中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1619-1632 DOI: 10.7536/PC140452 Previous Articles   Next Articles

• Review •

Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials

Yin Qiaoqiao, Qiao Ru*, Tong Guoxiu   

  1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21201151, 51102215) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. [2011] 1568)

PDF ( 4128 ) Cited
Export

EndNote

Ris

BibTeX

Because of its high redox potential, large exciton binding energy (~60 meV), superior physical and chemical stability, inexpensiveness and nontoxicity, ZnO has become one of the most widely investigated semiconductor photocatalysts. In this review, different types of dopants, synthetic methods, photocatalysis and functional mechanism of the doped ZnO nanomaterials are summarized. The doping types include non-metal doping, metal doping (transition metal doping and rare earth metal doping) and co-doping approaches. Through this ion-doping method, oxygen vacancies or defects could be introduced into ZnO lattice, which provides more active sites for the photo-oxidation reaction. On the other hand, the ion-doping approach can produce impurity energy levels in ZnO band gap, leading to the expansion of its light responding region and enhancement of visible-light absorption ability. The doping ion can also work as an electron scavenger inhibiting recombination of electron-hole pairs, thus increases the photocatalytic activity of ZnO nanomaterials. Beside above-mentioned contents, research advances in applications of doped ZnO nanomaterials in fields of degradation of organic pollutants, antibacterial agents and photocatalytic hydrogen production are summarized. And also future developments of the doped nanomaterials are prospected.

Contents
1 Introduction
2 Dopant of ZnO nanomaterials
2.1 Non-metal doping
2.2 Metal doping
2.3 Co-doping
2.4 Self-doping
3 Photocatalytic mechanism
3.1 Theoretical studies of the doped ZnO
3.2 Photocatalytic mechanism of the doped ZnO
4 Application of the doped ZnO
4.1 Photocatalytic degradation
4.2 Photocatalytic antibacterial activity
4.3 Photocatalytic hydrogen production
5 Conclusion and outlook

CLC Number: 

