中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 72-83 DOI: 10.7536/PC190501 Previous Articles   Next Articles

Reductive Amination of Nitroarenes and Alcohols: Catalyst and Catalytic Mechanism

Ping Yang, Minjie Liu, Hao Zhang, Wenting Guo, Chaoyang Lv, Di Liu**()   

  1. 1. College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
  • Received: Online: Published:
  • Contact: Di Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21878178)
Richhtml ( 23 ) PDF ( 727 ) Cited
Export

EndNote

Ris

BibTeX

Amine compounds have been widely applied in the field of pharmaceuticals, dyes and fine chemicals due to its characteristics of chemical structure and property. Many methods for the synthesis of amine compounds are available, in which the reductive amination of nitroarenes and alcohols has attracted extensive attention because nitroarenes and alcohols with the advantages of good accessibility and stable chemical properties can directly be converted to amines by one-pot method without additional hydrogen sources. The recent progress is summarized from two aspects: catalyst and catalytic mechanism based on reaction pathways of the reductive amination of nitroarenes in this article. We introduce all kinds of catalytic systems in detail such as noble metal, photocatalyst, and so on, the catalytic performance, applicability and catalytic mechanism of which are highlighted. It needs to be pointed out that these catalytic systems show varying degrees of success as well as limitations like high cost of catalyst, narrow applicable range of substrates, excessive exogenous base, additional hydrogen source and/or toxic organic solvents. Based on the above problems, it would be desirable to develop a green, efficient, inexpensive and universal catalytic system, the catalytic mechanism of various catalysts should be systematically studied to provide guidance for the development of catalytic system on the other hand.

Fig. 1 Current methods for synthesizing amine compounds
Table 1 Catalytic condensation of primary alcohols and nitroarenesa [12]
Fig. 2 Catalyzed tandem reaction between nitrobenzene and benzyl alcohol: (a) two pathways in the reduction of nitroarene; (b) alcohol oxidation, and (c) amine/aldehyde condensation products[13]
Fig. 3 Proposed reaction mechanism[18]
Fig. 4 The plausible mechanism of the synthesis of N-alkyl aniline using glycerol as the reducing agent[21]
Fig. 5 Cu-Au cooperation effect in imine production[22]
Fig. 6 Proposed pathways for the imine formation on P25 TiO2 [24]
Fig. 7 The one-pot synthesis of imine from benzyl alcohol and nitrobenzene on the CdS-TiO2 photocatalyst[25]
Table 2 One-pot synthesis of imines from several benzylic alcohols and nitrobenzene on the CdS-TiO2 photocatalyst[26]
Table 3 Co-N-C/CNT@AC-catalyzed reductive coupling of nitrobenzenes and alcohols to imina [33]
Fig. 8 A mechanism path for the direct alkylation of nitroarenes[34]
Table 4 Results of the reductive alkylation of nitrobenzenes with alcoholsa [7]
Fig. 9 Proposed mechanism for the reductive N-alkylation of nitro aromatics[35]
Fig. 10 A tentative pathway for the direct alkylation of nitroarenes[38]
Fig. 11 Proposed pathway for secondary amine formation from alcohols and nitroarenes on the photoactivated Pd/TiO2 catalyst[39]
Fig. 12 The reaction mechanism for the reductive amination of nitrobenzene with benzyl alcohol over Co-N-C/CNT@AC[33]
Table 5 Catalytic formation of tertiary amines from nitroarenes and alcohols a[37]
[1]
Sridhar S K , Ramesh A . Biol. Pharm. Bull., 2001,24:1149. https://www.ncbi.nlm.nih.gov/pubmed/11642321

doi: 10.1248/bpb.24.1149 pmid: 11642321
[2]
Sessler J L , Tomat E , Lynch V M . J. Am. Chem. Soc., 2006,128:4184. https://www.ncbi.nlm.nih.gov/pubmed/16568966

doi: 10.1021/ja0582004 pmid: 16568966
[3]
Andrey B L , Konstantin V D , Emma P P , Fernando L O , Jonathan W S , Rostislav D L . Polyhedron, 2002,21:769.
[4]
Sui D J , Mao F , Fan H P , Qi Z L , Huang J . Chin. J. Chem., 2017,35:1371.
[5]
Imai S , Togo H . Tetrahedron, 2016,72:6948.
[6]
Sridhar S K , Saravanan M , Ramesh A . Eur. J. Med. Chem., 2001,36:615. https://www.ncbi.nlm.nih.gov/pubmed/11600231

