane D R , Simonov A N . ACS Sustainable Chem. Eng., 2019,7:6839.
[65]
Hu B , Hu M , Seefeldt L C , Liu T L . ACS Energy Lett., 2019,4:1053
[66]
Zhang L , Ji X , Ren X , Ma Y , Shi X , Tian Z , Asiri A M , Chen L , Tang B , Sun X . Adv. Mater., 2018,30:1800191.
[67]
Li X , Li T , Ma Y , Wei Q , Qiu W , Guo H , Shi X , Zhang P , Asiri A M , Chen L , Tang B , Sun X . Adv. Energy Mater., 2018,8:1801357.
[68]
Li X , Ren X , Liu X , Zhao J , Sun X , Zhang Y , Kuang X , Yan T , Wei Q , Wu D . J. Mater. Chem. A, 2019,7:2524.
[69]
Chen P , Zhang N , Wang S , Zhou T , Tong Y , Ao C , Yan W , Zhang L , Chu W , Wu C , Xie Y . PNAS, 2019,116:6635. https://www.ncbi.nlm.nih.gov/pubmed/30872473

doi: 10.1073/pnas.1817881116 pmid: 30872473
[70]
LégaréM, Bélanger-Chabot G , Dewhurst R D , Welz E , Krummenacher I , Engels B , Braunschweig H . Science, 2018,359:896. https://www.ncbi.nlm.nih.gov/pubmed/29472479

doi: 10.1126/science.aaq1684 pmid: 29472479
[71]
Zhou F , Azofra L M , Ali M , Kar M , Simonov A N , McDonnell-Worth C , Sun C , Zhang X, D , MacFarlane R . Energy Environ. Sci., 2017,10:2516.
[72]
Liu Y , Su Y , Quan X , Fan X , Chen S , Yu H , Zhao H , Zhang Y , Zhao J . ACS Catal., 2018,8:1186.
[73]
Zhao J , Wang B , Zhou Q , Wang H , Li X , Chen H , Wei Q , Wu D , Luo Y , You J , Gong F F , Sun X . Chem. Commun., 2019,55:4997. https://www.ncbi.nlm.nih.gov/pubmed/30968881

doi: 10.1039/c9cc00726a pmid: 30968881
[74]
Wang Q , Lei Y , Wang D , Li Y . Energy Environ. Sci., 2019,12:1730.
[75]
Mukherjee S , Cullen D A , Karakalos S , Liu K X , Zhang H , Zhao S , Xu H , More K L , Wang G F , Wu G . Nano Energy, 2018,48:217.
[76]
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Joule, 2018,2:1610.
[77]
Song P , Wang H , Kang L , Ran B , Song H , Wang R . Chem. Commun., 2019,55:687. https://www.ncbi.nlm.nih.gov/pubmed/30565601

doi: 10.1039/c8cc09256g pmid: 30565601
[78]
Liang S , Hao C , Shi Y . ChemCatChem, 2015,7:2559.
[79]
Zhu C , Fu S , Shi Q , Du D , Lin Y . Angew. Chem. Int. Ed., 2017,56:13944. https://www.ncbi.nlm.nih.gov/pubmed/28544221

doi: 10.1002/anie.201703864 pmid: 28544221
[80]
Ling C , Bai X , Ouyang Y , Du A , Wang J . J. Phys. Chem. C, 2018,122:16842.
[81]
Choi C , Back B , Kim N Y , Lim J , Kim Y H , Jung Y . ACS Catal., 2018,8:7517.
[82]
Zhao J , Chen Z . J. Am. Chem. Soc., 2017,139:12480. https://www.ncbi.nlm.nih.gov/pubmed/28800702