[1] Drogui P, Daghrir R, Robert D. Ind. Eng. Chem. Res., 2013, 52: 3581.
[2] Kamat P V. J. Phys. Chem. C, 2012, 116: 11849.
[3] Mapa M, Gopinath C S. Chem. Mater., 2009, 21: 351.
[4] Palominos R A, Mondaca M A, Giraldo A, Penuela G, Moya P M, Mansilla H D. Catal. Today, 2009, 144: 100.
[5] Fu H G, Tian C G, Zhang Q, Wu A P, Jiang M J, Liang Z L, Jiang B J. Chem. Comm., 2012, 48: 2858.
[6] Duan X W, Wang G Z, Wang H Q, Wang Y Q, Shen C, Cai W P. CrystEngComm, 2010, 12: 2821.
[7] Cao X L, Zeng H B, Wang M, Xu X J, Fang M, Ji S L, Zhang L D. J. Phys. Chem. C, 2008, 112: 5267.
[8] Xu L P, Hu Y L, Pelligra C, Chen C H, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib L S. Chem. Mater., 2009, 21: 2875.
[9] Zhang L Y, Yin L W, Wang C X, Lun N, Qi Y X. ACS Appl. Mater. Interface, 2010, 2: 1769.
[10] Boppella R, Anjaneyulu K, Basak P, Manorama V S. J. Phys. Chem. C, 2013, 117: 4597.
[11] Zhai T, Xie S L, Zhao Y F, Sun X F, Lu X H, Yu M H, Xu M, Xiao F M, Tong Y X. CrystEngComm, 2012, 14: 1850.
[12] Deng Q, Duan X W, Ng H L D, Tang H B, Yang Y, Kong M G, Wu Z K, Cai W P, Wang G Z. ACS Appl. Mater. Interfaces, 2012, 4: 6030.
[13] He W W, Kim H K, Wamer G W, Melka D, Callahan H J, Yin J J. J. Am. Chem. Soc., 2014, 136: 750.
[14] Molinari A, Amadeli R, Antolini L, Maldotti A, Battioni P, Mansuy D. J. Mol. Catal. A, 2000, 158: 521.
[15] Bessekhouad Y, Robert D, Weber J V. Catal. Today, 2005, 101: 315.
[16] Wu W, Zhang S F, Xiao X H, Zhou J, Ren F, Sun L L, Jiang C Z. ACS Appl. Mater. Interfaces, 2012, 4: 3602.
[17] Singh S, Barick K C, Bahadur D. J. Mater. Chem. A, 2013, 1: 3325.
[18] Ekambarama S, Iikubo Y, Kudo A. J. Alloys Compd., 2007, 433: 237.
[19] Etacheri V, Roshan R, Kumar V. ACS Appl. Mater. Interfaces, 2012, 4: 2717.
[20] Zhou X M, Liu G, Yu J G, Fan W D. J. Mater. Chem., 2012, 22: 21337.
[21] Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Cryst. Growth Des., 2009, 9: 3278.
[22] Liu H R, Shao G X, Zhao J F, Zhang Z X, Zhang Y, Liang J, Liu X G, Jia H S, Xu B S. J. Phys. Chem. C, 2012, 116: 16182.
[23] Xiao Q, Zhang J, Xiao C, Tan X K. Mater. Sci. Eng. B, 2007, 142: 121.
[24] Xiao Q, Ouyang L L. J. Alloy Compd., 2009, 479: L4.
[25] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.
[26] Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris C R, Qian F, Zhang Z J, Li Y. Nano Lett., 2009, 9: 2331.
[27] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515.
[28] Kim S, Park H, Nam G, Yoon H, Leem J Y. J. Sol-Gel Sci. Technol., 2013, 67: 580.
[29] Gao J H, Zhao Q, Sun Y H, Li G, Zhang J M, Yu D P. Nanoscale Res. Lett., 2011, 6: 45.
[30] Shen G Z, Cho J H, Yoo J K, Yi G C, Lee C J. J. Phys. Chem. B, 2005, 109: 5491.
[31] Choi Y J, Park H H. J. Mater. Chem. C, 2014, 2: 98.
[32] Qin H C, Li W Y, Xia Y J, He T. ACS Appl. Mater. Interfaces, 2011, 3: 3152.
[33] Bai H W, Liu Z Y, Sun D L. Chem. Asian J., 2012, 7: 1772.
[34] Sun S B, Chang X T, Li X J, Li Z J. Ceram. Int., 2013, 39: 5197.
[35] Zong X, Sun C H, Yu H, Chen Z G, Xing Z, Ye D L, Lu G Q, Li X Y, Wang L Z. J. Phys. Chem. C, 2013, 117: 4937.
[36] Yu Z B, Yin L C, Xie Y P, Liu G, Ma X L, Cheng H M. J. Colloid Interf. Sci., 2013, 400: 18.
[37] Liu S W, Li C, Yu J G, Xiang Q J. CrystEngComm, 2011, 13: 2533.
[38] Ouyang H B, Huang J F, Li C Y, Cao L Y, Fei J. Mater. Lett., 2013, 111: 217.
[39] Yu Q, Li H D, Wang Q L, Cheng S H, Li L A. Chem. Phys. Lett., 2012, 539/540: 74.
[40] Zhang Y, Wu L, Li H, Xu J, Han L, Wang B, Tuo Z, Xie E. J. Alloy. Compd., 2009, 473: 319.
[41] 傅希贤(Fu X X), 杨秋华(Yang Q H), 桑丽霞(Sang L X).高等学校化学学报 (Chem. J. Chin. Univ.), 2002, 23: 283.
[42] Wang C Y, Bettcher C, Bahnemann D W, Dohrmann J K. J. Mater. Chem., 2003, 13: 2322.
[43] Zhang Y Y, Ram M K, Stefanakos E K, Goswami D Y. Surf. Coat. Technol., 2013, 217: 119.