doi: 10.1016/s0223-5234(01)01255-7 pmid: 11600231
[7]
Cui X J , Zhang Y , Shi F , Deng Y Q . Chem. Eur. J., 2011,17:2587. https://www.ncbi.nlm.nih.gov/pubmed/21271621

doi: 10.1002/chem.201003095 pmid: 21271621
[8]
Mohamed R M . J. Alloy. Compd., 2015,648:711.
[9]
刘迪(Liu D), 张成慧(Zhang C H), 韩楠(Han N), 杜萌萌(Du M M), 张效露(Zhang X L), 赵朋杉(Zhao P S), 杨萍(Yang P). 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1350.
[10]
Zhang L L , Wang W T , Wang A Q , Cui Y T , Yang X F , Huang Y Q , Liu X Y , Liu W G , Son J Y , Oji H , Zhang T . Green Chem., 2013,15:2680.
[11]
Mona H S . Chinese. Chem. Lett., 2011,22:547.
[12]
Zanardi A , Jose A , Mata J A . Chem. Eur. J., 2010,16:10502. https://www.ncbi.nlm.nih.gov/pubmed/20652912

doi: 10.1002/chem.201000801 pmid: 20652912
[13]
Sabater S , Mata J A , Peris E . Chem. Eur. J., 2012,18:6380. https://www.ncbi.nlm.nih.gov/pubmed/22454223

doi: 10.1002/chem.201103657 pmid: 22454223
[14]
Sankar M , He Q , Dawson S , Nowicka E , Lu L , Bruijnincx P C A , Beale A M , Kiely C J , Weckhuysen B M . Catal. Sci. Technol., 2016,6:5473.
[15]
Cano R , Ramon D J , Yus M . J. Org. Chem., 2011,76:5547. https://www.ncbi.nlm.nih.gov/pubmed/21615080

doi: 10.1021/jo200559h pmid: 21615080
[16]
陆晓蕾(Lu X L), 张琳(Zhang L), 顾运江(Gu X J), 刘迎新(Liu Y X). 精细化工(Fine Chemicals), 2013,44:29.
[17]
Tan D W , Li H X , Young D J , Lang J P . Tetrahedron, 2016,72:4169.
[18]
Song T , Park J E , Chung Y K . J. Org. Chem., 2018,83:4197. https://www.ncbi.nlm.nih.gov/pubmed/29536727

doi: 10.1021/acs.joc.8b00197 pmid: 29536727
[19]
Tang L , Sun H Y , Li Y F , Zha Z G , Wang Z Y . Green Chem., 2012,14:3423.
[20]
Chen J , Huang S J , Lin J , Su W P . Appl. Catal. A-Gen., 2014,470:1.
[21]
Cui X J , Zhang C G , Shi F , Deng Y Q . Chem. Commun., 2012,48:9391. https://www.ncbi.nlm.nih.gov/pubmed/22892866

doi: 10.1039/c2cc34178f pmid: 22892866
[22]
Li M , Fernando C L , Keane M A . Appl. Catal. A-Gen., 2018,557:145.
[23]
Mandi U , Roy A S , Kundu S K , Roy S , Bhaumik A , Islam S M . J. Colloid. Interf. Sci., 2016,472:202. https://www.ncbi.nlm.nih.gov/pubmed/27038284

doi: 10.1016/j.jcis.2016.03.037 pmid: 27038284
[24]
Hirakawa H , Katayama M , Shiraishi Y , Sakamoto H , Wang K , Ohtani B , Ichikawa S , Tanaka S , Hirai T . ACS Appl. Mater. Inter., 2015,7:3797. https://www.ncbi.nlm.nih.gov/pubmed/25621386

doi: 10.1021/am508769x pmid: 25621386
[25]
Higashimoto S , Nakai Y , Azuma M , Takahashi M , Sakata Y . RSC Adv., 2014,4:37662.
[26]
Nakai Y , Azuma M , Muraoka M , Kobayashi H , Higashimoto S . Mol. Catal., 2017,443:203.
[27]
Wu Y H , Ye X J , Zhang S J , Meng S G , Fu X L , Wang X C , Zhang X M , Chen S F . J. Catal., 2018,359:151.
[28]
Ye X J , Chen Y H , Ling C C , Ding R , Wang X C , Zhang X M , Chen S F . Dalton. Trans., 2018,47:10915. https://www.ncbi.nlm.nih.gov/pubmed/30046781

