中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 23-32 DOI: 10.7536/PC190704 Previous Articles   Next Articles

Special Issue: 电化学有机合成

Preparation of Single Atom Catalysts

Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang**()   

  1. 1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received: Online: Published:
  • Contact: Haijun Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51672194); National Natural Science Foundation of China(51872210); Excellent Young and Middle-aged Science and Technology Innovation Team Program of Hubei Provincial Education Department(T201602); Hubei Natural Science Foundation Innovation Group Project(2017CFA004)
Richhtml ( 246 ) PDF ( 3580 ) Cited
Export

EndNote

Ris

BibTeX

Single atom catalysts, as catalysts with atomic scale, have a wide range of applications in the fields of hydrogen production, CO oxidation, photocatalysts, etc. Extensive efforts of experimental/theoretical studies show that the strong metal support interactions and the changes in electronic structure are the main reasons for the high selectivity and catalytic activity of the single atom catalysts. This paper mainly summarizes the recent researches on the preparation methods including coprecipitation method, successive reduction method and wet-impregnation method, catalytic performance and high catalytic selectivity of single atom catalysts. And finally, the prospects for future investigations of single atom catalysts are proposed.

Table 1 Commonly used preparation methods for single atom catalysts
Fig. 1 HAADF-STEM images of Pt1/FeO x single atom catalysts[17]
Fig. 2 Schematic formation mechanisms of Ag/Hollandite-MnO2 [35]
Fig. 3 (a) CVs of Pt/MCNTs, Pt/C (top panel), Au25/MCNTs and Pt1Au24/MCNTs; (b) Illustration of single Pt atom-doped Au25(Pt1Au24(SR)18) NCs for HCOOH oxidation[34]
Fig. 4 Schematic illustration of synthesis of Crown-Jewel structure of Au-Pd SACs by replacement reaction method[46]
Fig. 5 (a) Elemental mapping of Pt1@Fe-N-C catalyst; (b) Proposed schematic diagram of Pt1-O2-Fe1-N4-C12 as the active moiety of Pt1@Fe-N-C[39]
Fig. 6 (a) Schematic illustration of the synthesis of single-atom CoN4/NG catalyst; (b) HAADF-STEM image of the CoN4/NG with cobalt atom bright points[42]
[1]
Zhang H , Toshima N . Journal of Colloid & Interface Science, 2013,394(1):166.
[2]
Jian L , Botao Q , Ning L , Lin L , Xiucheng S , Jingyue L , Xiaodong W , Tao Z . Chemical Communications, 2015,51(37):7911. https://www.ncbi.nlm.nih.gov/pubmed/25858347

doi: 10.1039/c5cc00714c pmid: 25858347
[3]
Wang W L , Santos E J , Jiang B , Cubuk E D , Ophus C , Centeno A , Pesquera A , Zurutuza A , Ciston J , Westervelt R . Nano Letters, 2016,14(2):450. https://www.ncbi.nlm.nih.gov/pubmed/24447230

doi: 10.1021/nl403327u pmid: 24447230
[4]
Gao G , Jiao Y , Waclawik E R , Du A . Journal of the American Chemical Society, 2016,138(19):6292. https://www.ncbi.nlm.nih.gov/pubmed/27116595

doi: 10.1021/jacs.6b02692 pmid: 27116595
[5]
焦成鹏(Jiao C P), 黄自力(Huang Z L), 张海军(Zhang H J), 张少伟(Zhang S W). 化学进展(Progress in Chemistry), 2015,27(5):472.
[6]
王小凤(Wang X F), 黄自力(Huang Z L), 张海军(Zhang H J). 稀有金属材料与工程(Rare Metal Mat Eng), 2013,42(8):001751.
[7]
Lin S , Ye X , Johnson R S , Hua G . Journal of Physical Chemistry C, 2013,117(33):17319.
[8]
Lin J , Wang A , Qiao B , Liu X , Yang X , Wang X , Liang J , Li J , Liu J , Zhang T . Journal of the American Chemical Society, 2013,135(41):15314. https://www.ncbi.nlm.nih.gov/pubmed/24090210

doi: 10.1021/ja408574m pmid: 24090210
[9]
Zhao P , Su Y , Zhang Y , Li S J , Chen G . Chemical Physics Letters, 2011,515(1):159.
[10]
Ren H , Wang Y , Yang Y , Tang X , Peng Y , Peng H , Xiao L , Lu J , Abruña H D , Zhuang L . ACS Catalysis, 2017,7(10):6485.
[11]
Li M , Wu S , Yang X , Hu J , Peng L , Bai L , Huo Q , Guan J . Applied Catalysis A: General, 2017,543:61.
[12]
Marcinkowski M D , Darby M T , Liu J , Wimble J M , Lucci F R , Lee S , Michaelides A , Flytzani-Stephanopoulos M , Stamatakis M , Sykes E C H . Nature Chemistry, 2018,10(3):325. https://www.ncbi.nlm.nih.gov/pubmed/29461520