[44] Dong S H, Xu K J, Liu J C, Cui H W. Physic B, 2011, 406: 3609.
[45] Ba-Abbad M M, Kadhum H A A, Mohamad A B, Takriff M S, Sopian K. Chemosphere, 2013, 91: 1604.
[46] Mohana R, Krishnamoorthy K, Kim S J. Solid State Commun., 2012, 152: 375.
[47] Jongnavakit P, Amornpitoksuk P, Suwanboon S, Ndiegec N. Appl. Surf. Sci., 2012, 258: 8192.
[48] Carvalho H W P, Batista A P L, Hammer P, Ramalho T C. J. Hazard. Mater., 2010, 184: 273.
[49] Donkovaa B, Dimitrova D, Kostadinov M, Mitkova E, Mehandjiev D. Mater. Chem. Phys., 2010, 123: 563.
[50] Barick K C, Singh S, Aslam M, Bahadur D. Micropor. Mesopor. Mater., 2010, 134: 195.
[51] Kaneva N V, Dimitrov D T, Dushkin C D. Appl. Surf. Sci., 2011, 257: 8113.
[52] He R L, Hocking R K, Tsuzuki T. Mater. Chem. Phys., 2012, 132: 1035.
[53] Hagfeldt A, Gratzel M. Chem. Rev., 1995, 95: 49.
[54] Ullah R, Dutta J. J. Hazard. Mater., 2008, 156: 194.
[55] Zhao J, Wang L, Yan X Q, Yang Y, Lei Y, Zhou J, Huang Y H, Gu Y S, Zhang Y. Mater. Res. Bull., 2011, 46: 1207.
[56] Xu C, Cao L X, Su G, Liu W, Qu X F, Yu Y Q. J. Alloy. Compd., 2010, 497: 373.
[57] Mahmood M A, Baruah S, Dutta J. Mater. Chem. Phys., 2011, 130: 531.
[58] Lu Y C, Lin Y H, Xie T F, Shi S L, Wang D J, Fan H M. Nanoscale, 2012, 4: 6393.
[59] Cai X Y, Cai Y, Liu Y J, Li H, Zhang F. J. Phys. Chem. Solids, 2013, 74: 1196.
[60] Ranjit K T, Willner I, Bossmann S H, Braun A M. J. Catal., 2001, 204: 305.
[61] Ranjit K T, Willner I, Bossmann S H, Braun A M. Environ. Sci. Technol., 2001, 35: 1544.
[62] Geburt S, Stichtenoth D, Muller S, Dewald W, Ronning C, Wang J, Jiao Y, Rao Y Y, Hark S K, Li Q. J. Nanosci. Nanotechnol., 2008, 8: 244.
[63] Suwanboon S, Amornpitoksuk P, Sukolrat A, Muensit N. Ceram. Int., 2013, 39: 2811.
[64] Zhou Y, Lu S X, Xua W G. Environ. Prog. Sust. Energy, 2009, 28: 226.
[65] Saif M, Hafez H, Nabeel A I. Chemosphere, 2013, 90: 840.
[66] Yousefi M, Amiri M, Azimirad R, Moshfegh A Z. J. Electroanal. Chem., 2011, 661: 106.
[67] Khatamian M, Khandar A A, Divband B, Haghighi M, Ebrahimiasl S. J. Mol. Catal. A, 2012, 365: 120.
[68] Liang C H, Li F B, Liu C S, Lu J L, Wang X G. Dyes Pigments, 2008, 76: 477.
[69] Sin J C, Lam S M, Lee K T, Mohamed A R. J. Colloid Interface Sci., 2013, 401: 40.
[70] Sin J C, Lam S M, Lee K T, Mohamed A R. Ceram. Int., 2013, 39: 5833.
[71] Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Mater. Lett., 2013, 90: 83.
[72] Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Ceram. Int., 2013, 39: S563.
[73] Yayapao O, Thongtem T, Phuruangrat A, Thongtem S. J. Alloy. Compd., 2013, 576: 72.
[74] Wu Y, Xing M, Tian B, Zhang J, Chen F. Chem. Eng. J., 2010, 162: 710.
[75] Liu H, Wu Y, Zhang J. ACS Appl. Mater. Interface, 2011, 3: 1757.
[76] Wang P, Yap P, Lim T. Appl. Catal. A, 2011, 399: 252.
[77] Jia A, Liang X, Su Z, Zhu T, Liu S. J. Hazard. Mater., 2010, 178: 233.
[78] He T O, Guo X L, Zhang K, Feng Y M, Wang X D. RSC Adv., 2014, 4: 5880.
[79] Wu K P, Gu S L, Tang K, Ye J D, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R, Zheng Y D. J.Magn. Magn. Mater., 2012, 324: 1649.
[80] Wu K P, Gu S L, Tang K, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R, Zheng Y D. Physica B, 2012, 407: 2429.
[81] Dhiman P, Batoo K M, Kotnala R K, Chand J, Singh M. Appl. Surf. Sci., 2013, 287: 287.
[82] Cao H W, Lu P F, Cong Z X, Yu Z Y, Cai N M, Zhang X L, Gao T, Wang S M. Thin Solid Films, 2013, 548: 480.
[83] 傅天华(Fu T H), 高倩倩(Gao Q Q), 刘斐(Liu F), 代华均(Dai H J), 寇兴明(Kou X M). 催化学报(Chinese J. Catal.), 2010, 31: 797.
[84] Vignesh K, Rajarajan M, Suganthi A. J. Ind. Eng. Chem., 2014, 20: 3826.
[85] Zheng Z K, Huang B B, Meng X D, Wang J P, Wang S Y, Lou Z Z, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Comm., 2013, 49: 868.
[86] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J. Am. Chem. Soc., 2010, 132: 11856.
