中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1729-1736 DOI: 10.7536/PC190321 Previous Articles   Next Articles

2D MXenes for Photocatalysis*

Wenjun Zhao1, Jiangzhou Qin1, Zhifan Yin2, Xia Hu1,**(), Baojun Liu1,3,**()   

  1. 1. College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
    2. School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
    3. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received: Online: Published:
  • Contact: Xia Hu, Baojun Liu
  • About author:
    ** E-mail: (Xia Hu);
    (Baojun Liu)
  • Supported by:
    National Natural Science Foundation of China(21703044)
Richhtml ( 67 ) PDF ( 2407 ) Cited
Export

EndNote

Ris

BibTeX

MXene, the latest 2D transition metal carbides/carbonitrides/nitrides, has exerted a great influence in the fields of physics, chemistry, material science and nanotechnology. It is an important and increasingly popular category for photocatalysis because of the advantages including hydrophilia, visible-light response, high specific surface area and abundant active sites with —OH or —F terminal during preparation. This review provides an overview of the latest progress of MXenes and its composites in the field of photocatalysis research. Firstly, we give a brief introduction of the synthesis, structure and fundamental properties, methodologies of MXenes and emphasize its composites and the corresponding photocatalysis mechanisms. Then we list the important roles in photocatalytic oxidation and reduction it plays, and forecast the development and potential applications of MXenes.

Table 1 Process conditions for MXenes synthesis from MAX phases
Fig. 1 Illustration of the MXenes configurations and schematic depicting the synthesis process of MXene
Fig. 2 Illustration of the Removal Mechanism of Cr(Ⅵ) by the Ti3C2Tx nanosheets[34]
Fig. 3 (a) Volcano curve of exchange current(i0) as a function of the average Gibbs free energy of hydrogen adsorption(ΔGH*a)[36];(b) The charge separation and transfer in the CdS/Ti3C2 system under visible-light irradiation[8]
Fig. 4 (a, b) HAADF-STEM images from single-layer Ti3C2Tx MXene flakes prepared using etchants with different HF concentration[39];(c, d) SEM and TEM of TiO2/Ti3C2 composites[41]
[1]
Qu Y, Duan X . Chem. Soc. Rev., 2013,42:2568. https://www.ncbi.nlm.nih.gov/pubmed/23192101

doi: 10.1039/c2cs35355e pmid: 23192101
[2]
Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A . Adv. Mater., 2017,29:20.
[3]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y . Adv. Mater., 2014,26:992. https://www.ncbi.nlm.nih.gov/pubmed/24357390

doi: 10.1002/adma.201304138 pmid: 24357390
[4]
Barsoum M W . MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. John Wiley & Sons: Weinheim, Germany, 2013.
[5]
Dhakal C, Aryal S, Sakidja R, Ching W Y . J. Eur. Ceram. Soc., 2015,35:3203.
[6]
Sun Y, Gao S, Lei F, Xiao C, Xie Y . J. Cheminformatics., 2015,48:3.
[7]
Zhang X, Xie Y . Chem. Soc. Rev., 2014,45:8187.
[8]
Ran J R, Gao G P, Li F T, Ma T Y, Du A, Qiao S Z . Nat. Commun., 2017,8:13907. https://www.ncbi.nlm.nih.gov/pubmed/28045015

doi: 10.1038/ncomms13907 pmid: 28045015
[9]
He H, Lin J, Fu W, Wang, X L, Wang, H, Zeng Q S, Gu Q, Li Y M, Yan C, Tay B K, Xue C, Hu X, Pantelides S T, Zhou W, Liu Z, . Adv. Energy. Mater., 2016,6:14.
[10]
Zhang X, Zhao X, Wu D, Jing Y, Zhou Z . Nanoscale, 2015,7:16020. https://www.ncbi.nlm.nih.gov/pubmed/26370829

doi: 10.1039/c5nr04717j pmid: 26370829
[11]
Anasori B, Lukatskaya M R, Gogotsi Y . Nat. Rev. Mater., 2017,2:16098.
[12]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W . Adv. Mater., 2011,23:4248. https://www.ncbi.nlm.nih.gov/pubmed/21861270

doi: 10.1002/adma.201102306 pmid: 21861270
[13]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W . ACS Nano, 2012,6:1322. https://www.ncbi.nlm.nih.gov/pubmed/22279971

doi: 10.1021/nn204153h pmid: 22279971
[14]
Naguib M, Halim J, Lu J, Cook M K, Hultman L, Gogotsi Y, Barsoum W M . J. Am. Chem. Soc., 2013,135:15966. https://www.ncbi.nlm.nih.gov/pubmed/24144164

doi: 10.1021/ja405735d pmid: 24144164
[15]
Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, Barsoum M W . Adv. Funct. Mater., 2016,26:3118.
[16]
Ying Y, Liu Y, Wang X, Mao Y, Cao W, Hu P, Peng X . ACS Appl. Mater. Inter., 2015,7:1795.
[17]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W . Nature, 2014,516:78. https://www.ncbi.nlm.nih.gov/pubmed/25470044

doi: 10.1038/nature13970 pmid: 25470044
[18]
Seh Z W, Fredrickson K D, Anasori B, Kibsgaard J, Strickler A L, Lukatskaya M R, Gogotsi Y, Jaramillo T F, Vojvodic A . ACS Energy Lett., 2016,1:589.
[19]
Lipatov A, Alhabeb M, Lukatskaya M, Boson A J, Gogotsi Y, Sinitskiin A . Adv. Electron. Mater., 2016,2:12.
[20]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y . Science, 2016,353:1137. https://www.ncbi.nlm.nih.gov/pubmed/27609888