doi: 10.1038/nchem.2915 pmid: 29461520
[13]
Yan H , Lin Y , Wu H , Zhang W , Sun Z , Cheng H , Liu W , Wang C , Li J , Huang X , Yao T , Yang J , Wei S , Lu J . Nature Communications, 2017,8(1):1070. https://www.ncbi.nlm.nih.gov/pubmed/29057957

doi: 10.1038/s41467-017-01259-z pmid: 29057957
[14]
Tamura M , Kitanaka T , Nakagawa Y , Tomishige K . ACS Catalysis, 2015,6(1):376. https://pubs.acs.org/doi/10.1021/acscatal.5b02258

doi: 10.1021/acscatal.5b02258
[15]
Pei G X , Liu X Y , Wang A , Lee A F , Isaacs M A , Li L , Pan X , Yang X , Wang X , Tai Z , Wilson K , Zhang T . ACS Catalysis, 2015,5(6):3717. https://pubs.acs.org/doi/10.1021/acscatal.5b00700

doi: 10.1021/acscatal.5b00700
[16]
王勇(Wang Y), 张文华(Zhang W H), 邓德会(Deng D H), 包信和(Bao X H). 催化学报(Chinese Journal of Catalysis), 2017,38(9):1443.
[17]
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Nature Chemistry, 2011,3(8):634. https://www.ncbi.nlm.nih.gov/pubmed/21778984

doi: 10.1038/nchem.1095 pmid: 21778984
[18]
Cheng Q , Yang L , Zou L , Zou Z , Chen C , Hu Z , Yang H . ACS Catalysis, 2017,7(10):6864.
[19]
Li X , Bi W , Zhang L , Tao S , Chu W , Zhang Q , Luo Y , Wu C , Xie Y . Advanced Materials, 2016,28(12):2427. https://www.ncbi.nlm.nih.gov/pubmed/26822495

doi: 10.1002/adma.201505281 pmid: 26822495
[20]
Liu P , Zhao Y , Qin R , Mo S , Chen G , Gu L , Chevrier DM , Zhang P , Guo Q , Zang D , Wu B , Fu G , Zheng N . Science, 2016,352(6287):797. https://www.ncbi.nlm.nih.gov/pubmed/27174982

doi: 10.1126/science.aaf5251 pmid: 27174982
[21]
Qiao B , Lin J , Wang A , Chen Y , Zhang T , Liu J . Chinese Journal of Catalysis, 2015,36(9):1505.
[22]
Zhang H , Hwang S , Wang M , Feng Z , Karakalos S , Luo L , Qiao Z , Xie X , Wang C , Su D , Shao Y , Wu G . Journal of the American Chemical Society, 2017,139(40):14143. https://www.ncbi.nlm.nih.gov/pubmed/28901758

doi: 10.1021/jacs.7b06514 pmid: 28901758
[23]
Poh C K , Lim S H , Lin J , Feng Y P . The Journal of Physical Chemistry C, 2014,118(25):13525.
[24]
Aich P , Wei H , Basan B , Kropf A J , Schweitzer N M , Marshall C L , Miller J T , Meyer R . The Journal of Physical Chemistry C, 2015,119(32):18140.
[25]
Bulushev D A , Zacharska M , Shlyakhova E V , Chuvilin A L , Guo Y , Beloshapkin S , Okotrub A V , Bulusheva L G . ACS Catalysis, 2015,6(2):681.
[26]
Li Z , He T , Matsumura D , Miao S , Wu A , Liu L , Wu G , Chen P . ACS Catalysis, 2017,7(10):6762.
[27]
Dhiman M , Polshettiwar V . ChemCatChem, 2018,10(5):881.
[28]
Peters B , Scott S L . The Journal of Chemical Physics, 2015,142(10):104708. https://www.ncbi.nlm.nih.gov/pubmed/25770558

doi: 10.1063/1.4914145 pmid: 25770558
[29]
Liang S , Hao C , Shi Y . Chemcatchem, 2015,7(17):2559. http://doi.wiley.com/10.1002/cctc.201500363