doi: 10.1021/jacs.7b05213 pmid: 28800702
[83]
Wang X , Wang W , Qiao M , Wu G , Chen W , Yuan T , Xu Q , Chen M , Zhang Y , Wang X , Wang J , Ge J , Hong X , Li Y , Wu Y , Li Y . Sci. Bull., 2018,63:1246.
[84]
Geng Z , Liu Y , Kong X , Li P , Li K , Liu Z , Du J , Shu M , Si R , Zeng J . Adv. Mater., 2018,30:1803498.
[85]
Tao H , Choi C , Ding L X , Jiang Z , Han Z , Jia M , Fan Q , Gao Y , Wang H , Robertson A W , Hong S , Jung Y , Liu S , Sun Z . Chem, 2019,5:204.
[86]
Durand W J , Peterson A A , Studt F , Abild-pedersen F , Nørskov J K . Surf. Sci., 2011,605:1354.
[87]
Roberts F S , Kuhl K P , Nilsson A . Angew. Chem. Int. Ed., 2015,54:5179. https://www.ncbi.nlm.nih.gov/pubmed/25728325

doi: 10.1002/anie.201412214 pmid: 25728325
[88]
Wang Z L , Li C , Yamauchi Y . Nano. Today, 2016,11:373. https://linkinghub.elsevier.com/retrieve/pii/S1748013216300548

doi: 10.1016/j.nantod.2016.05.007
[89]
Luo W , Nie X , Janik M J , Asthagiri A . ACS Catal., 2015,6:219.
[90]
Yang D , Chen T , Wang Z J . J. Mater. Chem. A, 2017,5:18967.
[91]
Bao D , Zhang Q , Meng F , Zhong H , Shi M , Zhang Y , Yan J , Jiang Q , Zhang X . Adv. Mater., 2017,29:1604799.
[92]
Zhang L , Ji X , Ren X , Luo Y , Shi X , Asiri A M , Zheng B , Sun X . ACS Sustainable Chem. Eng., 2018,6:9550.
[93]
Zhang R , Ji L , Kong W , Wang H , Zhao R , Chen H , Li T , Li B , Luo Y , Sun X . Chem. Commun., 2019,55:5263. https://www.ncbi.nlm.nih.gov/pubmed/30993285

doi: 10.1039/c9cc01703h pmid: 30993285
[94]
Guo C , Ran J , Vasileff A , Qiao S Z . Energy Environ. Sci., 2018,11:45.
[95]
Cheng M , Xiao C , Xie Y . J. Mater. Chem. A, 2019,7:19616.
[96]
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . Angew. Chem. Int. Ed., 2018,130:6181.
[97]
Chen C , Yan D , Wang Y , Zhou Y , Zhou Y , Li Y , Wang S . Small, 2019,15:1805029.
[98]
Lv C , Qian Y , Yan C , Ding Y , Liu Y , Chen G , Yu G . Angew. Chem. Int. Ed., 2018,57:10246.
[99]
Xia L , Wu X , Wang Y , Niu Z , Liu Q , Li T , Shi X , Asiri A M , Sun X . Small Methods, 2018,1800251.
[100]
Zhang S , Zhao Y , Shi R Waterhouse G I N , Zhang T . EnergyChem, 2019,1:100013.
[101]
Schrauzer G N , Guth T D . J. Am. Chem. Soc. 1977,99:7189.
[102]
Navio J A , Macias M , Gonzalezcatalan M , Justo A J . Mater. Sci., 1992,27:3036.
[103]
Hirakawa H , Hashimoto M , Shiraishi Y , Hirai T . J. Am. Chem. Soc., 2017,139:10929. https://www.ncbi.nlm.nih.gov/pubmed/28712297

doi: 10.1021/jacs.7b06634 pmid: 28712297
[104]
Lashgari M , Zeinalkhani P . Appl. Catal. A: Gen., 2017,529:91.
[105]
Endoh E , Leland J K , Bard A J . J. Phys. Chem., 1986,90:6223.
[106]
Janet C M , Navaladian S , Viswanathan B , Varadarajan T K , Viswanath R P . J. Phys. Chem. C, 2010,114:2622.
[107]
Zhao W , Xi H , Zhang M , Li Y , Chen J , Zhang J , Zhu X . Chem. Commun., 2015,51:4785. https://www.ncbi.nlm.nih.gov/pubmed/25704549

doi: 10.1039/c5cc00589b pmid: 25704549
[108]
Miyama H , Fujii N , Nagae Y . Chem. Phys. Lett., 1980,74:523.
[109]
Li H , Shang J , Ai Z , Zhang L . J. Am. Chem. Soc., 2015,137:6393. https://www.ncbi.nlm.nih.gov/pubmed/25874655