doi: 10.1126/science.aag2421 pmid: 27609888
[21]
Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, Ren W C . Nat. Mater., 2015,14:11.
[22]
Eklund P, Rosen J, Persson P O A . J. Phys. D. Appl. Phys., 2017,50:1.
[23]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W . ACS Nano, 2015,9:9507. https://www.ncbi.nlm.nih.gov/pubmed/26208121

doi: 10.1021/acsnano.5b03591 pmid: 26208121
[24]
Zhang X, Lei J, Wu D, Zhao X, Jing Y, Zhou Z . J. Mater. Chem. A, 2016,4:4871.
[25]
Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y . Phys. Chem. Chem. Phys., 2014,16:7841. https://www.ncbi.nlm.nih.gov/pubmed/24643873

doi: 10.1039/c4cp00467a pmid: 24643873
[26]
Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc’h T . Phys. Rev. B, 2015,91:201409.
[27]
Berdiyorov G R . AIP. Adv., 2016,6:055105.
[28]
Cao S, Shen B, Tong T, Fu J, Yu J . Adv. Funct. Mater., 2018,28:21. https://www.ncbi.nlm.nih.gov/pubmed/29875619

doi: 10.1002/adfm.201800618 pmid: 29875619
[29]
Guo Z, Miao N, Zhou B, Sa B, Sun Z . J. Mater. Chem. C, 2017,5:978.
[30]
Zha X, Zhou J, Zhou Y, Huang Q, He J, Francisco J S, Luo K, Du S Y . Nanoscale, 2016,8:6110. https://www.ncbi.nlm.nih.gov/pubmed/26932122

doi: 10.1039/c5nr08639f pmid: 26932122
[31]
Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y . J. Mater. Chem. A, 2014,2:14334.
[32]
Peng C, Wang H, Yu H, Peng F . Mater. Res. Bull., 2017,89:16.
[33]
Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R, Tian Y . J. Am. Chem. Soc., 2014,136:4113. https://www.ncbi.nlm.nih.gov/pubmed/24588686

doi: 10.1021/ja500506k pmid: 24588686
[34]
Mao Y, Cao Wei, Hu P, Peng X . ACS Appl. Mater. Inter., 2015,7:1795.
[35]
Chen Y, Xie X, Xin X, Tang Z, Xu Y . ACS Nano, 2018.
[36]
Gao G, O’Mullane A P, Du A . ACS Catal., 2017,7:494.
[37]
Halmann M . Nature, 1978,275:115.
[38]
Sun Y, Sun Y, Meng X, Gao Y, Dall'Aqnese Y, Chen G, Dall'Aqnese C, Wang X . Catal.Sci. Technol., 2019,9:310.
[39]
Sang X, Xie Y, Lin M, Alhabeb M, Aken K L, Gogotsi Y, Kent P, Xiao K, Unocic R . ACS Nano, 2016,10:9193. https://www.ncbi.nlm.nih.gov/pubmed/27598326

doi: 10.1021/acsnano.6b05240 pmid: 27598326
[40]
Low J, Zhang L, Tong T, Shen B, Yu J . J. Catal., 2018,361:255.
[41]
Zeng Z, Yan Y, Chen J, Zan P, Tian Q, Chen P . Adv. Funct. Mater., 2018,1806500.
[42]
Yu X, Wang T, Yin W, Zhang Y . Int. J. Hydrogen. Energ., 2019,44:2704
[43]
Xu Y, Wang S, Yang J, Han B, Nie R, Wang J, Dong Y, Yu X, Wang J, Jing H . J. Mater. Chem. A, 2018,6:15213.
[44]
Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R, May S J, Billinge S J, Barsoum M W, Gogotsi Y . Nanoscale Horiz., 2016,1:227. https://www.ncbi.nlm.nih.gov/pubmed/32260625

doi: 10.1039/c5nh00125k pmid: 32260625
[45]
Naguib M, Gogotsi Y, Barsoum W M . Adv. Mater., 2014,26:992. https://www.ncbi.nlm.nih.gov/pubmed/24357390

doi: 10.1002/adma.201304138 pmid: 24357390
[1] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[2] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[3] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[4] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[5] Linli Guo, Xin Zhang, Min Xiao, Shuanjin Wang, Dongmei Han, Yuezhong Meng. Two-Dimensional Materials Modified Separator Strategies of Suppressing the Shuttle Effect in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(7): 1212-1220.
[6] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[7] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[8] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[9] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[10] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[11] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[12] Jingjing Xiao, Mu Wang, Weijie Zhang, Xiuying Zhao, Anchao Feng, Liqun Zhang. Preparation and Application of Lead Halide Perovskite-Polymer Composites [J]. Progress in Chemistry, 2021, 33(10): 1731-1740.
[13] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[14] Hang Jia, Yue Qiao, Yu Zhang, Qingxin Meng, Cheng Liu, Xigao Jian. Interface Modification Strategy of Basalt Fiber Reinforced Resin Matrix Composites [J]. Progress in Chemistry, 2020, 32(9): 1307-1315.
[15] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
Viewed
Full text


Abstract

2D MXenes for Photocatalysis*