doi: 10.1002/cctc.201500363
[30]
Zhang H , Toshima N . Journal of Colloid and Interface Science, 2013,394:166. 3aae4769-bf14-4f76-b882-064f4afa4676 http://dx.doi.org/10.1016/j.jcis.2012.11.059

doi: 10.1016/j.jcis.2012.11.059 pmid: 23290434
[31]
Hayashi S , Ishida R , Hasegawa S , Yamazoe S , Tsukuda T . Topics in Catalysis, 2017,61(1~2):136. http://link.springer.com/10.1007/s11244-017-0876-z

doi: 10.1007/s11244-017-0876-z
[32]
Narula C K , Allard L F , Stocks G M , Mosesdebusk M . Scientific Reports, 2014,4, 7238. https://www.ncbi.nlm.nih.gov/pubmed/25429995

doi: 10.1038/srep07238 pmid: 25429995
[33]
Jun X , Fu C J , Hang L Y , Tao Y W , Ying Z , Rong Z L , Feng W H , Hu P , Yun W , Jun Z H . Chemistry-A European Journal, 2014,20(8):2138. https://www.ncbi.nlm.nih.gov/pubmed/24403011

doi: 10.1002/chem.201303366 pmid: 24403011
[34]
Lu Y , Zhang C , Li X , Frojd A R , Xing W , Clayborne A Z , Chen W . Nano Energy, 2018,50:316. https://linkinghub.elsevier.com/retrieve/pii/S2211285518303677

doi: 10.1016/j.nanoen.2018.05.052
[35]
Ding J , Fan M , Zhong Q , Russell A G . Applied Catalysis B: Environmental, 2018,232:348. https://linkinghub.elsevier.com/retrieve/pii/S0926337318302571

doi: 10.1016/j.apcatb.2018.03.058
[36]
Zhang H , Lu L , Kawashima K , Okumura M , Haruta M , Toshima N . Advanced Materials, 2015,27(8):1383. https://www.ncbi.nlm.nih.gov/pubmed/25511851

doi: 10.1002/adma.201404870 pmid: 25511851
[37]
Zhang H , Kawashima K , Okumura M , Toshima N . Journal of Materials Chemistry A, 2014,2(33):13498.
[38]
Shan J , Liu J , Li M , Lustig S , Lee S , Flytzani-Stephanopoulos M . Applied Catalysis B: Environmental, 2018,226:534.
[39]
Zeng X , Shui J , Liu X , Liu Q , Li Y , Shang J , Zheng L , Yu R . Advanced Energy Materials, 2018,8(1):1701345. http://doi.wiley.com/10.1002/aenm.v8.1

doi: 10.1002/aenm.v8.1
[40]
Lang R , Li T , Matsumura D , Miao S , Ren Y , Cui Y T , Tan Y , Qiao B , Li L , Wang A , Wang X , Zhang T . Angewandte Chemie International Edition, 2016,55(52):16054. https://www.ncbi.nlm.nih.gov/pubmed/27862789

doi: 10.1002/anie.201607885 pmid: 27862789
[41]
Kim J , Roh C W , Sahoo S K , Yang S , Bae J , Han J W , Lee H . Advanced Energy Materials, 2018,8(1):1701476. http://doi.wiley.com/10.1002/aenm.v8.1

doi: 10.1002/aenm.v8.1
[42]
Yang L , Shi L , Wang D , Lv Y , Cao D . Nano Energy, 2018,50:691. https://linkinghub.elsevier.com/retrieve/pii/S221128551830418X

doi: 10.1016/j.nanoen.2018.06.023
[43]
Moses-DeBusk M , Yoon M , Allard L F , Mullins D R , Wu Z , Yang X , Veith G , Stocks G M , Narula C K . Journal of the American Chemical Society, 2013,135(34):12634. https://www.ncbi.nlm.nih.gov/pubmed/23952672

doi: 10.1021/ja401847c pmid: 23952672
[44]
Jiang K , Siahrostami S , Zheng T , Hu Y , Hwang S , Stavitski E , Peng Y , Dynes J , Gangisetty M , Su D , Attenkofer K , Wang H . Energy & Environmental Science, 2018,11(4):893. https://linkinghub.elsevier.com/retrieve/pii/0360544286900095

doi: 10.1016/0360-5442(86)90009-5
[45]
Yang M , Allard L F , Flytzani-Stephanopoulos M . Journal of the American Chemical Society, 2013,135(10):3768. https://www.ncbi.nlm.nih.gov/pubmed/23437858