doi: 10.1039/c8dt02278j pmid: 30046781
[29]
Zhang S J , Huang W X , Fu X L , Chen G L , Meng S G , Chen S F . J. Hazard. Mate., 2018,360:182. https://www.ncbi.nlm.nih.gov/pubmed/30099361

doi: 10.1016/j.jhazmat.2018.07.108 pmid: 30099361
[30]
Perez J M , Cano R , Yus M , Ramon D J . Eur. J. Org. Chem., 2013,44:4548.
[31]
Zhang C H , Zhao P S , Zhang Z L , Zhang J W , Yang P , Gao P , Gao J , Liu D . RSC Adv., 2017,7:47366.
[32]
Yang P , Zhang J W , Liu D , Liu M J , Zhang H , Zhao P S , Zhang C H . Micropor. Mesopor. Mater., 2018,266:198.
[33]
Liu D , Yang P , Zhang H , Liu M J , Zhang W F , Xu D M , Gao J . Green Chem., 2019,21:2129.
[34]
Liu Y , Chen W , Feng C , Deng G J . Chem. Asian J., 2011,6:1142. https://www.ncbi.nlm.nih.gov/pubmed/21381212

doi: 10.1002/asia.201000945 pmid: 21381212
[35]
Cui X J , Deng Y Q , Shi F . ACS Catal., 2013,3:808.
[36]
Peng Q L , Yan Zhang Y , Feng Shi F , Deng Y Q . Chem. Commun., 2011,47:6476. https://www.ncbi.nlm.nih.gov/pubmed/21556401

doi: 10.1039/c1cc11057h pmid: 21556401
[37]
Tang C H , He L , Liu Y M , Cao Y , He H Y , Fan K N . Chem. Eur. J., 2011,17:7172. https://www.ncbi.nlm.nih.gov/pubmed/21590827

doi: 10.1002/chem.201100393 pmid: 21590827
[38]
Liu H H , Chuah G K , Jaenicke S . Phys. Chem. Chem. Phys., 2015,17:15012 https://www.ncbi.nlm.nih.gov/pubmed/25989446

doi: 10.1039/c5cp00330j pmid: 25989446
[39]
Selvam K , Sakamoto H , Shiraishi Y , Hirai T . New J. Chem., 2015,39:2467.
[40]
Song Y J , Wang H , Liang S J , Yu Y , Li L Y , Wu L . J. Catal., 2018,361:105. https://linkinghub.elsevier.com/retrieve/pii/S0021951718300630

doi: 10.1016/j.jcat.2018.02.005
[41]
Feng C , Liu Y , Peng S M , Shuai Q , Deng G J , Li C J . Org. Lett., 2010,12:4888. https://www.ncbi.nlm.nih.gov/pubmed/20929260

doi: 10.1021/ol1020527 pmid: 20929260
[42]
Xiao F H , Liu Y , Tang C L , Deng G J . Org. Lett., 2012,14:984. https://www.ncbi.nlm.nih.gov/pubmed/22292907

doi: 10.1021/ol203211k pmid: 22292907
[1] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[2] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[3] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[4] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[5] Honghong Wang, Wen Lei, Xiaojian Li, Zhong Huang, Quanli Jia, Haijun Zhang. Catalytic Reductive Degradation of Cr(Ⅵ) [J]. Progress in Chemistry, 2020, 32(12): 1990-2003.
[6] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[7] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[8] Zhengying Wu, Xie Liu, Jinsong Liu, Shouqing Liu, Zhenlong Zha, Zhigang Chen. Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties [J]. Progress in Chemistry, 2019, 31(8): 1086-1102.
[9] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[10] Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang. Disposable Catalysts for Coal Gasification [J]. Progress in Chemistry, 2018, 30(9): 1455-1462.
[11] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[12] Di Liu, Qian Liu, Yonggang Wang, Yongfa Zhu. Bi2SiO5 Semiconductor Photocatalyst [J]. Progress in Chemistry, 2018, 30(6): 703-709.
[13] Zhang Xia, Fan Jing. Carbon Materials Modified Bismuth Based Photocatalysts and Their Applications [J]. Progress in Chemistry, 2016, 28(4): 438-449.
[14] Zhang Xiaodong, Yang Yang, Li Hongxin, Zou Xuejun, Wang Yuxin. Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs [J]. Progress in Chemistry, 2016, 28(10): 1550-1559.
[15] Xu Jian, Fan Jianfen, Yan Xiliang, Yu Yi, Zhang Mingming. Transport and Diffusion of Water, Alcohols and Their Mixtures Through Nano-Pore Materials [J]. Progress in Chemistry, 2015, 27(5): 482-491.