doi: 10.1021/jacs.5b03105 pmid: 25874655
[110]
Zhu D , Zhang L , Ruther R E , Hamers R J . Nat. Mater., 2013,12:836. https://www.ncbi.nlm.nih.gov/pubmed/23812128

doi: 10.1038/nmat3696 pmid: 23812128
[111]
Thomas D H , Rey M , Jackson P E . J. Chromatogr A, 2002,956:181. https://www.ncbi.nlm.nih.gov/pubmed/12108649

doi: 10.1016/s0021-9673(02)00141-3 pmid: 12108649
[112]
Michalski R ,. Crit. Rev. Anal. Chem., 2009,39:230.
[113]
Fourmond V , Léger C . Angew. Chem. Int. Ed., 2017,56:4388. https://www.ncbi.nlm.nih.gov/pubmed/28300341

doi: 10.1002/anie.201701179 pmid: 28300341
[114]
Amornthammarong N , Zhang J Z . Anal. Chem., 2008,80:1019. https://www.ncbi.nlm.nih.gov/pubmed/18217726

doi: 10.1021/ac701942f pmid: 18217726
[115]
Zhou L , Boyd C E . Aquaculture, 2016,450:187.
[116]
Ivanc ic I , Degobbis D . Water Res., 1984,18:1143. https://linkinghub.elsevier.com/retrieve/pii/0043135484902306

doi: 10.1016/0043-1354(84)90230-6
[117]
Bruzzoniti M C , De Carlo R M , Fungi M . J. Sep. Sci., 2008,31:3182. https://www.ncbi.nlm.nih.gov/pubmed/18780379

doi: 10.1002/jssc.200800319 pmid: 18780379
[118]
LeDuy A , Samson R . Biotechnol. Lett., 1982,4:303.
[119]
Amornthammarong N , Zhang J Z , Ortner P B . Anal. Methods, 2011,3:1501.
[120]
Zhu Y , Yuan D , Lin H , Zhou T . Anal. Lett., 2016,49:665.
[121]
Zhu Y , Yuan D , Huang Y , Ma J , Feng S . Anal. Chim. Acta., 2013,794:47. https://www.ncbi.nlm.nih.gov/pubmed/23972974

doi: 10.1016/j.aca.2013.08.009 pmid: 23972974
[1] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[2] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[3] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[4] Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu. Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism [J]. Progress in Chemistry, 2020, 32(1): 72-83.
[5] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[6] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[7] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[8] Niu Fanfan, Nie Changjun, Chen Yong, Sun Xiaoling. Asymmetric Catalytic Epoxidation of Unfunctionalized Olefins [J]. Progress in Chemistry, 2014, 26(12): 1942-1961.
[9] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[10] Xie Yingjuan, Wu Zhijiao, Zhang Xiao, Ma Peijun, Piao Lingyu. Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts [J]. Progress in Chemistry, 2014, 26(07): 1120-1131.
[11] Zhang Qian, Zhou Ying, Zhang Zhao, He Yun, Chen Yongdong, Lin Yuanhua. Plasmonic Photocatalyst [J]. Progress in Chemistry, 2013, 25(12): 2020-2027.
[12] Yang Yang Zheng Wen Cheng Dangguo Chen Fengqiu Zhan Xiaoli. The Application of in Situ FT-IR in the Research of Methane Oxidation [J]. Progress in Chemistry, 2009, 21(10): 2205-2211.
[13] Yang Zhen*. Fundamentals of Biocatalysis in Organic Solvents [J]. Progress in Chemistry, 2005, 17(05): 924-930.
[14] Dai Yan,Cheng Peng. The Research Progress of Ni-containing Enzymes and Model Compounds [J]. Progress in Chemistry, 2002, 14(01): 47-.
[15] Wang Lihua,Chen Shouzheng,Liao Daiwei,Cai Qirui. Advances in the Catalysts and Mechanism for Ammonia Synthesis [J]. Progress in Chemistry, 1999, 11(04): 376-.