[87] Xing M, Zhang J, Chen F, Tian B. Chem. Commm., 2011, 47: 4947.
[88] Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y. ACS Appl. Mater. Interfaces, 2012, 4: 4024.
[89] Shinde S S, Bhosale C H, Rajpure K Y. J. Photochem. Photobio. B, 2012, 113: 70.
[90] Patil B A, Patil R K, Pardeshi K S. J. Solid State Chem., 2011, 184: 3273.
[91] Patil B A, Patil R K, Pardeshi K S. J. Hazard. Mater., 2010, 183: 315.
[92] Xie S F, Liu Y Y, Chen Z L, Chen X D, Wang X Y. RSC Adv., 2013, 3: 26080.
[93] Kochuveedu T S, Jang Y H, Jang Y J, Kim D H. J. Mater. Chem. A, 2013, 1: 898.
[94] Fu M, Li Y L, Wu S W, Lu P, Liu J, Dong F. Appl. Surf. Sci., 2011, 258: 1587.
[95] Wu C L, Shen L, Yu H G, Zhang Y C, Huang Q L. Mater. Lett., 2012, 74: 236.
[96] Xiao Q, Yao C. Mater. Chem. Phys., 2011, 130: 5.
[97] Yang Y F, Li Y G, Zhu L P, He H P, Hu L, Huang J Y, Hu F C, He B, Ye Z Z. Nanoscale, 2013, 5: 10461.
[98] Karunakaran C, Gomathisankar P, Manikandan G. Mater. Chem. Phys., 2010, 123: 585.
[99] Korake P V, Dhabbe R S, Kadam A N, Gaikwad Y B, Garadkar K M. J. Photochem. Photobio. B, 2014, 130: 11.
[100] Phuruangrat A, Yayapao O, Thongtemc T, Thongtema S. Superlattice. Microst., 2014, 67: 118.
[101] Sin J C, Lam S M, Lee K T, Mohamed A R. Ceram. Int., 2014, 40: 5431.
[102] Ökte A. N. Appl. Catal. A, 2014, 475: 27.
[103] Chavillon B, Cario L, Renaud A, Tessier F, Cheviré F, Boujtita M, Pellegrin Y, Blart E, Smeigh A, Hammarström L, Odobel F, Jobic S. J. Am. Chem. Soc., 2012, 134: 464.
[104] Herring P N. Panchakarla S L, El-Shall S M. Langmuir, 2014, 30: 2230.
[105] Lu Y B, Dai Y, Wei W, Zhu Y T, Huang B B. ChemPhysChem, 2013, 14: 3916.
[106] Geng B Y, Wang G Z, Jiang Z, Xie T, Sun S H, Meng G W, Zhang L D. Appl. Phys. Lett., 2003, 82: 4791.
[107] Zhang Z, Yi J B, Ding J, Wong L M, Seng H L, Wang S J, Tao J G, Li G P, Xing G Z, Sum T C, Huan C H A, Wu T. J. Phys. Chem. C, 2008, 112: 9579.
[108] Shi S B, Yang Y, Xu J P, Li L, Zhang X S, Hu G H, Dang Z M. J. Alloy. Compd., 2013, 576: 59.
[109] Wu C L, Zhang Y C, Huang Q L. Mater. Lett., 2014, 119: 104.
[110] Lu Y C, Lin Y H, Wang D J, Wang L L, Xie T F, Jiang T F. Nano Res., 2011, 4: 1144.
[111] Lu Y C, Lin Y H, Xie T F, Chen L P, Yi S S, Wang D J. ACS Appl. Mater. Interfaces, 2013, 5: 4017.
[112] Sina J C, Lama S M, Satoshi I, Leea K T, Mohamed R A. Appl. Catal. B, 2014, 148/149: 258.
[113] 曲敏丽(Qu M L), 姜万超(Jiang W C). 印染助剂(Textile Auxiliaries), 2004, 21: 45.
[114] Gu Z, Han Y, Pan F, Wang X, Weng D, Zhou S. Mater. Sci. Forum., 2009, 610/613: 229.
[115] Raghupathi K R, Koodali R T, Manna A C. Langmuir, 2011, 27: 4020.
[116] Dutta K R, Sharma K P, Bhargava R, Kumar N, Pandey C A. J. Phys. Chem. B, 2010, 114: 5594.
[117] Liang X X, Sun M X, Li L C, Qiao R, Chen K Y, Xiao Q S, Xu F. Dalton Trans., 2012, 41: 2804.
[118] Suwanboon S, Amornpitoksuk P, Bangrak P, Muensit N. Mater. Sci. Semicon. Proc., 2013, 16: 504.
[119] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21: 2285.
[120] Kanade K G, Kale B B, Baeg J O, Lee S M, Lee C W, Moon S J, Chang H. Mater. Chem. Phys., 2007, 102: 98.
[121] Bhirud P A, Sathaye D S, Waichal P R, Nikama K L, Kale B B. Green Chem., 2012, 14: 2790.
[122] Gomathisankar P, Hachisuka K, Katsumata H, Suzuki T, Funasaka K, Kaneco S. ACS Sustainable Chem. Eng., 2013, 1: 982.
[123] Yang K S, Dai Y, Huang B B. ChemPhysChem, 2009, 10: 2327.

[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[7] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[8] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[9] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[10] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[11] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[12] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.