doi: 10.1021/ja312646d pmid: 23437858
[46]
Zhang H , Watanabe T , Okumura M , Haruta M , Toshima N . Nature Materials, 2012,11(1):49. https://www.ncbi.nlm.nih.gov/pubmed/22019941

doi: 10.1038/nmat3143 pmid: 22019941
[47]
李中春(Li Z C), 罗胜利(Luo S L), 周全法(Zhou Q F). 稀有金属材料与工程(Rare Metal Mat Eng), 2010,39(10):1863.
[48]
Bootharaju M S , Joshi C P , Parida M R , Mohammed O F , Bakr O M . Angewandte Chemie International Edition, 2016,55(3):922. https://www.ncbi.nlm.nih.gov/pubmed/26611172

doi: 10.1002/anie.201509381 pmid: 26611172
[49]
Kistler J D , Chotigkrai N , Xu P D , Enderle B , Praserthdam P , Chen C Y , Browning N D , Gates B C . Angewandte Chemie, 2014,126(34):9050. https://www.ncbi.nlm.nih.gov/pubmed/24986134

doi: 10.1002/ange.v126.34 pmid: 24986134
[50]
Gu X K , Qiao B , Huang C Q , Ding W C , Sun K , Zhan E , Zhang T , Liu J , Li W X . ACS Catalysis, 2014,4(11):3886. e52ab543-ccfa-43ef-ac5c-579bbc2c3834 http://dx.doi.org/10.1021/cs500740u

doi: 10.1021/cs500740u
[51]
Wang L , Zhang S R , Zhu Y , Patlolla A , Shan J J , Yoshida H , Takeda S , Frenkel A I , Tao F . ACS Catalysis, 2016,3(5):1011. https://pubs.acs.org/doi/10.1021/cs300816u

doi: 10.1021/cs300816u
[52]
Cheng Y , Zhao S , Li H , He S , Veder J P , Johannessen B , Xiao J , Lu S , Pan J , Chisholm M F , Yang S Z , Liu C , Chen J G , Jiang S P . Applied Catalysis B: Environmental, 2019,243:294. https://linkinghub.elsevier.com/retrieve/pii/S0926337318310026

doi: 10.1016/j.apcatb.2018.10.046
[53]
Markku L , Mikko R . Angewandte Chemie International Edition, 2003,42(45):5548. https://www.ncbi.nlm.nih.gov/pubmed/14639717

doi: 10.1002/anie.200301652 pmid: 14639717
[54]
Sun S , Zhang G , Gauquelin N , Chen N , Zhou J , Yang S , Chen W , Meng X , Geng D , Banis M N , Li R , Ye S , Knights S , Botton G A , Sham T K , Sun X . Scientific Reports, 2013,3(1):65.
[55]
Yan H , Cheng H , Yi H , Lin Y , Yao T , Wang C L , Li J J , Wei S Q , Lu J L . Journal of the American Chemical Society, 2015,137(33):10484. https://www.ncbi.nlm.nih.gov/pubmed/26268551

doi: 10.1021/jacs.5b06485 pmid: 26268551
[56]
Qiu H J , Ito Y , Cong W , Tan Y , Liu P , Hirata A , Fujita T , Tang Z , Chen M . Angewandte Chemie International Edition, 2016,54(47):14031. https://www.ncbi.nlm.nih.gov/pubmed/26474177

doi: 10.1002/anie.201507381 pmid: 26474177
[57]
Yao Z , Yan J , Mietek J , Zhang S Q . Angewandte Chemie, 2015,54(1):52. https://www.ncbi.nlm.nih.gov/pubmed/25384712

doi: 10.1002/anie.201407031 pmid: 25384712
[58]
Yan J , Yao Z , Mietek J , Zhang Q S . Chemical Society Reviews, 2015,46(25):2060.
[59]
Subbaraman R , Tripkovic D , Chang K C , Strmcnik D , Paulikas A P , Hirunsit P , Chan M , Greeley J , Stamenkovic V , Markovic N M . Nature Materials, 2012,11(6):550. https://www.ncbi.nlm.nih.gov/pubmed/22561903

doi: 10.1038/nmat3313 pmid: 22561903
[60]
Hu P , Huang Z , Amghouz Z , Makkee M , Xu F , Kapteijn F , Dikhtiarenko A , Chen Y , Gu X , Tang X . Angewandte Chemie International Edition, 2014,53(13):3418. https://www.ncbi.nlm.nih.gov/pubmed/24599751

doi: 10.1002/anie.201309248 pmid: 24599751
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
Viewed
Full text


Abstract

Preparation of Single Atom Catalysts